Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for l...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 38; pp. 1 - 9
Main Authors Dalvie, Neil C., Rodriguez-Aponte, Sergio A., Hartwell, Brittany L., Tostanoski, Lisa H., Biedermann, Andrew M., Crowell, Laura E., Kaur, Kawaljit, Kumru, Ozan S., Carter, Lauren, Yu, Jingyou, Chang, Aiquan, McMahan, Katherine, Courant, Thomas, Lebas, Celia, Lemnios, Ashley A., Rodrigues, Kristen A., Silva, Murillo, Johnston, Ryan S., Naranjo, Christopher A., Tracey, Mary Kate, Brady, Joseph R., Whittaker, Charles A., Yun, Dongsoo, Brunette, Natalie, Wang, Jing Yang, Walkey, Carl, Fiala, Brooke, Kar, Swagata, Porto, Maciel, Lok, Megan, Andersen, Hanne, Lewis, Mark G., Love, Kerry R., Camp, Danielle L., Silverman, Judith Maxwell, Kleanthous, Harry, Joshi, Sangeeta B., Volkin, David B., Dubois, Patrice M., Collin, Nicolas, King, Neil P., Barouch, Dan H., Irvine, Darrell J., Love, J. Christopher
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 21.09.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2106845118

Cover

Loading…
Abstract Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
AbstractList Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
Most of the global population resides in low- and middle-income countries, where current vaccines for COVID-19 remain largely unavailable. For the COVID-19 pandemic, the world will need access to >10 billion doses of vaccines, or more than double the annual volume of vaccines for all other diseases. Many vaccine candidates use the SARS-CoV-2 receptor-binding domain (RBD) antigen. Here, we present an engineered RBD with improved production titers in Pichia pastoris , a yeast commonly used for large-scale, low-cost manufacturing by vaccine manufacturers. The modified RBD also raises an enhanced immune response in mice relative to the Wuhan-Hu-1 sequence used in current candidates. These combined traits make it a promising candidate for next-generation vaccines addressing emerging variants of the virus. Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.
Author Hartwell, Brittany L.
Silva, Murillo
Yun, Dongsoo
Rodrigues, Kristen A.
Tracey, Mary Kate
Porto, Maciel
King, Neil P.
Volkin, David B.
Irvine, Darrell J.
Silverman, Judith Maxwell
Johnston, Ryan S.
Brunette, Natalie
Kaur, Kawaljit
Chang, Aiquan
Lemnios, Ashley A.
Naranjo, Christopher A.
Kumru, Ozan S.
Love, J. Christopher
Rodriguez-Aponte, Sergio A.
Yu, Jingyou
Whittaker, Charles A.
Lebas, Celia
Carter, Lauren
Fiala, Brooke
Love, Kerry R.
Barouch, Dan H.
Biedermann, Andrew M.
Camp, Danielle L.
Wang, Jing Yang
Dubois, Patrice M.
Andersen, Hanne
Lewis, Mark G.
Lok, Megan
Joshi, Sangeeta B.
Brady, Joseph R.
Walkey, Carl
Kleanthous, Harry
Dalvie, Neil C.
Kar, Swagata
Courant, Thomas
Collin, Nicolas
Crowell, Laura E.
McMahan, Katherine
Tostanoski, Lisa H.
Author_xml – sequence: 1
  givenname: Neil C.
  surname: Dalvie
  fullname: Dalvie, Neil C.
– sequence: 2
  givenname: Sergio A.
  surname: Rodriguez-Aponte
  fullname: Rodriguez-Aponte, Sergio A.
– sequence: 3
  givenname: Brittany L.
  surname: Hartwell
  fullname: Hartwell, Brittany L.
– sequence: 4
  givenname: Lisa H.
  surname: Tostanoski
  fullname: Tostanoski, Lisa H.
– sequence: 5
  givenname: Andrew M.
  surname: Biedermann
  fullname: Biedermann, Andrew M.
– sequence: 6
  givenname: Laura E.
  surname: Crowell
  fullname: Crowell, Laura E.
– sequence: 7
  givenname: Kawaljit
  surname: Kaur
  fullname: Kaur, Kawaljit
– sequence: 8
  givenname: Ozan S.
  surname: Kumru
  fullname: Kumru, Ozan S.
– sequence: 9
  givenname: Lauren
  surname: Carter
  fullname: Carter, Lauren
– sequence: 10
  givenname: Jingyou
  surname: Yu
  fullname: Yu, Jingyou
– sequence: 11
  givenname: Aiquan
  surname: Chang
  fullname: Chang, Aiquan
– sequence: 12
  givenname: Katherine
  surname: McMahan
  fullname: McMahan, Katherine
– sequence: 13
  givenname: Thomas
  surname: Courant
  fullname: Courant, Thomas
– sequence: 14
  givenname: Celia
  surname: Lebas
  fullname: Lebas, Celia
– sequence: 15
  givenname: Ashley A.
  surname: Lemnios
  fullname: Lemnios, Ashley A.
– sequence: 16
  givenname: Kristen A.
  surname: Rodrigues
  fullname: Rodrigues, Kristen A.
– sequence: 17
  givenname: Murillo
  surname: Silva
  fullname: Silva, Murillo
– sequence: 18
  givenname: Ryan S.
  surname: Johnston
  fullname: Johnston, Ryan S.
– sequence: 19
  givenname: Christopher A.
  surname: Naranjo
  fullname: Naranjo, Christopher A.
– sequence: 20
  givenname: Mary Kate
  surname: Tracey
  fullname: Tracey, Mary Kate
– sequence: 21
  givenname: Joseph R.
  surname: Brady
  fullname: Brady, Joseph R.
– sequence: 22
  givenname: Charles A.
  surname: Whittaker
  fullname: Whittaker, Charles A.
– sequence: 23
  givenname: Dongsoo
  surname: Yun
  fullname: Yun, Dongsoo
– sequence: 24
  givenname: Natalie
  surname: Brunette
  fullname: Brunette, Natalie
– sequence: 25
  givenname: Jing Yang
  surname: Wang
  fullname: Wang, Jing Yang
– sequence: 26
  givenname: Carl
  surname: Walkey
  fullname: Walkey, Carl
– sequence: 27
  givenname: Brooke
  surname: Fiala
  fullname: Fiala, Brooke
– sequence: 28
  givenname: Swagata
  surname: Kar
  fullname: Kar, Swagata
– sequence: 29
  givenname: Maciel
  surname: Porto
  fullname: Porto, Maciel
– sequence: 30
  givenname: Megan
  surname: Lok
  fullname: Lok, Megan
– sequence: 31
  givenname: Hanne
  surname: Andersen
  fullname: Andersen, Hanne
– sequence: 32
  givenname: Mark G.
  surname: Lewis
  fullname: Lewis, Mark G.
– sequence: 33
  givenname: Kerry R.
  surname: Love
  fullname: Love, Kerry R.
– sequence: 34
  givenname: Danielle L.
  surname: Camp
  fullname: Camp, Danielle L.
– sequence: 35
  givenname: Judith Maxwell
  surname: Silverman
  fullname: Silverman, Judith Maxwell
– sequence: 36
  givenname: Harry
  surname: Kleanthous
  fullname: Kleanthous, Harry
– sequence: 37
  givenname: Sangeeta B.
  surname: Joshi
  fullname: Joshi, Sangeeta B.
– sequence: 38
  givenname: David B.
  surname: Volkin
  fullname: Volkin, David B.
– sequence: 39
  givenname: Patrice M.
  surname: Dubois
  fullname: Dubois, Patrice M.
– sequence: 40
  givenname: Nicolas
  surname: Collin
  fullname: Collin, Nicolas
– sequence: 41
  givenname: Neil P.
  surname: King
  fullname: King, Neil P.
– sequence: 42
  givenname: Dan H.
  surname: Barouch
  fullname: Barouch, Dan H.
– sequence: 43
  givenname: Darrell J.
  surname: Irvine
  fullname: Irvine, Darrell J.
– sequence: 44
  givenname: J. Christopher
  surname: Love
  fullname: Love, J. Christopher
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34493582$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1r3DAYhEVJaTbbnntqMeSSixNZn9alEJY0LQQKTehVyPLrrRZbciU7sP--MrtJ20APQod5ZhhpztCJDx4Qel_hywpLejV6ky5JhUXNeFXVr9CqwqoqBVP4BK0wJrKsGWGn6CylHcZY8Rq_QaeUMUV5TVaov_Fb5wEitMX99ff7chN-lKSIYGGcQiwa51vnt0UbBuN84YYxhkdIxWD83Bk7zdE0rnfTvsjqHkyaCuPbzA2zD1vwzh61wVl4i153pk_w7niv0cPnm4fNl_Lu2-3XzfVdaTlWUwmyVozntm1dE9PiTrVQgWUdYDCEtZyCEKLiHbNUSIpFo5hUDbegjGkIXaNPh9hxbgZoLfgpml6P0Q0m7nUwTv-rePdTb8Ojrpmgy1mji2NADL9mSJMeXLLQ98ZDmJMmXGIqKZMLev4C3YU5-vy6hRJUCE5Upj7-3ei5ytMOGeAHwMaQUoRO538zkwtLQdfrCutlb73srf_snX1XL3xP0f93fDg4dinv-4wTiSXPdelvI3e4kQ
CitedBy_id crossref_primary_10_1371_journal_ppat_1012487
crossref_primary_10_1002_bit_28385
crossref_primary_10_1080_17425247_2023_2189697
crossref_primary_10_3390_fermentation9060497
crossref_primary_10_1002_bit_27979
crossref_primary_10_3389_fimmu_2022_948431
crossref_primary_10_3390_vaccines11040832
crossref_primary_10_3389_fpls_2022_988870
crossref_primary_10_1038_s41467_024_44869_0
crossref_primary_10_3389_fimmu_2023_1204834
crossref_primary_10_1038_s41541_022_00450_8
crossref_primary_10_1016_j_celrep_2023_113552
crossref_primary_10_1038_s41467_023_42200_x
crossref_primary_10_1080_21645515_2023_2264594
crossref_primary_10_1016_j_btre_2022_e00780
crossref_primary_10_1126_sciadv_abl6015
crossref_primary_10_3390_vaccines11101602
crossref_primary_10_1002_anbr_202400077
crossref_primary_10_1016_j_crmeth_2022_100273
crossref_primary_10_1002_bit_28878
crossref_primary_10_1186_s12934_022_01905_2
crossref_primary_10_3389_fimmu_2022_1015840
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_3390_vaccines11061030
crossref_primary_10_1016_j_vaccine_2022_12_062
crossref_primary_10_3389_fbioe_2023_1287551
crossref_primary_10_1016_j_ijbiomac_2022_04_096
crossref_primary_10_3390_bios12121133
crossref_primary_10_1021_acssynbio_1c00194
crossref_primary_10_1016_j_pep_2022_106075
crossref_primary_10_3389_fimmu_2023_1188605
crossref_primary_10_1016_j_jconrel_2024_12_054
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1080_14760584_2023_2211153
crossref_primary_10_1126_scitranslmed_abj5305
crossref_primary_10_1021_acsomega_3c01625
crossref_primary_10_3389_fpls_2023_1275228
crossref_primary_10_1016_j_nbt_2022_08_002
crossref_primary_10_3390_v14122794
crossref_primary_10_3389_fimmu_2022_844837
crossref_primary_10_3390_v15020392
crossref_primary_10_1128_spectrum_04998_22
crossref_primary_10_1007_s12275_022_1608_z
crossref_primary_10_1128_msphere_00243_22
crossref_primary_10_1038_s41467_022_35606_6
crossref_primary_10_1093_protein_gzac002
crossref_primary_10_1038_s41541_021_00393_6
crossref_primary_10_1016_j_pep_2024_106556
crossref_primary_10_1021_acschembio_2c00140
crossref_primary_10_1126_scitranslmed_abn1413
crossref_primary_10_1038_s41541_023_00610_4
crossref_primary_10_1073_pnas_2214556120
crossref_primary_10_1186_s12896_023_00777_7
crossref_primary_10_1126_sciadv_adn7786
Cites_doi 10.1016/j.cell.2021.03.029
10.1038/nbt.4262
10.1038/s41586-020-2380-z
10.1056/NEJMoa2035389
10.1126/science.abc5902
10.1126/science.abf6840
10.1128/JVI.00127-20
10.1016/S2213-2600(21)00075-8
10.1016/j.vaccine.2011.07.128
10.1016/j.chembiol.2008.03.002
10.1016/j.chom.2021.02.003
10.4161/hv.27464
10.12688/f1000research.7563.1
10.1128/jvi.00404-21
10.1038/nature20108
10.1038/s41467-021-21665-8
10.1002/bit.27209
10.1126/sciimmunol.abj1750
10.1016/j.cell.2021.02.032
10.1021/acssynbio.9b00372
10.1186/s13059-014-0550-8
10.1073/pnas.0506580102
10.1038/s41467-020-20654-7
10.1186/s12934-021-01583-6
10.1038/s41586-021-03594-0
10.1016/j.cell.2020.02.058
10.1128/mBio.00122-20
10.1101/gr.849004
10.1016/j.cbpa.2015.10.002
10.1021/acsnano.0c08379
10.1038/s41586-020-2599-8
10.1001/jama.2021.1114
10.1080/21645515.2021.1901545
10.1038/nmeth.4197
10.1080/21645515.2020.1740560
10.1016/j.cell.2021.06.020
10.1056/NEJMp2003762
10.1002/bit.27724
10.1056/NEJMoa1501184
10.1016/j.xcrm.2021.100255
10.1056/NEJMoa2034577
10.1016/j.vaccine.2020.10.064
10.1016/j.chom.2020.11.007
10.1007/s00253-015-6470-z
10.1002/prot.25594
10.1038/s41586-020-2179-y
10.1126/science.abg8985
10.1038/s41586-020-2607-z
10.1093/bioinformatics/btp616
10.1016/j.xphs.2017.04.037
10.1126/science.abc4776
10.1080/21645515.2017.1289301
10.1093/nar/gks042
10.1126/science.abc6284
10.1080/22221751.2020.1729069
10.1038/nature02463
10.1038/s41541-020-0187-4
10.1155/2019/6491738
10.1016/j.virol.2009.07.018
10.1056/NEJMoa2103055
10.1002/btpr.2966
10.1038/s41591-021-01318-5
10.1101/2021.01.04.425316
10.1038/ncomms8712
10.1016/j.cell.2020.10.043
10.1038/d41586-020-03134-2
10.1016/j.jmb.2005.11.035
10.1016/j.vaccine.2017.05.054
ContentType Journal Article
Copyright Copyright © 2021 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Sep 21, 2021
Copyright © 2021 the Author(s). Published by PNAS. 2021
Copyright_xml – notice: Copyright © 2021 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Sep 21, 2021
– notice: Copyright © 2021 the Author(s). Published by PNAS. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2106845118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9
ExternalDocumentID PMC8463846
34493582
10_1073_pnas_2106845118
27075636
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007387
– fundername: NCI NIH HHS
  grantid: P30 CA014051
– fundername: HHS | National Institutes of Health (NIH)
  grantid: T32 AI007387
– fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
  grantid: INV-006131
– fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
  grantid: OPP1156262
– fundername: Bill and Melinda Gates Foundation (Bill & Melinda Gates Foundation)
  grantid: INV-002740
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-e78945000d882ad0f9de1ec4fe0ea24d53e66615f4c367306b9479b5ce9aab23
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:06:02 EDT 2025
Fri Jul 11 16:43:35 EDT 2025
Mon Jun 30 10:00:37 EDT 2025
Thu Apr 03 06:59:50 EDT 2025
Tue Jul 01 01:03:03 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Thu May 29 08:53:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords SARS-CoV-2
Pichia pastoris
manufacturability
protein vaccine
Language English
License Copyright © 2021 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-e78945000d882ad0f9de1ec4fe0ea24d53e66615f4c367306b9479b5ce9aab23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
4Present address: Neoleukin Therapeutics, Seattle, WA 98102.
Author contributions: N.C.D., S.A.R.-A., B.L.H., L.H.T., K.K., O.S.K., K.R.L., D.L.C., J.M.S., H.K., S.B.J., D.B.V., P.M.D., N.C., N.P.K., D.H.B., D.J.I., and J.C.L. designed research; N.C.D., S.A.R.-A., B.L.H., L.H.T., A.M.B., L.E.C., K.K., O.S.K., J.Y., A.C., K.M., T.C., C.L., A.A.L., K.A.R., R.S.J., C.A.N., M.K.T., J.R.B., C.A.W., D.Y., N.B., J.Y.W., C.W., B.F., S.K., M.P., M.L., H.A., M.G.L., and N.C. performed research; B.L.H., L.H.T., K.K., O.S.K., L.C., J.Y., A.C., K.M., M.S., N.B., J.Y.W., C.W., B.F., S.B.J., D.B.V., and N.P.K. contributed new reagents/analytic tools; N.C.D., S.A.R.-A., B.L.H., L.H.T., A.M.B., K.K., O.S.K., J.Y., A.C., K.M., C.A.N., J.R.B., C.A.W., D.Y., K.R.L., S.B.J., D.B.V., P.M.D., N.C., D.H.B., D.J.I., and J.C.L. analyzed data; and N.C.D., S.A.R.-A., B.L.H., L.H.T., K.R.L., and J.C.L. wrote the paper.
3Present address: Flagship Pioneering, Cambridge, MA 02142.
2Present address: Sunflower Therapeutics, PBC, Hingham, MA, 02043.
5Present address: Icosavax Inc., Seattle, WA 98102.
Edited by Matthew V. Tirrell, The University of Chicago, Chicago, IL, and approved July 21, 2021 (received for review April 10, 2021)
1N.C.D. and S.A.R.-A. contributed equally to this work.
ORCID 0000-0001-9255-5684
0000-0002-2284-3872
0000-0002-1511-6976
0000-0001-7852-0135
0000-0002-9482-0979
0000-0002-2400-0094
0000-0003-0921-3144
0000-0003-0148-5268
0000-0002-0680-9834
0000-0002-8637-1405
0000-0002-6866-6867
0000-0002-7128-9396
0000-0002-7912-0309
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8463846
PMID 34493582
PQID 2576366529
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8463846
proquest_miscellaneous_2570373476
proquest_journals_2576366529
pubmed_primary_34493582
crossref_citationtrail_10_1073_pnas_2106845118
crossref_primary_10_1073_pnas_2106845118
jstor_primary_27075636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-21
PublicationDateYYYYMMDD 2021-09-21
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
33688647 - bioRxiv. 2021 Mar 04:2021.03.03.433558. doi: 10.1101/2021.03.03.433558
References_xml – ident: e_1_3_4_52_2
  doi: 10.1016/j.cell.2021.03.029
– ident: e_1_3_4_21_2
  doi: 10.1038/nbt.4262
– ident: e_1_3_4_14_2
  doi: 10.1038/s41586-020-2380-z
– ident: e_1_3_4_5_2
  doi: 10.1056/NEJMoa2035389
– ident: e_1_3_4_33_2
  doi: 10.1126/science.abc5902
– ident: e_1_3_4_10_2
  doi: 10.1126/science.abf6840
– ident: e_1_3_4_28_2
  doi: 10.1128/JVI.00127-20
– ident: e_1_3_4_37_2
  doi: 10.1016/S2213-2600(21)00075-8
– ident: e_1_3_4_9_2
  doi: 10.1016/j.vaccine.2011.07.128
– ident: e_1_3_4_3_2
  doi: 10.1016/j.chembiol.2008.03.002
– ident: e_1_3_4_15_2
  doi: 10.1016/j.chom.2021.02.003
– ident: e_1_3_4_20_2
  doi: 10.4161/hv.27464
– ident: e_1_3_4_59_2
  doi: 10.12688/f1000research.7563.1
– ident: e_1_3_4_34_2
  doi: 10.1128/jvi.00404-21
– ident: e_1_3_4_43_2
  doi: 10.1038/nature20108
– ident: e_1_3_4_54_2
  doi: 10.1038/s41467-021-21665-8
– ident: e_1_3_4_56_2
  doi: 10.1002/bit.27209
– ident: e_1_3_4_45_2
  doi: 10.1126/sciimmunol.abj1750
– ident: e_1_3_4_48_2
  doi: 10.1016/j.cell.2021.02.032
– ident: e_1_3_4_57_2
  doi: 10.1021/acssynbio.9b00372
– ident: e_1_3_4_62_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_4_63_2
  doi: 10.1073/pnas.0506580102
– ident: e_1_3_4_40_2
  doi: 10.1038/s41467-020-20654-7
– ident: e_1_3_4_23_2
  doi: 10.1186/s12934-021-01583-6
– ident: e_1_3_4_55_2
  doi: 10.1038/s41586-021-03594-0
– ident: e_1_3_4_12_2
  doi: 10.1016/j.cell.2020.02.058
– ident: e_1_3_4_65_2
  doi: 10.1128/mBio.00122-20
– ident: e_1_3_4_29_2
  doi: 10.1101/gr.849004
– ident: e_1_3_4_41_2
  doi: 10.1016/j.cbpa.2015.10.002
– ident: e_1_3_4_11_2
  doi: 10.1021/acsnano.0c08379
– ident: e_1_3_4_16_2
  doi: 10.1038/s41586-020-2599-8
– ident: e_1_3_4_44_2
  doi: 10.1001/jama.2021.1114
– ident: e_1_3_4_18_2
  doi: 10.1080/21645515.2021.1901545
– ident: e_1_3_4_58_2
  doi: 10.1038/nmeth.4197
– ident: e_1_3_4_17_2
  doi: 10.1080/21645515.2020.1740560
– ident: e_1_3_4_50_2
  doi: 10.1016/j.cell.2021.06.020
– ident: e_1_3_4_1_2
  doi: 10.1056/NEJMp2003762
– ident: e_1_3_4_22_2
  doi: 10.1002/bit.27724
– ident: e_1_3_4_7_2
  doi: 10.1056/NEJMoa1501184
– ident: e_1_3_4_49_2
  doi: 10.1016/j.xcrm.2021.100255
– ident: e_1_3_4_4_2
  doi: 10.1056/NEJMoa2034577
– ident: e_1_3_4_6_2
  doi: 10.1016/j.vaccine.2020.10.064
– ident: e_1_3_4_47_2
  doi: 10.1016/j.chom.2020.11.007
– ident: e_1_3_4_26_2
  doi: 10.1007/s00253-015-6470-z
– ident: e_1_3_4_31_2
  doi: 10.1002/prot.25594
– ident: e_1_3_4_27_2
  doi: 10.1038/s41586-020-2179-y
– ident: e_1_3_4_51_2
  doi: 10.1126/science.abg8985
– ident: e_1_3_4_35_2
  doi: 10.1038/s41586-020-2607-z
– ident: e_1_3_4_60_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_4_25_2
  doi: 10.1016/j.xphs.2017.04.037
– ident: e_1_3_4_68_2
  doi: 10.1126/science.abc4776
– ident: e_1_3_4_8_2
  doi: 10.1080/21645515.2017.1289301
– ident: e_1_3_4_61_2
  doi: 10.1093/nar/gks042
– ident: e_1_3_4_67_2
  doi: 10.1126/science.abc6284
– ident: e_1_3_4_24_2
  doi: 10.1080/22221751.2020.1729069
– ident: e_1_3_4_66_2
  doi: 10.1038/nature02463
– ident: e_1_3_4_64_2
  doi: 10.1038/s41541-020-0187-4
– ident: e_1_3_4_36_2
  doi: 10.1155/2019/6491738
– ident: e_1_3_4_19_2
  doi: 10.1016/j.virol.2009.07.018
– ident: e_1_3_4_53_2
  doi: 10.1056/NEJMoa2103055
– ident: e_1_3_4_32_2
  doi: 10.1002/btpr.2966
– ident: e_1_3_4_38_2
  doi: 10.1038/s41591-021-01318-5
– ident: e_1_3_4_46_2
  doi: 10.1101/2021.01.04.425316
– ident: e_1_3_4_13_2
  doi: 10.1038/ncomms8712
– ident: e_1_3_4_39_2
  doi: 10.1016/j.cell.2020.10.043
– ident: e_1_3_4_2_2
  doi: 10.1038/d41586-020-03134-2
– ident: e_1_3_4_30_2
  doi: 10.1016/j.jmb.2005.11.035
– ident: e_1_3_4_42_2
  doi: 10.1016/j.vaccine.2017.05.054
– reference: 33688647 - bioRxiv. 2021 Mar 04:2021.03.03.433558. doi: 10.1101/2021.03.03.433558
SSID ssj0009580
Score 2.5836403
Snippet Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines...
Most of the global population resides in low- and middle-income countries, where current vaccines for COVID-19 remain largely unavailable. For the COVID-19...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms ACE2
Angiotensin-converting enzyme 2
Animals
Antibodies
Antibodies, Viral - immunology
Antigens, Viral
Binding
Binding Sites
Biological Sciences
COVID-19
COVID-19 - prevention & control
COVID-19 - virology
COVID-19 Vaccines - economics
COVID-19 Vaccines - immunology
Domains
Hamsters
Humans
Immunogenicity
Immunogenicity, Vaccine
Manufacturability
Mice
Mice, Inbred BALB C
Microorganisms
Models, Molecular
Physical Sciences
Production costs
Protein Binding
Protein Conformation
Protein Engineering - methods
Proteins
Receptors
Saccharomycetales - metabolism
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - genetics
Vaccines
Vaccines, Subunit
Viral diseases
Virus-like particles
Weight loss
Weight reduction
Yeast
Title Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice
URI https://www.jstor.org/stable/27075636
https://www.ncbi.nlm.nih.gov/pubmed/34493582
https://www.proquest.com/docview/2576366529
https://www.proquest.com/docview/2570373476
https://pubmed.ncbi.nlm.nih.gov/PMC8463846
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWBQGMhIPAxVLk2cH_VjNTYqNMo0MtS3yEncLVKbVG2CxP4M_mLuEjtptyINHhpVceJUua_nu_Pdd4S8lxas6gM5YC5oYIaM4CyyHJdJf6ZmiYi4N8AC568Tb3zpfJm6007n90bWUllE_fhmZ13J_0gVzoFcsUr2HyTbTAon4DvIF44gYTjeS8aGTBCNxtHFd3ac_2B2D3SYWhaYhZnWJStJvgD_HwsiVzmSzC5kVmJBQ7mqSbqr0r9f2MSn3krAkpEcHprGemyhE-SMFXverHprk2MwMUHFUVuiovXGusd655O24fEnOf9Z74pgBLoN017kySq9KtUNGy2RM6sKzKrVVZq3AdcxvAWTx41xjQLTFZr4dZCjrZvrVtxn6Vrq2gsd1rAtzMGoa6W1JgZDhnlO3Uu0r3acM-q71d-loYq5sy6AIsNmxplc98HH9YbIyjZsl0Cz7T_5Fp5enp2Fwck0eEAe2uB6YFeMz1Nrg8h5WDNc6J9i6KJ8_vHW9FuWTp3susuNuZ2Nu2HeBE_IY-2X0FENsn3SUdlTsm8kSI80PfmHZ2Teoo62qKMGdVSjjtaoowZ19A7qKIxWqKOAOrqNOhxD1D0nwelJcDxmumcHi8H0LJjyh8LBJhsJuG4yGcxEoiwVOzM1UNJ2EpcrcJgtd-bE3IPVxYuE44sINIWQMrL5AdnL8ky9JBQMa08lfgSrjMTNXeELS6gkslxf2LGIu6RvXm8Yaz57bKsyD6u8Cp-HKI-wlUeXHDU3LGsql79felDJq7nO9sG09rjXJYdGgKFWBHAf-Ozc81xbdMm7ZhjUNO69yUzlZXXNgPvc8WGKF7W8m8m542A2gt0l_hYSmguQAn57JEuvKyp48B44fF7d47mvyaP2f3ZI9opVqd6AQV1EbyuE_wEO1M-Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+SARS-CoV-2+receptor+binding+domain+improves+manufacturability+in+yeast+and+immunogenicity+in+mice&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Dalvie%2C+Neil+C&rft.au=Rodriguez-Aponte%2C+Sergio+A&rft.au=Hartwell%2C+Brittany+L&rft.au=Tostanoski%2C+Lisa+H&rft.date=2021-09-21&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=38&rft_id=info:doi/10.1073%2Fpnas.2106845118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon