Network dynamics of social influence in the wisdom of crowds
A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence ha...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 26; pp. E5070 - E5076 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.06.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1615978114 |
Cover
Loading…
Abstract | A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals’ estimates became more similar when subjects observed each other’s beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error. |
---|---|
AbstractList | A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error. Since the discovery of the wisdom of crowds over 100 years ago theories of collective intelligence have held that group accuracy requires either statistical independence or informational diversity among individual beliefs. Empirical evidence suggests that allowing people to observe the beliefs of others leads to increased similarity of individual estimates, reducing independence and diversity without a corresponding increase in group accuracy. As a result, social influence is expected to undermine the wisdom of crowds. We present theoretical predictions and experimental findings demonstrating that, in decentralized networks, social influence generates learning dynamics that reliably improve the wisdom of crowds. We identify general conditions under which influence, not independence, produces the most accurate group judgments. A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton’s discovery of the “wisdom of crowds” [Galton F (1907) Nature 75:450–451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies ]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals’ estimates became more similar when subjects observed each other’s beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020–9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error. A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) ]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error. A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error.A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent collective judgments. Since Galton's discovery of the "wisdom of crowds" [Galton F (1907) Nature 75:450-451], theories of collective intelligence have suggested that the accuracy of group judgments requires individuals to be either independent, with uncorrelated beliefs, or diverse, with negatively correlated beliefs [Page S (2008) The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies]. Previous experimental studies have supported this view by arguing that social influence undermines the wisdom of crowds. These results showed that individuals' estimates became more similar when subjects observed each other's beliefs, thereby reducing diversity without a corresponding increase in group accuracy [Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) Proc Natl Acad Sci USA 108:9020-9025]. By contrast, we show general network conditions under which social influence improves the accuracy of group estimates, even as individual beliefs become more similar. We present theoretical predictions and experimental results showing that, in decentralized communication networks, group estimates become reliably more accurate as a result of information exchange. We further show that the dynamics of group accuracy change with network structure. In centralized networks, where the influence of central individuals dominates the collective estimation process, group estimates become more likely to increase in error. |
Author | Becker, Joshua Brackbill, Devon Centola, Damon |
Author_xml | – sequence: 1 givenname: Joshua surname: Becker fullname: Becker, Joshua organization: Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 2 givenname: Devon surname: Brackbill fullname: Brackbill, Devon organization: Annenberg School for Communication, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 3 givenname: Damon surname: Centola fullname: Centola, Damon organization: School of Engineering, University of Pennsylvania, Philadelphia, PA 19104 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28607070$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctLHTEUxkNR6tV23ZUy4Kab0ZPXzASKUKRVQdpNuw6ZPDTXmeQ2menF_95crvW1KFnkwPl9h--cbx_thBgsQp8wnGBo6ekqqHyCG8xF22HM3qEFBoHrhgnYQQsA0tYdI2wP7ee8BADBO3iP9kjXQFveAn35Yad1THeVuQ9q9DpX0VU5aq-Gygc3zDZoW6pqurXV2mcTxw2hU1yb_AHtOjVk-_HxP0C_v3_7dX5ZX_-8uDr_el1rDmKqrdI9Nw4Y4YTijjDHNFhKtCIt7RrsLFPEcdFTZ0xvAHoOtlS97SkTytADdLadu5r70Rptw5TUIFfJjyrdy6i8fN0J_lbexL-SM8EJIWXA58cBKf6ZbZ7k6LO2w6CCjXOWWIAglAITBT1-gy7jnEJZr1CsYbjhDS_U0UtHT1b-HbYAp1ugXCrnZN0TgkFuopOb6ORzdEXB3yi0n9Tk42YlP_xHd7jVLfMU07OThnW8BE4fAPPwqAA |
CitedBy_id | crossref_primary_10_1177_26339137221121347 crossref_primary_10_1371_journal_pone_0200109 crossref_primary_10_2139_ssrn_4744210 crossref_primary_10_1287_orsc_2021_1507 crossref_primary_10_1371_journal_pone_0218312 crossref_primary_10_1098_rsif_2022_0736 crossref_primary_10_1016_j_ejor_2024_12_015 crossref_primary_10_1007_s10551_021_04912_2 crossref_primary_10_1287_mnsc_2020_3713 crossref_primary_10_1371_journal_pone_0283248 crossref_primary_10_1177_09567976241266481 crossref_primary_10_1016_j_gloenvcha_2022_102528 crossref_primary_10_1073_pnas_1817195116 crossref_primary_10_3390_forecast3030039 crossref_primary_10_1016_j_riob_2022_100175 crossref_primary_10_1098_rsos_171160 crossref_primary_10_1016_j_tree_2024_06_003 crossref_primary_10_2147_PRBM_S454292 crossref_primary_10_1016_j_physa_2024_129621 crossref_primary_10_1038_s41598_023_30599_8 crossref_primary_10_1111_tops_12610 crossref_primary_10_1287_orsc_2022_1584 crossref_primary_10_2105_AJPH_2020_305746 crossref_primary_10_1126_sciadv_abe2045 crossref_primary_10_1109_TSMC_2021_3070902 crossref_primary_10_1007_s41109_022_00488_6 crossref_primary_10_1098_rsos_201188 crossref_primary_10_1001_jamanetworkopen_2019_18586 crossref_primary_10_2139_ssrn_4779145 crossref_primary_10_23919_JSC_2021_0011 crossref_primary_10_1017_dsj_2022_17 crossref_primary_10_1016_j_tics_2022_08_009 crossref_primary_10_1098_rsos_181806 crossref_primary_10_7554_eLife_43094 crossref_primary_10_1073_pnas_2025764118 crossref_primary_10_23919_JSC_2021_0019 crossref_primary_10_1016_j_jebo_2024_106817 crossref_primary_10_1287_deca_2022_0466 crossref_primary_10_1287_mnsc_2021_3987 crossref_primary_10_1073_pnas_1802407115 crossref_primary_10_1073_pnas_2303568120 crossref_primary_10_1038_s41598_020_72690_4 crossref_primary_10_1109_ACCESS_2019_2955677 crossref_primary_10_1073_pnas_1817392116 crossref_primary_10_1177_26339137241241307 crossref_primary_10_2471_BLT_20_276782 crossref_primary_10_1007_s13222_023_00436_3 crossref_primary_10_1038_s41598_024_78856_8 crossref_primary_10_3389_fams_2018_00013 crossref_primary_10_1109_TCSS_2024_3452028 crossref_primary_10_3389_fhumd_2021_629285 crossref_primary_10_1287_orsc_2022_1601 crossref_primary_10_1016_j_patter_2024_101074 crossref_primary_10_1371_journal_pone_0227813 crossref_primary_10_1371_journal_pone_0312487 crossref_primary_10_1073_pnas_2108290120 crossref_primary_10_1073_pnas_1722664115 crossref_primary_10_1080_09640568_2021_1944847 crossref_primary_10_1287_mnsc_2021_3997 crossref_primary_10_21078_JSSI_2018_495_17 crossref_primary_10_1371_journal_pone_0247487 crossref_primary_10_1016_j_physa_2021_125818 crossref_primary_10_1371_journal_pone_0294815 crossref_primary_10_1016_j_chaos_2023_114172 crossref_primary_10_1038_s41598_023_28597_x crossref_primary_10_1109_TAC_2018_2805261 crossref_primary_10_1016_j_omega_2023_103015 crossref_primary_10_1038_s41562_024_01959_9 crossref_primary_10_1038_s41598_022_10255_3 crossref_primary_10_3758_s13428_020_01535_9 crossref_primary_10_1109_TNSE_2023_3255819 crossref_primary_10_3389_frobt_2017_00056 crossref_primary_10_25046_aj080507 crossref_primary_10_1073_pnas_2013741118 crossref_primary_10_1287_orsc_2021_15302 crossref_primary_10_1007_s11192_021_04089_5 crossref_primary_10_2139_ssrn_3739192 crossref_primary_10_1063_5_0242606 crossref_primary_10_1108_INTR_07_2023_0601 crossref_primary_10_1017_S0008423924000465 crossref_primary_10_1016_j_cognition_2020_104469 crossref_primary_10_1038_s41598_022_20551_7 crossref_primary_10_1098_rsos_201418 crossref_primary_10_1016_j_cognition_2020_104343 crossref_primary_10_3390_math11224642 crossref_primary_10_1038_s42256_022_00474_8 crossref_primary_10_1093_pnasnexus_pgae258 crossref_primary_10_2139_ssrn_4101966 crossref_primary_10_3233_JIFS_179324 crossref_primary_10_3758_s13423_024_02556_7 crossref_primary_10_1287_orsc_2020_1413 crossref_primary_10_1177_26339137221133400 crossref_primary_10_1287_mnsc_2022_00895 crossref_primary_10_1038_s41598_018_34203_2 crossref_primary_10_1177_17456916231198479 crossref_primary_10_3389_fpsyg_2024_1383134 crossref_primary_10_1017_nws_2022_26 crossref_primary_10_1371_journal_pone_0262505 crossref_primary_10_1098_rstb_2022_0268 crossref_primary_10_1007_s11280_022_01030_5 crossref_primary_10_3917_cca_253_0041 crossref_primary_10_1001_jamanetworkopen_2022_29062 crossref_primary_10_1007_s11192_024_04968_7 crossref_primary_10_1038_s44159_022_00054_y crossref_primary_10_1109_JIOT_2022_3165523 crossref_primary_10_1111_ajsp_12469 crossref_primary_10_1111_cobi_13335 crossref_primary_10_1098_rsif_2018_0130 crossref_primary_10_3390_buildings14010098 crossref_primary_10_1016_j_physa_2024_130251 crossref_primary_10_1126_sciadv_aaw0609 crossref_primary_10_1038_s43588_022_00217_0 crossref_primary_10_1016_j_paid_2024_112823 crossref_primary_10_1098_rstb_2018_0378 crossref_primary_10_1109_TAC_2019_2961998 crossref_primary_10_1007_s13278_024_01402_x crossref_primary_10_1016_j_cognition_2021_104912 crossref_primary_10_4036_iis_2023_R_03 crossref_primary_10_1177_09567976241252138 crossref_primary_10_1007_s10726_024_09881_1 crossref_primary_10_1038_s41467_021_26905_5 crossref_primary_10_1073_pnas_1714427114 crossref_primary_10_1016_j_physa_2020_125624 crossref_primary_10_3390_e23070801 crossref_primary_10_2139_ssrn_3532318 crossref_primary_10_3389_frai_2022_654930 crossref_primary_10_1073_pnas_1713474114 crossref_primary_10_1109_TCSS_2022_3220944 crossref_primary_10_1073_pnas_1917687117 crossref_primary_10_1002_pan3_10578 crossref_primary_10_1080_0022250X_2024_2428641 crossref_primary_10_1063_5_0242023 crossref_primary_10_1146_annurev_soc_073117_041421 crossref_primary_10_1098_rspa_2022_0681 crossref_primary_10_1007_s41109_018_0071_6 crossref_primary_10_1093_pnasnexus_pgac255 crossref_primary_10_1016_j_eswa_2021_115289 crossref_primary_10_1038_s41598_021_04680_z crossref_primary_10_1038_s41598_022_11900_7 crossref_primary_10_1177_0093650220915033 crossref_primary_10_1109_ACCESS_2019_2932396 crossref_primary_10_1002_fee_2232 crossref_primary_10_1098_rsos_201273 crossref_primary_10_1016_j_socnet_2020_04_004 crossref_primary_10_1098_rspb_2020_1802 crossref_primary_10_1287_mnsc_2021_4127 crossref_primary_10_1016_j_obhdp_2024_104378 crossref_primary_10_1073_pnas_2311497120 crossref_primary_10_1111_cogs_12852 crossref_primary_10_3917_rimhe_050_0044 crossref_primary_10_1016_j_knosys_2021_107359 crossref_primary_10_1016_j_arcontrol_2023_04_001 crossref_primary_10_1080_10494820_2021_2010220 crossref_primary_10_3390_e24050738 crossref_primary_10_2196_32752 crossref_primary_10_1073_pnas_2106292118 crossref_primary_10_1287_mnsc_2023_4842 crossref_primary_10_1007_s00355_023_01501_2 crossref_primary_10_1073_pnas_2012938118 crossref_primary_10_1137_22M1492751 crossref_primary_10_1016_j_jtbi_2021_110881 crossref_primary_10_1038_s44260_024_00025_9 crossref_primary_10_1287_mnsc_2023_4680 crossref_primary_10_1007_s41469_022_00128_4 crossref_primary_10_1007_s13187_018_1379_8 |
Cites_doi | 10.1073/pnas.1008636108 10.1257/mic.2.1.112 10.1038/075450a0 10.1093/oso/9780195189285.001.0001 10.3982/ECTA12058 10.1515/9781400830282 10.1073/pnas.1418838112 10.1103/PhysRevE.74.036105 10.1073/pnas.1001280107 10.1093/restud/rdr004 10.2307/1123539 10.1111/1467-9760.00148 10.1111/1467-937X.00059 10.1073/pnas.1109947108 10.2189/asqu.52.4.667 10.1177/0956797614524255 10.1287/orsc.2015.0980 10.1126/science.1185231 10.1121/1.1906679 10.1111/jofi.12028 10.1080/01621459.1974.10480137 10.1017/S1930297500002096 10.1098/rstb.2009.0169 10.1037/h0046408 10.1002/bdm.1843 10.1162/00335530360698469 10.1037/h0031920 10.1257/0895330041371321 10.1111/j.1468-2885.2006.00005.x 10.1037/h0074620 10.1057/palgrave.ap.5500121 10.1002/for.1083 10.1371/journal.pone.0078433 10.1016/0378-8733(78)90021-7 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jun 27, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jun 27, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1615978114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Network dynamics of the wisdom of crowds |
EISSN | 1091-6490 |
EndPage | E5076 |
ExternalDocumentID | PMC5495222 28607070 10_1073_pnas_1615978114 26485009 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-eacb5df0425231824f4c0e32ca273861fe4a2f59b3fddbd00b50eddbbeb349ad3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:17:05 EDT 2025 Fri Jul 11 12:03:57 EDT 2025 Mon Jun 30 08:27:30 EDT 2025 Wed Feb 19 02:43:33 EST 2025 Thu Apr 24 23:11:04 EDT 2025 Tue Jul 01 03:19:36 EDT 2025 Fri May 30 11:46:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | social learning experimental social science collective intelligence social networks wisdom of crowds |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-eacb5df0425231824f4c0e32ca273861fe4a2f59b3fddbd00b50eddbbeb349ad3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved April 14, 2017 (received for review October 8, 2016) Author contributions: J.B., D.B., and D.C. designed research; J.B. and D.B. performed research; J.B., D.B., and D.C. analyzed data; and J.B., D.B., and D.C. wrote the paper. |
ORCID | 0000-0002-3054-2447 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/26/E5070.full.pdf |
PMID | 28607070 |
PQID | 1946416565 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5495222 proquest_miscellaneous_1909233049 proquest_journals_1946416565 pubmed_primary_28607070 crossref_primary_10_1073_pnas_1615978114 crossref_citationtrail_10_1073_pnas_1615978114 jstor_primary_26485009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-27 |
PublicationDateYYYYMMDD | 2017-06-27 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Sunstein CR (e_1_3_3_2_2) 2006 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 Herzog SM (e_1_3_3_7_2) 2011; 6 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 Bonabeau E (e_1_3_3_37_2) 2009; 50 Green K (e_1_3_3_39_2) 2007 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 Hong L (e_1_3_3_10_2) 2008 e_1_3_3_6_2 e_1_3_3_8_2 Janis IL (e_1_3_3_14_2) 1982 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 Nofer M (e_1_3_3_5_2) 2014; 84 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 17025706 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036105 24659192 - Psychol Sci. 2014 May 1;25(5):1106-15 20696936 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14978-82 20813952 - Science. 2010 Sep 3;329(5996):1194-7 21576485 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9020-5 21876181 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E625; author reply E626 24223805 - PLoS One. 2013 Nov 05;8(11):e78433 20026466 - Philos Trans R Soc Lond B Biol Sci. 2010 Jan 27;365(1538):281-90 13286010 - J Abnorm Psychol. 1955 Nov;51(3):629-36 25646462 - Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1989-94 |
References_xml | – start-page: 17 year: 2007 ident: e_1_3_3_39_2 article-title: Methods to elicit forecasts from groups: Delphi and prediction markets compared publication-title: Foresight – start-page: 349 volume-title: Groupthink: Psychological Studies of Policy Decisions and Fiascoes year: 1982 ident: e_1_3_3_14_2 – ident: e_1_3_3_13_2 doi: 10.1073/pnas.1008636108 – ident: e_1_3_3_21_2 doi: 10.1257/mic.2.1.112 – ident: e_1_3_3_1_2 doi: 10.1038/075450a0 – volume-title: Infotopia: How Many Minds Produce Knowledge year: 2006 ident: e_1_3_3_2_2 doi: 10.1093/oso/9780195189285.001.0001 – ident: e_1_3_3_23_2 doi: 10.3982/ECTA12058 – ident: e_1_3_3_9_2 doi: 10.1515/9781400830282 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.1418838112 – volume: 50 start-page: 45 year: 2009 ident: e_1_3_3_37_2 article-title: Decisions 2.0: The power of collective intelligence publication-title: Sloan Mage Rev – ident: e_1_3_3_33_2 doi: 10.1103/PhysRevE.74.036105 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1001280107 – ident: e_1_3_3_24_2 doi: 10.1093/restud/rdr004 – ident: e_1_3_3_15_2 doi: 10.2307/1123539 – ident: e_1_3_3_16_2 doi: 10.1111/1467-9760.00148 – ident: e_1_3_3_22_2 doi: 10.1111/1467-937X.00059 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.1109947108 – ident: e_1_3_3_35_2 doi: 10.2189/asqu.52.4.667 – ident: e_1_3_3_8_2 doi: 10.1177/0956797614524255 – ident: e_1_3_3_36_2 doi: 10.1287/orsc.2015.0980 – volume: 84 start-page: 303 year: 2014 ident: e_1_3_3_5_2 article-title: Are crowds on the internet wiser than experts? The case of a stock prediction community publication-title: J Bus Econ – ident: e_1_3_3_27_2 doi: 10.1126/science.1185231 – ident: e_1_3_3_34_2 doi: 10.1121/1.1906679 – ident: e_1_3_3_4_2 doi: 10.1111/jofi.12028 – ident: e_1_3_3_19_2 doi: 10.1080/01621459.1974.10480137 – volume: 6 start-page: 58 year: 2011 ident: e_1_3_3_7_2 article-title: The wisdom of ignorant crowds: Predicting sport outcomes by mere recognition publication-title: Judgm Decis Mak doi: 10.1017/S1930297500002096 – ident: e_1_3_3_17_2 doi: 10.1098/rstb.2009.0169 – ident: e_1_3_3_25_2 doi: 10.1037/h0046408 – ident: e_1_3_3_31_2 doi: 10.1002/bdm.1843 – ident: e_1_3_3_20_2 doi: 10.1162/00335530360698469 – ident: e_1_3_3_12_2 doi: 10.1037/h0031920 – ident: e_1_3_3_3_2 doi: 10.1257/0895330041371321 – start-page: 56 volume-title: Collective Wisdom year: 2008 ident: e_1_3_3_10_2 – ident: e_1_3_3_26_2 doi: 10.1111/j.1468-2885.2006.00005.x – ident: e_1_3_3_11_2 doi: 10.1037/h0074620 – ident: e_1_3_3_38_2 doi: 10.1057/palgrave.ap.5500121 – ident: e_1_3_3_6_2 doi: 10.1002/for.1083 – ident: e_1_3_3_18_2 doi: 10.1371/journal.pone.0078433 – ident: e_1_3_3_29_2 doi: 10.1016/0378-8733(78)90021-7 – reference: 20696936 - Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):14978-82 – reference: 20026466 - Philos Trans R Soc Lond B Biol Sci. 2010 Jan 27;365(1538):281-90 – reference: 24223805 - PLoS One. 2013 Nov 05;8(11):e78433 – reference: 25646462 - Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1989-94 – reference: 17025706 - Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036105 – reference: 13286010 - J Abnorm Psychol. 1955 Nov;51(3):629-36 – reference: 21876181 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):E625; author reply E626 – reference: 20813952 - Science. 2010 Sep 3;329(5996):1194-7 – reference: 21576485 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):9020-5 – reference: 24659192 - Psychol Sci. 2014 May 1;25(5):1106-15 |
SSID | ssj0009580 |
Score | 2.6360233 |
Snippet | A longstanding problem in the social, biological, and computational sciences is to determine how groups of distributed individuals can form intelligent... Since the discovery of the wisdom of crowds over 100 years ago theories of collective intelligence have held that group accuracy requires either statistical... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E5070 |
SubjectTerms | Biological computing Communication networks Computer applications Estimates Experiments Group dynamics Influence Intelligence Judgments PNAS Plus Schools Social organization Social Sciences |
Title | Network dynamics of social influence in the wisdom of crowds |
URI | https://www.jstor.org/stable/26485009 https://www.ncbi.nlm.nih.gov/pubmed/28607070 https://www.proquest.com/docview/1946416565 https://www.proquest.com/docview/1909233049 https://pubmed.ncbi.nlm.nih.gov/PMC5495222 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BuXBBbaFgKGiROBRFDn6sH5G4VLRQVSLqoZVys_ZlNSq1EU6KxK9nxvtwkrZS4WKt7PUqzjc7O7P7zQwhH5TMuMwzFoJsFCGTsQ4F0ypMpCoLXcpYKdwa-D7NTy7Y6SybDST2PrpkIcbyz51xJf-DKtwDXDFK9h-Q9YPCDWgDvnAFhOH6IIynhsM9UqasfM_KsJvgc1d8xBEZf8871V73LHLwvE14r7NKz_wq1jnOwNRtEh4OISdWD3SjcHQ2XSlgrB0147TtLpcrHj6XV8Kmyz7SN8OBP24pg0ttOPXX9r7deoh7npyJ5PehALDEMRMEPdZGg4IBEubM1AD1KtYEilpZMiHyt3Q3KBssONzwboxmKCbjsq-tZcneWL08p7A_TS_SCgeohgEekycJeBBY3OLbLF7Jx1ya6CT7BS7rU5F-2vgFawaL4aze5Y1skmpXrJTzbfLMuhf00MjKDnmkm12y44CjBzbL-Mfn5LMVHuqEh7Y1NcJDvfBAi4I0UCM82MMIzwty8fX4_MtJaEtphBIswkUIy6vIVI0aGgz6MmE1k5FOE8kxNCuPa814UmcTkdZKCRVFIos0tIQWKZtwle6RraZt9CtCleIc-QoqVprBEKVMBEzrOpVc6DiWARm7_6uSNs88ljv5Ud2DUEAO_As_TYqV-7vu9QD4fsjPzADNgOw7RCo7QeG9CcsZZpfKAvLePwb1iWdivNHtEvtE4OLgWXNAXhoAh8HLHJNhRQEp1qD1HTA1-_qTZn7Zp2jP2AQcm-T1wz_tDXk6TLF9srX4tdRvwd5diHe95P4FstSrog |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+dynamics+of+social+influence+in+the+wisdom+of+crowds&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Becker%2C+Joshua&rft.au=Brackbill%2C+Devon&rft.au=Centola%2C+Damon&rft.date=2017-06-27&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=26&rft_id=info:doi/10.1073%2Fpnas.1615978114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1615978114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |