Soluble matrix protein is a potent modulator of mesenchymal stem cell performance
We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetiti...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 6; pp. 2042 - 2051 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.02.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair. |
---|---|
AbstractList | We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair. Extracellular matrix proteins have primarily been designated as supporting scaffolds for cells. This work presents the soluble extracellular matrix component tropoelastin as a powerful proproliferative and cell-attractive molecule that surpasses the potency of conventional growth factors and matrix proteins used in a mesenchymal stem cell (MSC) culture. Tropoelastin is also demonstrated to modulate MSCs both as a substrate coating and as a soluble additive in media, which significantly deviates from the classical dogma of cell anchorage-dependent structural roles of the matrix. We show that these activities of tropoelastin can be harnessed and establish a path to boosting the efficacy of and simplifying processes for clinical MSC expansion and therapeutic MSC recruitment. We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair. We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair. |
Author | Yeo, Giselle C. Weiss, Anthony S. |
Author_xml | – sequence: 1 givenname: Giselle C. surname: Yeo fullname: Yeo, Giselle C. – sequence: 2 givenname: Anthony S. surname: Weiss fullname: Weiss, Anthony S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30659152$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFTEUxYO02Nfq2pUScONm2nxMvjaCFD8KhSJ2HzJ5d2weM8mYzIj9783w6lO76CqB_M7NOfecoqOYIiD0ipJzShS_mKIr51RTZgSlVD5DG0oMbWRryBHaEMJUo1vWnqDTUnaEECM0eY5OOJHCUME26Ou3NCzdAHh0cw6_8JTTDCHiULDDU73HGY9puwxuThmnHo9QIPq7-9ENuMwwYg_DgCfIfcqjix5eoOPeDQVePpxn6PbTx9vLL831zeeryw_XjRfEzA1wzaRuhXDa6a7nW7VVspOeAygB2rVStlQ5DlvfC6MYqE621bfvfVeF_Ay934-dlm6sUDWa3WCnHEaX721ywf7_EsOd_Z5-WsmlUW1bB7x7GJDTjwXKbMdQ1jAuQlqKZVQZrjURpKJvH6G7tORY062UFoobtVJv_nV0sPJn2RW42AM-p1Iy9AeEErvWadc67d86q0I8UvgwuzmkNVIYntC93ut2pdZ2-IZJKbnSjP8GYK2vJQ |
CitedBy_id | crossref_primary_10_1002_stem_3242 crossref_primary_10_1002_advs_202402168 crossref_primary_10_1016_j_actbio_2024_06_009 crossref_primary_10_1016_j_bioactmat_2021_09_011 crossref_primary_10_3390_biom11091318 crossref_primary_10_1021_acsbiomaterials_0c01538 crossref_primary_10_3390_cells12081183 crossref_primary_10_1088_2516_1091_ad9dcb crossref_primary_10_2174_1574888X17666220407085901 crossref_primary_10_15421_022313 crossref_primary_10_3389_fcell_2022_966662 crossref_primary_10_1186_s13287_021_02694_y crossref_primary_10_1002_stem_3367 crossref_primary_10_3389_fbioe_2021_643110 crossref_primary_10_3389_fbioe_2024_1359212 crossref_primary_10_1021_acsanm_0c00973 crossref_primary_10_3390_biom15030371 crossref_primary_10_1016_j_mtbio_2022_100300 crossref_primary_10_1002_psc_3362 crossref_primary_10_1096_fj_201902377RR crossref_primary_10_1002_jbm_a_37085 crossref_primary_10_1002_adfm_201909050 crossref_primary_10_3390_cancers15030791 crossref_primary_10_1021_acs_biomac_9b01550 crossref_primary_10_1016_j_matbio_2019_07_005 crossref_primary_10_3389_fmats_2020_601795 crossref_primary_10_3390_molecules25245858 crossref_primary_10_1039_D3BM00376K crossref_primary_10_1016_j_copbio_2021_12_004 crossref_primary_10_1021_acsami_9b04616 crossref_primary_10_1089_ten_tea_2022_29025_abstracts crossref_primary_10_59717_j_xinn_med_2023_100037 crossref_primary_10_1111_apha_13475 crossref_primary_10_3390_bioengineering10030355 crossref_primary_10_1016_j_biomaterials_2022_121464 crossref_primary_10_1021_acs_biomac_4c00144 crossref_primary_10_3390_jfb14040203 crossref_primary_10_1016_j_actbio_2021_08_027 crossref_primary_10_3390_ijms222312690 crossref_primary_10_1186_s13287_022_03085_7 crossref_primary_10_1172_jci_insight_159141 crossref_primary_10_3389_fcvm_2021_660958 crossref_primary_10_3390_cells10112993 crossref_primary_10_1016_j_msec_2020_111788 |
Cites_doi | 10.1111/febs.14114 10.1186/s40824-016-0070-6 10.3390/ijms160819645 10.1203/00006450-199603000-00001 10.4161/cam.18702 10.1038/nri2395 10.1016/j.biomaterials.2011.08.037 10.1093/emboj/18.4.882 10.1186/ar2116 10.1155/2013/130763 10.1089/ten.tea.2015.0029 10.1074/jbc.M109.083626 10.1186/scrt32 10.1038/nbt.2970 10.1016/j.addr.2012.06.009 10.1016/j.bbagen.2014.01.010 10.1126/science.284.5411.143 10.1073/pnas.1014280108 10.1016/S0955-0674(99)00083-6 10.1242/jcs.076935 10.1073/pnas.95.10.5672 10.1016/S1474-4422(11)70305-2 10.1089/scd.2006.0032 10.1002/stem.1649 10.5966/sctm.2010-0031 10.1016/j.cis.2010.10.003 10.1074/jbc.M410006200 10.1089/ten.teb.2012.0672 10.1083/jcb.200208145 10.1016/j.bbrc.2007.03.049 10.1074/jbc.M109.017525 10.1359/jbmr.070725 10.1155/2012/123030 10.1126/sciadv.1501145 10.3904/kjim.2013.28.4.387 10.1038/nrm3049 10.1074/jbc.M113.518381 10.1016/j.scr.2010.09.005 10.1006/gyno.1995.1214 10.1155/2016/5246584 10.1182/blood-2007-07-103697 10.1242/jcs.114.14.2553 10.1007/s00441-009-0857-z 10.1016/j.critrevonc.2003.06.007 10.1165/ajrcmb.10.3.8117449 10.1146/annurev.biophys.35.040405.102013 10.4252/wjsc.v8.i3.73 10.3109/14653249.2010.510503 10.1634/stemcells.2004-0331 10.1038/nbt.1687 10.1186/s13287-015-0235-6 10.1016/j.cub.2013.01.009 10.1631/jzus.B1100117 10.1016/j.biomaterials.2008.10.047 10.1038/nrm3897 10.1016/j.jcyt.2012.09.007 10.1371/journal.pone.0020399 10.1074/jbc.270.25.14899 10.1080/14653240600855905 10.3727/096368912X657990 10.1038/jid.2013.484 10.1016/j.critrevonc.2003.09.007 10.1002/jcp.25454 10.1101/cshperspect.a005066 10.1096/fj.07-8275com 10.1139/bcb-2014-0140 10.1530/JOE-10-0377 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 5, 2019 2019 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 5, 2019 – notice: 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1812951116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2051 |
ExternalDocumentID | PMC6369744 30659152 10_1073_pnas_1812951116 26663782 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CRC for Cell Therapy Manufacturing grantid: N/A |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-e38268455a8a8bf3d7d76b6c3ee75e8a466417a3edcf5972e7b64306cfcb2683 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:04:44 EDT 2025 Thu Jul 10 20:31:37 EDT 2025 Mon Jun 30 09:59:58 EDT 2025 Wed Feb 19 02:30:44 EST 2025 Tue Jul 01 03:39:57 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Thu May 29 13:25:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | growth factor migration mesenchymal stem cells expansion tropoelastin |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-e38268455a8a8bf3d7d76b6c3ee75e8a466417a3edcf5972e7b64306cfcb2683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: G.C.Y. and A.S.W. designed research; G.C.Y. performed research; G.C.Y. and A.S.W. analyzed data; and G.C.Y. and A.S.W. wrote the paper. Edited by Darwin J. Prockop, Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, and approved December 18, 2018 (received for review July 28, 2018) |
ORCID | 0000-0001-6071-8899 0000-0002-8106-4836 |
OpenAccessLink | https://www.pnas.org/content/pnas/116/6/2042.full.pdf |
PMID | 30659152 |
PQID | 2178573970 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369744 proquest_miscellaneous_2179388050 proquest_journals_2178573970 pubmed_primary_30659152 crossref_primary_10_1073_pnas_1812951116 crossref_citationtrail_10_1073_pnas_1812951116 jstor_primary_26663782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-05 |
PublicationDateYYYYMMDD | 2019-02-05 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 Ng F (e_1_3_3_57_2) 2008; 112 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_40_2 doi: 10.1111/febs.14114 – ident: e_1_3_3_23_2 doi: 10.1186/s40824-016-0070-6 – ident: e_1_3_3_14_2 doi: 10.3390/ijms160819645 – ident: e_1_3_3_64_2 doi: 10.1203/00006450-199603000-00001 – ident: e_1_3_3_27_2 doi: 10.4161/cam.18702 – ident: e_1_3_3_2_2 doi: 10.1038/nri2395 – ident: e_1_3_3_18_2 doi: 10.1016/j.biomaterials.2011.08.037 – ident: e_1_3_3_59_2 doi: 10.1093/emboj/18.4.882 – ident: e_1_3_3_67_2 doi: 10.1186/ar2116 – ident: e_1_3_3_22_2 doi: 10.1155/2013/130763 – ident: e_1_3_3_10_2 doi: 10.1089/ten.tea.2015.0029 – ident: e_1_3_3_49_2 doi: 10.1074/jbc.M109.083626 – ident: e_1_3_3_25_2 doi: 10.1186/scrt32 – ident: e_1_3_3_7_2 doi: 10.1038/nbt.2970 – ident: e_1_3_3_54_2 doi: 10.1016/j.addr.2012.06.009 – ident: e_1_3_3_62_2 doi: 10.1016/j.bbagen.2014.01.010 – ident: e_1_3_3_3_2 doi: 10.1126/science.284.5411.143 – ident: e_1_3_3_35_2 doi: 10.1073/pnas.1014280108 – ident: e_1_3_3_56_2 doi: 10.1016/S0955-0674(99)00083-6 – ident: e_1_3_3_19_2 doi: 10.1242/jcs.076935 – ident: e_1_3_3_66_2 doi: 10.1073/pnas.95.10.5672 – ident: e_1_3_3_4_2 doi: 10.1016/S1474-4422(11)70305-2 – ident: e_1_3_3_21_2 doi: 10.1089/scd.2006.0032 – ident: e_1_3_3_43_2 doi: 10.1002/stem.1649 – ident: e_1_3_3_11_2 doi: 10.5966/sctm.2010-0031 – ident: e_1_3_3_36_2 doi: 10.1016/j.cis.2010.10.003 – ident: e_1_3_3_53_2 doi: 10.1074/jbc.M410006200 – ident: e_1_3_3_50_2 doi: 10.1089/ten.teb.2012.0672 – ident: e_1_3_3_48_2 doi: 10.1083/jcb.200208145 – ident: e_1_3_3_30_2 doi: 10.1016/j.bbrc.2007.03.049 – ident: e_1_3_3_39_2 doi: 10.1074/jbc.M109.017525 – ident: e_1_3_3_61_2 doi: 10.1359/jbmr.070725 – ident: e_1_3_3_8_2 doi: 10.1155/2012/123030 – ident: e_1_3_3_38_2 doi: 10.1126/sciadv.1501145 – ident: e_1_3_3_44_2 doi: 10.3904/kjim.2013.28.4.387 – ident: e_1_3_3_1_2 doi: 10.1038/nrm3049 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M113.518381 – ident: e_1_3_3_51_2 doi: 10.1016/j.scr.2010.09.005 – ident: e_1_3_3_58_2 doi: 10.1006/gyno.1995.1214 – ident: e_1_3_3_5_2 doi: 10.1155/2016/5246584 – volume: 112 start-page: 295 year: 2008 ident: e_1_3_3_57_2 article-title: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages publication-title: Blood doi: 10.1182/blood-2007-07-103697 – ident: e_1_3_3_34_2 doi: 10.1242/jcs.114.14.2553 – ident: e_1_3_3_33_2 doi: 10.1007/s00441-009-0857-z – ident: e_1_3_3_42_2 doi: 10.1016/j.critrevonc.2003.06.007 – ident: e_1_3_3_65_2 doi: 10.1165/ajrcmb.10.3.8117449 – ident: e_1_3_3_60_2 doi: 10.1146/annurev.biophys.35.040405.102013 – ident: e_1_3_3_6_2 doi: 10.4252/wjsc.v8.i3.73 – ident: e_1_3_3_15_2 doi: 10.3109/14653249.2010.510503 – ident: e_1_3_3_12_2 doi: 10.1634/stemcells.2004-0331 – ident: e_1_3_3_17_2 doi: 10.1038/nbt.1687 – ident: e_1_3_3_20_2 doi: 10.1186/s13287-015-0235-6 – ident: e_1_3_3_46_2 doi: 10.1016/j.cub.2013.01.009 – ident: e_1_3_3_29_2 doi: 10.1631/jzus.B1100117 – ident: e_1_3_3_16_2 doi: 10.1016/j.biomaterials.2008.10.047 – ident: e_1_3_3_24_2 doi: 10.1038/nrm3897 – ident: e_1_3_3_28_2 doi: 10.1016/j.jcyt.2012.09.007 – ident: e_1_3_3_45_2 doi: 10.1371/journal.pone.0020399 – ident: e_1_3_3_63_2 doi: 10.1074/jbc.270.25.14899 – ident: e_1_3_3_26_2 doi: 10.1080/14653240600855905 – ident: e_1_3_3_13_2 doi: 10.3727/096368912X657990 – ident: e_1_3_3_37_2 doi: 10.1038/jid.2013.484 – ident: e_1_3_3_41_2 doi: 10.1016/j.critrevonc.2003.09.007 – ident: e_1_3_3_31_2 doi: 10.1002/jcp.25454 – ident: e_1_3_3_52_2 doi: 10.1101/cshperspect.a005066 – ident: e_1_3_3_55_2 doi: 10.1096/fj.07-8275com – ident: e_1_3_3_9_2 doi: 10.1139/bcb-2014-0140 – ident: e_1_3_3_47_2 doi: 10.1530/JOE-10-0377 |
SSID | ssj0009580 |
Score | 2.4865084 |
Snippet | We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein... Extracellular matrix proteins have primarily been designated as supporting scaffolds for cells. This work presents the soluble extracellular matrix component... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2042 |
SubjectTerms | Biological Sciences Cell Movement - drug effects Cell Proliferation - drug effects Cell surface Deformation mechanisms Elastic deformation Extracellular matrix Extracellular Matrix Proteins - metabolism Extracellular Matrix Proteins - pharmacology Fibroblast Growth Factor 2 Fibronectin Growth factors Homing Insulin Insulin-Like Growth Factor I - drug effects Integrin alphaVbeta3 Integrins Intercellular Signaling Peptides and Proteins - metabolism Matrix protein Mechanical properties Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism Mesenchyme PNAS Plus Proteins Receptors, Vitronectin Stem cells Substrates Synergistic effect Tropoelastin Tropoelastin - metabolism Wound Healing |
Title | Soluble matrix protein is a potent modulator of mesenchymal stem cell performance |
URI | https://www.jstor.org/stable/26663782 https://www.ncbi.nlm.nih.gov/pubmed/30659152 https://www.proquest.com/docview/2178573970 https://www.proquest.com/docview/2179388050 https://pubmed.ncbi.nlm.nih.gov/PMC6369744 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQNpCReBiKEtI4dtLHaQImJKohirS3yHYdrRJNpyWVGH89d7Hzq2zS4CWKEsdycpe772zfd4S8U7MiksKooAAwAAFKYQIFhjCY8WwqluATTITZyF_n4uxH8uWCX0wm22F2Sa1C_fvWvJL_kSpcA7liluw_SLbrFC7AOcgXjiBhON5LxjinhZlPa-TZ_-U3nAurEmuUS_8KzssaK91gga7NtV1Ir2D4lzfrJknErH2ctkfm4jZ3YAhVzzvXVrUbCebtzOFJn4fijEPlB_75vK9q7OZgP2M1JxjhadgvAa1snXZHW-B_D4czD5jsFAcRH1rTGDxcYnOgQ2MNKOCPQCS2BGhnYW06pVOlkb2MLLeW871xZNln_7LrYIiwGHEpqxAhCcDCts8Rg_aOZ-v2GzYr7SnLsYO87-ABeRhDdBE39nzI1ZzZzCX3ei0jVMo-7IxgBGbsftbbIpXdDbcDBLN4Qh670IOeWD3aJxNTPiX7rfzosWMgf_-MfHOKRa1iUadYdFVRSa1i0U6x6KagA8WiqFgUFYsOFOs5WXz6uDg9C1ztjUADhKwDwzLkAeJcZjJTBVumy1QooZkxKTeZxKoE01QyeKcCYtLYpAqwbSR0oRU8yA7IXrkpzUtCZ8yIVEoupzpOmEykUkutNbgKA70n3CNh-w1z7XjpsTzKz_wOqXnkuHvgylKy3N30oBFK1w7gqGAAij1y1Eopdz90lUN0nvEUAHrkkbfdbTC3-M1kaTbbps0M-ZM4tHlhhdp1znCPAuBhj6QjcXcNkMp9fKdcXTaU7oIJCOyTV_d_tUPyqP8nj8hefb01rwEf1-pNo81_AOp4uwg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+matrix+protein+is+a+potent+modulator+of+mesenchymal+stem+cell+performance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yeo%2C+Giselle+C.&rft.au=Weiss%2C+Anthony+S.&rft.date=2019-02-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=6&rft.spage=2042&rft.epage=2051&rft_id=info:doi/10.1073%2Fpnas.1812951116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1812951116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |