Soluble matrix protein is a potent modulator of mesenchymal stem cell performance

We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetiti...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 6; pp. 2042 - 2051
Main Authors Yeo, Giselle C., Weiss, Anthony S.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.02.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
AbstractList We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
Extracellular matrix proteins have primarily been designated as supporting scaffolds for cells. This work presents the soluble extracellular matrix component tropoelastin as a powerful proproliferative and cell-attractive molecule that surpasses the potency of conventional growth factors and matrix proteins used in a mesenchymal stem cell (MSC) culture. Tropoelastin is also demonstrated to modulate MSCs both as a substrate coating and as a soluble additive in media, which significantly deviates from the classical dogma of cell anchorage-dependent structural roles of the matrix. We show that these activities of tropoelastin can be harnessed and establish a path to boosting the efficacy of and simplifying processes for clinical MSC expansion and therapeutic MSC recruitment. We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein tropoelastin is classically regarded as a structural component that confers mechanical strength and resilience to tissues subject to repetitive elastic deformation. Here we describe how tropoelastin inherently induces a range of biological responses, even in cells not typically associated with elastic tissues and in a manner unexpected of typical substrate-dependent matrix proteins. We show that tropoelastin alone drives mesenchymal stem cell (MSC) proliferation and phenotypic maintenance, akin to the synergistic effects of potent growth factors such as insulin-like growth factor 1 and basic fibroblast growth factor. In addition, tropoelastin functionally surpasses these growth factors, as well as fibronectin, in allowing substantial media serum reduction without loss of proliferative potential. We further demonstrate that tropoelastin elicits strong mitogenic and cell-attractive responses, both as an immobilized substrate and as a soluble additive, via direct interactions with cell surface integrins αvβ3 and αvβ5. This duality of action converges the long-held mechanistic dichotomy between adhesive matrix proteins and soluble growth factors and uncovers the powerful, untapped potential of tropoelastin for clinical MSC expansion and therapeutic MSC recruitment. We propose that the potent, growth factor-like mitogenic and motogenic abilities of tropoelastin are biologically rooted in the need for rapid stem cell homing and proliferation during early development and/or wound repair.
Author Yeo, Giselle C.
Weiss, Anthony S.
Author_xml – sequence: 1
  givenname: Giselle C.
  surname: Yeo
  fullname: Yeo, Giselle C.
– sequence: 2
  givenname: Anthony S.
  surname: Weiss
  fullname: Weiss, Anthony S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30659152$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYO02Nfq2pUScONm2nxMvjaCFD8KhSJ2HzJ5d2weM8mYzIj9783w6lO76CqB_M7NOfecoqOYIiD0ipJzShS_mKIr51RTZgSlVD5DG0oMbWRryBHaEMJUo1vWnqDTUnaEECM0eY5OOJHCUME26Ou3NCzdAHh0cw6_8JTTDCHiULDDU73HGY9puwxuThmnHo9QIPq7-9ENuMwwYg_DgCfIfcqjix5eoOPeDQVePpxn6PbTx9vLL831zeeryw_XjRfEzA1wzaRuhXDa6a7nW7VVspOeAygB2rVStlQ5DlvfC6MYqE621bfvfVeF_Ay934-dlm6sUDWa3WCnHEaX721ywf7_EsOd_Z5-WsmlUW1bB7x7GJDTjwXKbMdQ1jAuQlqKZVQZrjURpKJvH6G7tORY062UFoobtVJv_nV0sPJn2RW42AM-p1Iy9AeEErvWadc67d86q0I8UvgwuzmkNVIYntC93ut2pdZ2-IZJKbnSjP8GYK2vJQ
CitedBy_id crossref_primary_10_1002_stem_3242
crossref_primary_10_1002_advs_202402168
crossref_primary_10_1016_j_actbio_2024_06_009
crossref_primary_10_1016_j_bioactmat_2021_09_011
crossref_primary_10_3390_biom11091318
crossref_primary_10_1021_acsbiomaterials_0c01538
crossref_primary_10_3390_cells12081183
crossref_primary_10_1088_2516_1091_ad9dcb
crossref_primary_10_2174_1574888X17666220407085901
crossref_primary_10_15421_022313
crossref_primary_10_3389_fcell_2022_966662
crossref_primary_10_1186_s13287_021_02694_y
crossref_primary_10_1002_stem_3367
crossref_primary_10_3389_fbioe_2021_643110
crossref_primary_10_3389_fbioe_2024_1359212
crossref_primary_10_1021_acsanm_0c00973
crossref_primary_10_3390_biom15030371
crossref_primary_10_1016_j_mtbio_2022_100300
crossref_primary_10_1002_psc_3362
crossref_primary_10_1096_fj_201902377RR
crossref_primary_10_1002_jbm_a_37085
crossref_primary_10_1002_adfm_201909050
crossref_primary_10_3390_cancers15030791
crossref_primary_10_1021_acs_biomac_9b01550
crossref_primary_10_1016_j_matbio_2019_07_005
crossref_primary_10_3389_fmats_2020_601795
crossref_primary_10_3390_molecules25245858
crossref_primary_10_1039_D3BM00376K
crossref_primary_10_1016_j_copbio_2021_12_004
crossref_primary_10_1021_acsami_9b04616
crossref_primary_10_1089_ten_tea_2022_29025_abstracts
crossref_primary_10_59717_j_xinn_med_2023_100037
crossref_primary_10_1111_apha_13475
crossref_primary_10_3390_bioengineering10030355
crossref_primary_10_1016_j_biomaterials_2022_121464
crossref_primary_10_1021_acs_biomac_4c00144
crossref_primary_10_3390_jfb14040203
crossref_primary_10_1016_j_actbio_2021_08_027
crossref_primary_10_3390_ijms222312690
crossref_primary_10_1186_s13287_022_03085_7
crossref_primary_10_1172_jci_insight_159141
crossref_primary_10_3389_fcvm_2021_660958
crossref_primary_10_3390_cells10112993
crossref_primary_10_1016_j_msec_2020_111788
Cites_doi 10.1111/febs.14114
10.1186/s40824-016-0070-6
10.3390/ijms160819645
10.1203/00006450-199603000-00001
10.4161/cam.18702
10.1038/nri2395
10.1016/j.biomaterials.2011.08.037
10.1093/emboj/18.4.882
10.1186/ar2116
10.1155/2013/130763
10.1089/ten.tea.2015.0029
10.1074/jbc.M109.083626
10.1186/scrt32
10.1038/nbt.2970
10.1016/j.addr.2012.06.009
10.1016/j.bbagen.2014.01.010
10.1126/science.284.5411.143
10.1073/pnas.1014280108
10.1016/S0955-0674(99)00083-6
10.1242/jcs.076935
10.1073/pnas.95.10.5672
10.1016/S1474-4422(11)70305-2
10.1089/scd.2006.0032
10.1002/stem.1649
10.5966/sctm.2010-0031
10.1016/j.cis.2010.10.003
10.1074/jbc.M410006200
10.1089/ten.teb.2012.0672
10.1083/jcb.200208145
10.1016/j.bbrc.2007.03.049
10.1074/jbc.M109.017525
10.1359/jbmr.070725
10.1155/2012/123030
10.1126/sciadv.1501145
10.3904/kjim.2013.28.4.387
10.1038/nrm3049
10.1074/jbc.M113.518381
10.1016/j.scr.2010.09.005
10.1006/gyno.1995.1214
10.1155/2016/5246584
10.1182/blood-2007-07-103697
10.1242/jcs.114.14.2553
10.1007/s00441-009-0857-z
10.1016/j.critrevonc.2003.06.007
10.1165/ajrcmb.10.3.8117449
10.1146/annurev.biophys.35.040405.102013
10.4252/wjsc.v8.i3.73
10.3109/14653249.2010.510503
10.1634/stemcells.2004-0331
10.1038/nbt.1687
10.1186/s13287-015-0235-6
10.1016/j.cub.2013.01.009
10.1631/jzus.B1100117
10.1016/j.biomaterials.2008.10.047
10.1038/nrm3897
10.1016/j.jcyt.2012.09.007
10.1371/journal.pone.0020399
10.1074/jbc.270.25.14899
10.1080/14653240600855905
10.3727/096368912X657990
10.1038/jid.2013.484
10.1016/j.critrevonc.2003.09.007
10.1002/jcp.25454
10.1101/cshperspect.a005066
10.1096/fj.07-8275com
10.1139/bcb-2014-0140
10.1530/JOE-10-0377
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 5, 2019
2019
Copyright_xml – notice: Copyright National Academy of Sciences Feb 5, 2019
– notice: 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1812951116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2051
ExternalDocumentID PMC6369744
30659152
10_1073_pnas_1812951116
26663782
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CRC for Cell Therapy Manufacturing
  grantid: N/A
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-e38268455a8a8bf3d7d76b6c3ee75e8a466417a3edcf5972e7b64306cfcb2683
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:04:44 EDT 2025
Thu Jul 10 20:31:37 EDT 2025
Mon Jun 30 09:59:58 EDT 2025
Wed Feb 19 02:30:44 EST 2025
Tue Jul 01 03:39:57 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Thu May 29 13:25:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords growth factor
migration
mesenchymal stem cells
expansion
tropoelastin
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-e38268455a8a8bf3d7d76b6c3ee75e8a466417a3edcf5972e7b64306cfcb2683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: G.C.Y. and A.S.W. designed research; G.C.Y. performed research; G.C.Y. and A.S.W. analyzed data; and G.C.Y. and A.S.W. wrote the paper.
Edited by Darwin J. Prockop, Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, and approved December 18, 2018 (received for review July 28, 2018)
ORCID 0000-0001-6071-8899
0000-0002-8106-4836
OpenAccessLink https://www.pnas.org/content/pnas/116/6/2042.full.pdf
PMID 30659152
PQID 2178573970
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6369744
proquest_miscellaneous_2179388050
proquest_journals_2178573970
pubmed_primary_30659152
crossref_primary_10_1073_pnas_1812951116
crossref_citationtrail_10_1073_pnas_1812951116
jstor_primary_26663782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-05
PublicationDateYYYYMMDD 2019-02-05
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
Ng F (e_1_3_3_57_2) 2008; 112
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_40_2
  doi: 10.1111/febs.14114
– ident: e_1_3_3_23_2
  doi: 10.1186/s40824-016-0070-6
– ident: e_1_3_3_14_2
  doi: 10.3390/ijms160819645
– ident: e_1_3_3_64_2
  doi: 10.1203/00006450-199603000-00001
– ident: e_1_3_3_27_2
  doi: 10.4161/cam.18702
– ident: e_1_3_3_2_2
  doi: 10.1038/nri2395
– ident: e_1_3_3_18_2
  doi: 10.1016/j.biomaterials.2011.08.037
– ident: e_1_3_3_59_2
  doi: 10.1093/emboj/18.4.882
– ident: e_1_3_3_67_2
  doi: 10.1186/ar2116
– ident: e_1_3_3_22_2
  doi: 10.1155/2013/130763
– ident: e_1_3_3_10_2
  doi: 10.1089/ten.tea.2015.0029
– ident: e_1_3_3_49_2
  doi: 10.1074/jbc.M109.083626
– ident: e_1_3_3_25_2
  doi: 10.1186/scrt32
– ident: e_1_3_3_7_2
  doi: 10.1038/nbt.2970
– ident: e_1_3_3_54_2
  doi: 10.1016/j.addr.2012.06.009
– ident: e_1_3_3_62_2
  doi: 10.1016/j.bbagen.2014.01.010
– ident: e_1_3_3_3_2
  doi: 10.1126/science.284.5411.143
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1014280108
– ident: e_1_3_3_56_2
  doi: 10.1016/S0955-0674(99)00083-6
– ident: e_1_3_3_19_2
  doi: 10.1242/jcs.076935
– ident: e_1_3_3_66_2
  doi: 10.1073/pnas.95.10.5672
– ident: e_1_3_3_4_2
  doi: 10.1016/S1474-4422(11)70305-2
– ident: e_1_3_3_21_2
  doi: 10.1089/scd.2006.0032
– ident: e_1_3_3_43_2
  doi: 10.1002/stem.1649
– ident: e_1_3_3_11_2
  doi: 10.5966/sctm.2010-0031
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cis.2010.10.003
– ident: e_1_3_3_53_2
  doi: 10.1074/jbc.M410006200
– ident: e_1_3_3_50_2
  doi: 10.1089/ten.teb.2012.0672
– ident: e_1_3_3_48_2
  doi: 10.1083/jcb.200208145
– ident: e_1_3_3_30_2
  doi: 10.1016/j.bbrc.2007.03.049
– ident: e_1_3_3_39_2
  doi: 10.1074/jbc.M109.017525
– ident: e_1_3_3_61_2
  doi: 10.1359/jbmr.070725
– ident: e_1_3_3_8_2
  doi: 10.1155/2012/123030
– ident: e_1_3_3_38_2
  doi: 10.1126/sciadv.1501145
– ident: e_1_3_3_44_2
  doi: 10.3904/kjim.2013.28.4.387
– ident: e_1_3_3_1_2
  doi: 10.1038/nrm3049
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M113.518381
– ident: e_1_3_3_51_2
  doi: 10.1016/j.scr.2010.09.005
– ident: e_1_3_3_58_2
  doi: 10.1006/gyno.1995.1214
– ident: e_1_3_3_5_2
  doi: 10.1155/2016/5246584
– volume: 112
  start-page: 295
  year: 2008
  ident: e_1_3_3_57_2
  article-title: PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): Transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages
  publication-title: Blood
  doi: 10.1182/blood-2007-07-103697
– ident: e_1_3_3_34_2
  doi: 10.1242/jcs.114.14.2553
– ident: e_1_3_3_33_2
  doi: 10.1007/s00441-009-0857-z
– ident: e_1_3_3_42_2
  doi: 10.1016/j.critrevonc.2003.06.007
– ident: e_1_3_3_65_2
  doi: 10.1165/ajrcmb.10.3.8117449
– ident: e_1_3_3_60_2
  doi: 10.1146/annurev.biophys.35.040405.102013
– ident: e_1_3_3_6_2
  doi: 10.4252/wjsc.v8.i3.73
– ident: e_1_3_3_15_2
  doi: 10.3109/14653249.2010.510503
– ident: e_1_3_3_12_2
  doi: 10.1634/stemcells.2004-0331
– ident: e_1_3_3_17_2
  doi: 10.1038/nbt.1687
– ident: e_1_3_3_20_2
  doi: 10.1186/s13287-015-0235-6
– ident: e_1_3_3_46_2
  doi: 10.1016/j.cub.2013.01.009
– ident: e_1_3_3_29_2
  doi: 10.1631/jzus.B1100117
– ident: e_1_3_3_16_2
  doi: 10.1016/j.biomaterials.2008.10.047
– ident: e_1_3_3_24_2
  doi: 10.1038/nrm3897
– ident: e_1_3_3_28_2
  doi: 10.1016/j.jcyt.2012.09.007
– ident: e_1_3_3_45_2
  doi: 10.1371/journal.pone.0020399
– ident: e_1_3_3_63_2
  doi: 10.1074/jbc.270.25.14899
– ident: e_1_3_3_26_2
  doi: 10.1080/14653240600855905
– ident: e_1_3_3_13_2
  doi: 10.3727/096368912X657990
– ident: e_1_3_3_37_2
  doi: 10.1038/jid.2013.484
– ident: e_1_3_3_41_2
  doi: 10.1016/j.critrevonc.2003.09.007
– ident: e_1_3_3_31_2
  doi: 10.1002/jcp.25454
– ident: e_1_3_3_52_2
  doi: 10.1101/cshperspect.a005066
– ident: e_1_3_3_55_2
  doi: 10.1096/fj.07-8275com
– ident: e_1_3_3_9_2
  doi: 10.1139/bcb-2014-0140
– ident: e_1_3_3_47_2
  doi: 10.1530/JOE-10-0377
SSID ssj0009580
Score 2.4865084
Snippet We challenge the conventional designation of structural matrix proteins primarily as supporting scaffolds for resident cells. The extracellular matrix protein...
Extracellular matrix proteins have primarily been designated as supporting scaffolds for cells. This work presents the soluble extracellular matrix component...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2042
SubjectTerms Biological Sciences
Cell Movement - drug effects
Cell Proliferation - drug effects
Cell surface
Deformation mechanisms
Elastic deformation
Extracellular matrix
Extracellular Matrix Proteins - metabolism
Extracellular Matrix Proteins - pharmacology
Fibroblast Growth Factor 2
Fibronectin
Growth factors
Homing
Insulin
Insulin-Like Growth Factor I - drug effects
Integrin alphaVbeta3
Integrins
Intercellular Signaling Peptides and Proteins - metabolism
Matrix protein
Mechanical properties
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
Mesenchyme
PNAS Plus
Proteins
Receptors, Vitronectin
Stem cells
Substrates
Synergistic effect
Tropoelastin
Tropoelastin - metabolism
Wound Healing
Title Soluble matrix protein is a potent modulator of mesenchymal stem cell performance
URI https://www.jstor.org/stable/26663782
https://www.ncbi.nlm.nih.gov/pubmed/30659152
https://www.proquest.com/docview/2178573970
https://www.proquest.com/docview/2179388050
https://pubmed.ncbi.nlm.nih.gov/PMC6369744
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQNpCReBiKEtI4dtLHaQImJKohirS3yHYdrRJNpyWVGH89d7Hzq2zS4CWKEsdycpe772zfd4S8U7MiksKooAAwAAFKYQIFhjCY8WwqluATTITZyF_n4uxH8uWCX0wm22F2Sa1C_fvWvJL_kSpcA7liluw_SLbrFC7AOcgXjiBhON5LxjinhZlPa-TZ_-U3nAurEmuUS_8KzssaK91gga7NtV1Ir2D4lzfrJknErH2ctkfm4jZ3YAhVzzvXVrUbCebtzOFJn4fijEPlB_75vK9q7OZgP2M1JxjhadgvAa1snXZHW-B_D4czD5jsFAcRH1rTGDxcYnOgQ2MNKOCPQCS2BGhnYW06pVOlkb2MLLeW871xZNln_7LrYIiwGHEpqxAhCcDCts8Rg_aOZ-v2GzYr7SnLsYO87-ABeRhDdBE39nzI1ZzZzCX3ei0jVMo-7IxgBGbsftbbIpXdDbcDBLN4Qh670IOeWD3aJxNTPiX7rfzosWMgf_-MfHOKRa1iUadYdFVRSa1i0U6x6KagA8WiqFgUFYsOFOs5WXz6uDg9C1ztjUADhKwDwzLkAeJcZjJTBVumy1QooZkxKTeZxKoE01QyeKcCYtLYpAqwbSR0oRU8yA7IXrkpzUtCZ8yIVEoupzpOmEykUkutNbgKA70n3CNh-w1z7XjpsTzKz_wOqXnkuHvgylKy3N30oBFK1w7gqGAAij1y1Eopdz90lUN0nvEUAHrkkbfdbTC3-M1kaTbbps0M-ZM4tHlhhdp1znCPAuBhj6QjcXcNkMp9fKdcXTaU7oIJCOyTV_d_tUPyqP8nj8hefb01rwEf1-pNo81_AOp4uwg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+matrix+protein+is+a+potent+modulator+of+mesenchymal+stem+cell+performance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yeo%2C+Giselle+C.&rft.au=Weiss%2C+Anthony+S.&rft.date=2019-02-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=6&rft.spage=2042&rft.epage=2051&rft_id=info:doi/10.1073%2Fpnas.1812951116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1812951116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon