Network dynamics of social influence in the wisdom of crowds

A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence ha...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. E5070 - E5076
Main Authors Becker, Joshua, Brackbill, Devon, Centola, Damon
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.06.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1615978114

Cover

Loading…
Abstract A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals’ estimates became more similar when subjects observed each other’s beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.
AbstractList A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.
Since the discovery of the wisdom of crowds over 100 years ago theories of collective intelligence have held that group accuracy requires either statistical independence or informational diversity among individual beliefs. Empirical evidence suggests that allowing people to observe the beliefs of others leads to increased similarity of individual estimates, reducing independence and diversity without a corresponding increase in group accuracy. As a result, social influence is expected to undermine the wisdom of crowds. We present theoretical predictions and experimental findings demonstrating that, in decentralized networks, social influence generates learning dynamics that reliably improve the wisdom of crowds. We identify general conditions under which influence, not independence, produces the most accurate group judgments. A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies ]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals’ estimates became more similar when subjects observed each other’s beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.
A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) ]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.
A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.
Author Becker, Joshua
Brackbill, Devon
Centola, Damon
Author_xml – sequence: 1
  givenname: Joshua
  surname: Becker
  fullname: Becker, Joshua
  organization: Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 2
  givenname: Devon
  surname: Brackbill
  fullname: Brackbill, Devon
  organization: Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 3
  givenname: Damon
  surname: Centola
  fullname: Centola, Damon
  organization: School of Engineering, University of Pennsylvania, Philadelphia, PA 19104
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28607070$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLHTEUxkNR6tV23ZUy4Kab0ZPXzASKUKRVQdpNuw6ZPDTXmeQ2menF_95crvW1KFnkwPl9h--cbx_thBgsQp8wnGBo6ekqqHyCG8xF22HM3qEFBoHrhgnYQQsA0tYdI2wP7ee8BADBO3iP9kjXQFveAn35Yad1THeVuQ9q9DpX0VU5aq-Gygc3zDZoW6pqurXV2mcTxw2hU1yb_AHtOjVk-_HxP0C_v3_7dX5ZX_-8uDr_el1rDmKqrdI9Nw4Y4YTijjDHNFhKtCIt7RrsLFPEcdFTZ0xvAHoOtlS97SkTytADdLadu5r70Rptw5TUIFfJjyrdy6i8fN0J_lbexL-SM8EJIWXA58cBKf6ZbZ7k6LO2w6CCjXOWWIAglAITBT1-gy7jnEJZr1CsYbjhDS_U0UtHT1b-HbYAp1ugXCrnZN0TgkFuopOb6ORzdEXB3yi0n9Tk42YlP_xHd7jVLfMU07OThnW8BE4fAPPwqAA
CitedBy_id crossref_primary_10_1177_26339137221121347
crossref_primary_10_1371_journal_pone_0200109
crossref_primary_10_2139_ssrn_4744210
crossref_primary_10_1287_orsc_2021_1507
crossref_primary_10_1371_journal_pone_0218312
crossref_primary_10_1098_rsif_2022_0736
crossref_primary_10_1016_j_ejor_2024_12_015
crossref_primary_10_1007_s10551_021_04912_2
crossref_primary_10_1287_mnsc_2020_3713
crossref_primary_10_1371_journal_pone_0283248
crossref_primary_10_1177_09567976241266481
crossref_primary_10_1016_j_gloenvcha_2022_102528
crossref_primary_10_1073_pnas_1817195116
crossref_primary_10_3390_forecast3030039
crossref_primary_10_1016_j_riob_2022_100175
crossref_primary_10_1098_rsos_171160
crossref_primary_10_1016_j_tree_2024_06_003
crossref_primary_10_2147_PRBM_S454292
crossref_primary_10_1016_j_physa_2024_129621
crossref_primary_10_1038_s41598_023_30599_8
crossref_primary_10_1111_tops_12610
crossref_primary_10_1287_orsc_2022_1584
crossref_primary_10_2105_AJPH_2020_305746
crossref_primary_10_1126_sciadv_abe2045
crossref_primary_10_1109_TSMC_2021_3070902
crossref_primary_10_1007_s41109_022_00488_6
crossref_primary_10_1098_rsos_201188
crossref_primary_10_1001_jamanetworkopen_2019_18586
crossref_primary_10_2139_ssrn_4779145
crossref_primary_10_23919_JSC_2021_0011
crossref_primary_10_1017_dsj_2022_17
crossref_primary_10_1016_j_tics_2022_08_009
crossref_primary_10_1098_rsos_181806
crossref_primary_10_7554_eLife_43094
crossref_primary_10_1073_pnas_2025764118
crossref_primary_10_23919_JSC_2021_0019
crossref_primary_10_1016_j_jebo_2024_106817
crossref_primary_10_1287_deca_2022_0466
crossref_primary_10_1287_mnsc_2021_3987
crossref_primary_10_1073_pnas_1802407115
crossref_primary_10_1073_pnas_2303568120
crossref_primary_10_1038_s41598_020_72690_4
crossref_primary_10_1109_ACCESS_2019_2955677
crossref_primary_10_1073_pnas_1817392116
crossref_primary_10_1177_26339137241241307
crossref_primary_10_2471_BLT_20_276782
crossref_primary_10_1007_s13222_023_00436_3
crossref_primary_10_1038_s41598_024_78856_8
crossref_primary_10_3389_fams_2018_00013
crossref_primary_10_1109_TCSS_2024_3452028
crossref_primary_10_3389_fhumd_2021_629285
crossref_primary_10_1287_orsc_2022_1601
crossref_primary_10_1016_j_patter_2024_101074
crossref_primary_10_1371_journal_pone_0227813
crossref_primary_10_1371_journal_pone_0312487
crossref_primary_10_1073_pnas_2108290120
crossref_primary_10_1073_pnas_1722664115
crossref_primary_10_1080_09640568_2021_1944847
crossref_primary_10_1287_mnsc_2021_3997
crossref_primary_10_21078_JSSI_2018_495_17
crossref_primary_10_1371_journal_pone_0247487
crossref_primary_10_1016_j_physa_2021_125818
crossref_primary_10_1371_journal_pone_0294815
crossref_primary_10_1016_j_chaos_2023_114172
crossref_primary_10_1038_s41598_023_28597_x
crossref_primary_10_1109_TAC_2018_2805261
crossref_primary_10_1016_j_omega_2023_103015
crossref_primary_10_1038_s41562_024_01959_9
crossref_primary_10_1038_s41598_022_10255_3
crossref_primary_10_3758_s13428_020_01535_9
crossref_primary_10_1109_TNSE_2023_3255819
crossref_primary_10_3389_frobt_2017_00056
crossref_primary_10_25046_aj080507
crossref_primary_10_1073_pnas_2013741118
crossref_primary_10_1287_orsc_2021_15302
crossref_primary_10_1007_s11192_021_04089_5
crossref_primary_10_2139_ssrn_3739192
crossref_primary_10_1063_5_0242606
crossref_primary_10_1108_INTR_07_2023_0601
crossref_primary_10_1017_S0008423924000465
crossref_primary_10_1016_j_cognition_2020_104469
crossref_primary_10_1038_s41598_022_20551_7
crossref_primary_10_1098_rsos_201418
crossref_primary_10_1016_j_cognition_2020_104343
crossref_primary_10_3390_math11224642
crossref_primary_10_1038_s42256_022_00474_8
crossref_primary_10_1093_pnasnexus_pgae258
crossref_primary_10_2139_ssrn_4101966
crossref_primary_10_3233_JIFS_179324
crossref_primary_10_3758_s13423_024_02556_7
crossref_primary_10_1287_orsc_2020_1413
crossref_primary_10_1177_26339137221133400
crossref_primary_10_1287_mnsc_2022_00895
crossref_primary_10_1038_s41598_018_34203_2
crossref_primary_10_1177_17456916231198479
crossref_primary_10_3389_fpsyg_2024_1383134
crossref_primary_10_1017_nws_2022_26
crossref_primary_10_1371_journal_pone_0262505
crossref_primary_10_1098_rstb_2022_0268
crossref_primary_10_1007_s11280_022_01030_5
crossref_primary_10_3917_cca_253_0041
crossref_primary_10_1001_jamanetworkopen_2022_29062
crossref_primary_10_1007_s11192_024_04968_7
crossref_primary_10_1038_s44159_022_00054_y
crossref_primary_10_1109_JIOT_2022_3165523
crossref_primary_10_1111_ajsp_12469
crossref_primary_10_1111_cobi_13335
crossref_primary_10_1098_rsif_2018_0130
crossref_primary_10_3390_buildings14010098
crossref_primary_10_1016_j_physa_2024_130251
crossref_primary_10_1126_sciadv_aaw0609
crossref_primary_10_1038_s43588_022_00217_0
crossref_primary_10_1016_j_paid_2024_112823
crossref_primary_10_1098_rstb_2018_0378
crossref_primary_10_1109_TAC_2019_2961998
crossref_primary_10_1007_s13278_024_01402_x
crossref_primary_10_1016_j_cognition_2021_104912
crossref_primary_10_4036_iis_2023_R_03
crossref_primary_10_1177_09567976241252138
crossref_primary_10_1007_s10726_024_09881_1
crossref_primary_10_1038_s41467_021_26905_5
crossref_primary_10_1073_pnas_1714427114
crossref_primary_10_1016_j_physa_2020_125624
crossref_primary_10_3390_e23070801
crossref_primary_10_2139_ssrn_3532318
crossref_primary_10_3389_frai_2022_654930
crossref_primary_10_1073_pnas_1713474114
crossref_primary_10_1109_TCSS_2022_3220944
crossref_primary_10_1073_pnas_1917687117
crossref_primary_10_1002_pan3_10578
crossref_primary_10_1080_0022250X_2024_2428641
crossref_primary_10_1063_5_0242023
crossref_primary_10_1146_annurev_soc_073117_041421
crossref_primary_10_1098_rspa_2022_0681
crossref_primary_10_1007_s41109_018_0071_6
crossref_primary_10_1093_pnasnexus_pgac255
crossref_primary_10_1016_j_eswa_2021_115289
crossref_primary_10_1038_s41598_021_04680_z
crossref_primary_10_1038_s41598_022_11900_7
crossref_primary_10_1177_0093650220915033
crossref_primary_10_1109_ACCESS_2019_2932396
crossref_primary_10_1002_fee_2232
crossref_primary_10_1098_rsos_201273
crossref_primary_10_1016_j_socnet_2020_04_004
crossref_primary_10_1098_rspb_2020_1802
crossref_primary_10_1287_mnsc_2021_4127
crossref_primary_10_1016_j_obhdp_2024_104378
crossref_primary_10_1073_pnas_2311497120
crossref_primary_10_1111_cogs_12852
crossref_primary_10_3917_rimhe_050_0044
crossref_primary_10_1016_j_knosys_2021_107359
crossref_primary_10_1016_j_arcontrol_2023_04_001
crossref_primary_10_1080_10494820_2021_2010220
crossref_primary_10_3390_e24050738
crossref_primary_10_2196_32752
crossref_primary_10_1073_pnas_2106292118
crossref_primary_10_1287_mnsc_2023_4842
crossref_primary_10_1007_s00355_023_01501_2
crossref_primary_10_1073_pnas_2012938118
crossref_primary_10_1137_22M1492751
crossref_primary_10_1016_j_jtbi_2021_110881
crossref_primary_10_1038_s44260_024_00025_9
crossref_primary_10_1287_mnsc_2023_4680
crossref_primary_10_1007_s41469_022_00128_4
crossref_primary_10_1007_s13187_018_1379_8
Cites_doi 10.1073/pnas.1008636108
10.1257/mic.2.1.112
10.1038/075450a0
10.1093/oso/9780195189285.001.0001
10.3982/ECTA12058
10.1515/9781400830282
10.1073/pnas.1418838112
10.1103/PhysRevE.74.036105
10.1073/pnas.1001280107
10.1093/restud/rdr004
10.2307/1123539
10.1111/1467-9760.00148
10.1111/1467-937X.00059
10.1073/pnas.1109947108
10.2189/asqu.52.4.667
10.1177/0956797614524255
10.1287/orsc.2015.0980
10.1126/science.1185231
10.1121/1.1906679
10.1111/jofi.12028
10.1080/01621459.1974.10480137
10.1017/S1930297500002096
10.1098/rstb.2009.0169
10.1037/h0046408
10.1002/bdm.1843
10.1162/00335530360698469
10.1037/h0031920
10.1257/0895330041371321
10.1111/j.1468-2885.2006.00005.x
10.1037/h0074620
10.1057/palgrave.ap.5500121
10.1002/for.1083
10.1371/journal.pone.0078433
10.1016/0378-8733(78)90021-7
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jun 27, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jun 27, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1615978114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Network dynamics of the wisdom of crowds
EISSN 1091-6490
EndPage E5076
ExternalDocumentID PMC5495222
28607070
10_1073_pnas_1615978114
26485009
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-eacb5df0425231824f4c0e32ca273861fe4a2f59b3fddbd00b50eddbbeb349ad3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:17:05 EDT 2025
Fri Jul 11 12:03:57 EDT 2025
Mon Jun 30 08:27:30 EDT 2025
Wed Feb 19 02:43:33 EST 2025
Thu Apr 24 23:11:04 EDT 2025
Tue Jul 01 03:19:36 EDT 2025
Fri May 30 11:46:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords social learning
experimental social science
collective intelligence
social networks
wisdom of crowds
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-eacb5df0425231824f4c0e32ca273861fe4a2f59b3fddbd00b50eddbbeb349ad3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved April 14, 2017 (received for review October 8, 2016)
Author contributions: J.B., D.B., and D.C. designed research; J.B. and D.B. performed research; J.B., D.B., and D.C. analyzed data; and J.B., D.B., and D.C. wrote the paper.
ORCID 0000-0002-3054-2447
OpenAccessLink https://www.pnas.org/content/pnas/114/26/E5070.full.pdf
PMID 28607070
PQID 1946416565
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495222
proquest_miscellaneous_1909233049
proquest_journals_1946416565
pubmed_primary_28607070
crossref_primary_10_1073_pnas_1615978114
crossref_citationtrail_10_1073_pnas_1615978114
jstor_primary_26485009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-27
PublicationDateYYYYMMDD 2017-06-27
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Sunstein CR (e_1_3_3_2_2) 2006
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
Herzog SM (e_1_3_3_7_2) 2011; 6
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
Bonabeau E (e_1_3_3_37_2) 2009; 50
Green K (e_1_3_3_39_2) 2007
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
Hong L (e_1_3_3_10_2) 2008
e_1_3_3_6_2
e_1_3_3_8_2
Janis IL (e_1_3_3_14_2) 1982
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Nofer M (e_1_3_3_5_2) 2014; 84
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
17025706 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036105
24659192 - Psychol Sci. 2014 May 1;25(5):1106-15
20696936 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14978-82
20813952 - Science. 2010 Sep 3;329(5996):1194-7
21576485 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9020-5
21876181 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E625; author reply E626
24223805 - PLoS One. 2013 Nov 05;8(11):e78433
20026466 - Philos Trans R Soc Lond B Biol Sci. 2010 Jan 27;365(1538):281-90
13286010 - J Abnorm Psychol. 1955 Nov;51(3):629-36
25646462 - Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1989-94
References_xml – start-page: 17
  year: 2007
  ident: e_1_3_3_39_2
  article-title: Methods to elicit forecasts from groups: Delphi and prediction markets compared
  publication-title: Foresight
– start-page: 349
  volume-title: Groupthink: Psychological Studies of Policy Decisions and Fiascoes
  year: 1982
  ident: e_1_3_3_14_2
– ident: e_1_3_3_13_2
  doi: 10.1073/pnas.1008636108
– ident: e_1_3_3_21_2
  doi: 10.1257/mic.2.1.112
– ident: e_1_3_3_1_2
  doi: 10.1038/075450a0
– volume-title: Infotopia: How Many Minds Produce Knowledge
  year: 2006
  ident: e_1_3_3_2_2
  doi: 10.1093/oso/9780195189285.001.0001
– ident: e_1_3_3_23_2
  doi: 10.3982/ECTA12058
– ident: e_1_3_3_9_2
  doi: 10.1515/9781400830282
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.1418838112
– volume: 50
  start-page: 45
  year: 2009
  ident: e_1_3_3_37_2
  article-title: Decisions 2.0: The power of collective intelligence
  publication-title: Sloan Mage Rev
– ident: e_1_3_3_33_2
  doi: 10.1103/PhysRevE.74.036105
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1001280107
– ident: e_1_3_3_24_2
  doi: 10.1093/restud/rdr004
– ident: e_1_3_3_15_2
  doi: 10.2307/1123539
– ident: e_1_3_3_16_2
  doi: 10.1111/1467-9760.00148
– ident: e_1_3_3_22_2
  doi: 10.1111/1467-937X.00059
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.1109947108
– ident: e_1_3_3_35_2
  doi: 10.2189/asqu.52.4.667
– ident: e_1_3_3_8_2
  doi: 10.1177/0956797614524255
– ident: e_1_3_3_36_2
  doi: 10.1287/orsc.2015.0980
– volume: 84
  start-page: 303
  year: 2014
  ident: e_1_3_3_5_2
  article-title: Are crowds on the internet wiser than experts? The case of a stock prediction community
  publication-title: J Bus Econ
– ident: e_1_3_3_27_2
  doi: 10.1126/science.1185231
– ident: e_1_3_3_34_2
  doi: 10.1121/1.1906679
– ident: e_1_3_3_4_2
  doi: 10.1111/jofi.12028
– ident: e_1_3_3_19_2
  doi: 10.1080/01621459.1974.10480137
– volume: 6
  start-page: 58
  year: 2011
  ident: e_1_3_3_7_2
  article-title: The wisdom of ignorant crowds: Predicting sport outcomes by mere recognition
  publication-title: Judgm Decis Mak
  doi: 10.1017/S1930297500002096
– ident: e_1_3_3_17_2
  doi: 10.1098/rstb.2009.0169
– ident: e_1_3_3_25_2
  doi: 10.1037/h0046408
– ident: e_1_3_3_31_2
  doi: 10.1002/bdm.1843
– ident: e_1_3_3_20_2
  doi: 10.1162/00335530360698469
– ident: e_1_3_3_12_2
  doi: 10.1037/h0031920
– ident: e_1_3_3_3_2
  doi: 10.1257/0895330041371321
– start-page: 56
  volume-title: Collective Wisdom
  year: 2008
  ident: e_1_3_3_10_2
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1468-2885.2006.00005.x
– ident: e_1_3_3_11_2
  doi: 10.1037/h0074620
– ident: e_1_3_3_38_2
  doi: 10.1057/palgrave.ap.5500121
– ident: e_1_3_3_6_2
  doi: 10.1002/for.1083
– ident: e_1_3_3_18_2
  doi: 10.1371/journal.pone.0078433
– ident: e_1_3_3_29_2
  doi: 10.1016/0378-8733(78)90021-7
– reference: 20696936 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14978-82
– reference: 20026466 - Philos Trans R Soc Lond B Biol Sci. 2010 Jan 27;365(1538):281-90
– reference: 24223805 - PLoS One. 2013 Nov 05;8(11):e78433
– reference: 25646462 - Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1989-94
– reference: 17025706 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036105
– reference: 13286010 - J Abnorm Psychol. 1955 Nov;51(3):629-36
– reference: 21876181 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E625; author reply E626
– reference: 20813952 - Science. 2010 Sep 3;329(5996):1194-7
– reference: 21576485 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9020-5
– reference: 24659192 - Psychol Sci. 2014 May 1;25(5):1106-15
SSID ssj0009580
Score 2.6360233
Snippet A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent...
Since the discovery of the wisdom of crowds over 100 years ago theories of collective intelligence have held that group accuracy requires either statistical...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E5070
SubjectTerms Biological computing
Communication networks
Computer applications
Estimates
Experiments
Group dynamics
Influence
Intelligence
Judgments
PNAS Plus
Schools
Social organization
Social Sciences
Title Network dynamics of social influence in the wisdom of crowds
URI https://www.jstor.org/stable/26485009
https://www.ncbi.nlm.nih.gov/pubmed/28607070
https://www.proquest.com/docview/1946416565
https://www.proquest.com/docview/1909233049
https://pubmed.ncbi.nlm.nih.gov/PMC5495222
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBbaFgKGiROBRFDn6sH5G4VLRQVSLqoZVys_ZlNSq1EU6KxK9nxvtwkrZS4WKt7PUqzjc7O7P7zQwhH5TMuMwzFoJsFCGTsQ4F0ypMpCoLXcpYKdwa-D7NTy7Y6SybDST2PrpkIcbyz51xJf-DKtwDXDFK9h-Q9YPCDWgDvnAFhOH6IIynhsM9UqasfM_KsJvgc1d8xBEZf8871V73LHLwvE14r7NKz_wq1jnOwNRtEh4OISdWD3SjcHQ2XSlgrB0147TtLpcrHj6XV8Kmyz7SN8OBP24pg0ttOPXX9r7deoh7npyJ5PehALDEMRMEPdZGg4IBEubM1AD1KtYEilpZMiHyt3Q3KBssONzwboxmKCbjsq-tZcneWL08p7A_TS_SCgeohgEekycJeBBY3OLbLF7Jx1ya6CT7BS7rU5F-2vgFawaL4aze5Y1skmpXrJTzbfLMuhf00MjKDnmkm12y44CjBzbL-Mfn5LMVHuqEh7Y1NcJDvfBAi4I0UCM82MMIzwty8fX4_MtJaEtphBIswkUIy6vIVI0aGgz6MmE1k5FOE8kxNCuPa814UmcTkdZKCRVFIos0tIQWKZtwle6RraZt9CtCleIc-QoqVprBEKVMBEzrOpVc6DiWARm7_6uSNs88ljv5Ud2DUEAO_As_TYqV-7vu9QD4fsjPzADNgOw7RCo7QeG9CcsZZpfKAvLePwb1iWdivNHtEvtE4OLgWXNAXhoAh8HLHJNhRQEp1qD1HTA1-_qTZn7Zp2jP2AQcm-T1wz_tDXk6TLF9srX4tdRvwd5diHe95P4FstSrog
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+dynamics+of+social+influence+in+the+wisdom+of+crowds&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Becker%2C+Joshua&rft.au=Brackbill%2C+Devon&rft.au=Centola%2C+Damon&rft.date=2017-06-27&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft_id=info:doi/10.1073%2Fpnas.1615978114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1615978114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon