Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit

MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and p...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 40; pp. 10660 - 10665
Main Authors Otto, Tobias, Candido, Sheyla V., Pilarz, Mary S., Sicinska, Ewa, Bronson, Roderick T., Bowden, Michaela, Lachowicz, Iga A., Mulry, Kristin, Fassl, Anne, Han, Richard C., Jecrois, Emmanuelle S., Sicinski, Piotr
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.10.2017
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1702914114

Cover

Abstract MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
AbstractList The interplay between microRNAs and the cell-cycle machinery in vivo remains poorly understood. Here we report that the microRNA family miR-34/449 plays an essential and rate-limiting role in repressing cell-cycle proteins and enforcing cell-cycle exit during epithelial cell differentiation. We demonstrate that genetic ablation of the entire miR-34/449 family leads to derepression of cell cycle-promoting proteins in differentiating epithelial cells, thereby preventing their timely cell-cycle exit. This, in turn, impairs epithelial ciliation and leads to profound developmental defects. Hence, this study describes a function of the miR-34/449 family in linking cell proliferation and differentiation. MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.
Author Mulry, Kristin
Sicinski, Piotr
Fassl, Anne
Han, Richard C.
Pilarz, Mary S.
Candido, Sheyla V.
Jecrois, Emmanuelle S.
Sicinska, Ewa
Otto, Tobias
Bronson, Roderick T.
Bowden, Michaela
Lachowicz, Iga A.
Author_xml – sequence: 1
  givenname: Tobias
  surname: Otto
  fullname: Otto, Tobias
  organization: Department of Genetics, Harvard Medical School, Boston, MA 02115
– sequence: 2
  givenname: Sheyla V.
  surname: Candido
  fullname: Candido, Sheyla V.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 3
  givenname: Mary S.
  surname: Pilarz
  fullname: Pilarz, Mary S.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 4
  givenname: Ewa
  surname: Sicinska
  fullname: Sicinska, Ewa
  organization: Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 5
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
  organization: Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115
– sequence: 6
  givenname: Michaela
  surname: Bowden
  fullname: Bowden, Michaela
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 7
  givenname: Iga A.
  surname: Lachowicz
  fullname: Lachowicz, Iga A.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 8
  givenname: Kristin
  surname: Mulry
  fullname: Mulry, Kristin
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 9
  givenname: Anne
  surname: Fassl
  fullname: Fassl, Anne
  organization: Department of Genetics, Harvard Medical School, Boston, MA 02115
– sequence: 10
  givenname: Richard C.
  surname: Han
  fullname: Han, Richard C.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 11
  givenname: Emmanuelle S.
  surname: Jecrois
  fullname: Jecrois, Emmanuelle S.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215
– sequence: 12
  givenname: Piotr
  surname: Sicinski
  fullname: Sicinski, Piotr
  organization: Department of Genetics, Harvard Medical School, Boston, MA 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28923932$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFMydQJC69pPU4dpy5IFUrCkgVSHycLSexF68Se7G9Ffvf4-2WFnrgZGn8e09v5p2QIx-8IeQl0HOgsrnYeJ3OQVKGwAH4E7IAilC3HOkRWVDKZN1xxo_JSUprSimKjj4jx6xD1mDDFuTr0kxTNeyGydRZx5XJzq-q2Q0xfPl0mapNDHPIphqdtSYan53OLviq31XG2xCHPT4Uj_rWozK_XH5Onlo9JfPi7j0l36_efVt-qK8_v_-4vLyuB0Ex1wYslb3k2HLQXGsJkiGztC_DEaEzg0Aq-hFGK6ltmW2wN3zsRmYYyrFtTsnbg-9m289mHEq6qCe1iW7WcaeCdurfH-9-qFW4UaJtRCehGJzdGcTwc2tSVrNL-2W0N2GbFCCnAhmiLOibR-g6bKMv6xVKInIBghbq9d-J7qP8uXcBLg5AuW9K0dh7BKjaN6r2jaqHRotCPFIMLt92UFZy0390rw66dcohPiRpedcBNM1vHjev3A
CitedBy_id crossref_primary_10_1016_j_envpol_2020_114007
crossref_primary_10_1007_s11033_022_07530_x
crossref_primary_10_3389_fonc_2021_655236
crossref_primary_10_7554_eLife_75521
crossref_primary_10_3389_falgy_2022_962693
crossref_primary_10_1007_s12079_020_00567_2
crossref_primary_10_1186_s12935_022_02797_3
crossref_primary_10_3390_cells13211749
crossref_primary_10_3389_fphys_2017_00927
crossref_primary_10_1017_S0967199424000224
crossref_primary_10_1016_j_gene_2024_148370
crossref_primary_10_1038_s41467_018_06768_z
crossref_primary_10_1093_femsec_fiaa195
crossref_primary_10_1074_jbc_RA118_005778
crossref_primary_10_1242_jcs_253450
crossref_primary_10_3390_biology12010055
crossref_primary_10_1016_j_omton_2024_200785
crossref_primary_10_1016_j_jbc_2024_107698
crossref_primary_10_1007_s12668_023_01258_z
crossref_primary_10_1007_s10735_023_10159_0
crossref_primary_10_3390_ijms23147749
crossref_primary_10_1155_2022_5514715
crossref_primary_10_1016_j_biopha_2023_114453
crossref_primary_10_33590_emjoncol_20_00251
crossref_primary_10_7554_eLife_63768
crossref_primary_10_3889_oamjms_2021_5986
crossref_primary_10_1038_s41598_019_47399_8
crossref_primary_10_13070_mm_en_9_2845
crossref_primary_10_3389_fendo_2021_709943
crossref_primary_10_3389_fimmu_2021_640369
crossref_primary_10_1515_revneuro_2022_0039
crossref_primary_10_3390_cells14050379
crossref_primary_10_1016_j_jprot_2018_03_008
crossref_primary_10_1038_s41598_024_56786_9
crossref_primary_10_1016_j_pupt_2020_101949
crossref_primary_10_3390_biomedicines9060591
crossref_primary_10_1016_j_semcancer_2021_03_014
crossref_primary_10_1038_s41421_019_0104_z
crossref_primary_10_1186_s13046_019_1059_5
crossref_primary_10_3390_cimb46070421
crossref_primary_10_1073_pnas_2113568118
crossref_primary_10_1007_s00204_021_03016_0
crossref_primary_10_1007_s10162_022_00850_6
crossref_primary_10_1111_andr_12714
crossref_primary_10_1111_febs_15302
crossref_primary_10_1111_jop_13015
crossref_primary_10_1016_j_ygeno_2023_110758
crossref_primary_10_1111_all_14307
crossref_primary_10_1155_2023_2074931
crossref_primary_10_1186_s12864_023_09801_8
crossref_primary_10_1142_S0192415X2350060X
crossref_primary_10_3389_fmicb_2020_625661
crossref_primary_10_1038_s41418_019_0332_7
crossref_primary_10_3390_life10120309
crossref_primary_10_1089_dna_2019_4870
crossref_primary_10_1016_j_snb_2019_127471
crossref_primary_10_2478_raon_2021_0042
crossref_primary_10_1186_s40246_019_0221_7
crossref_primary_10_1016_j_theriogenology_2023_12_006
crossref_primary_10_3389_fimmu_2020_01469
crossref_primary_10_1186_s12864_020_6599_8
crossref_primary_10_1007_s11033_019_05192_w
crossref_primary_10_1042_BCJ20210083
crossref_primary_10_1164_rccm_202303_0500OC
crossref_primary_10_1186_s10020_023_00776_6
crossref_primary_10_1111_andr_12921
crossref_primary_10_1016_j_lfs_2020_117478
crossref_primary_10_1111_brv_12755
crossref_primary_10_1007_s12017_019_08535_9
crossref_primary_10_3389_pore_2021_609620
crossref_primary_10_1002_1878_0261_13514
crossref_primary_10_1002_advs_202305068
crossref_primary_10_1021_acs_analchem_8b03322
Cites_doi 10.1038/nature07242
10.1016/j.cell.2009.01.002
10.1073/pnas.0803055105
10.4161/cc.6.13.4436
10.18632/oncotarget.1825
10.1242/bio.201410959
10.1038/ncb2241
10.1371/journal.pgen.1002363
10.1002/ijc.29294
10.1038/onc.2009.19
10.1074/jbc.M111.328054
10.4161/cc.10.17.17181
10.1101/gad.1819009
10.1038/nature03702
10.1158/0008-5472.CAN-07-1585
10.1016/j.celrep.2014.02.023
10.1186/s13630-015-0021-1
10.1016/j.cub.2007.06.068
10.1371/journal.pgen.1004597
10.1038/sj.onc.1210293
10.1371/journal.pgen.1002797
10.1038/onc.2008.154
10.1083/jcb.201201057
10.1038/ncb2366
10.1073/pnas.0707351104
10.1038/nature11919
10.1038/nature05939
10.1016/j.molcel.2007.05.010
10.1073/pnas.1109023108
10.1172/JCI73531
10.1038/nature13413
10.1016/j.molcel.2007.05.017
10.4161/cc.9.22.13870
10.1016/j.febslet.2008.03.057
10.1101/gad.233585.113
10.1242/dev.034884
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 3, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 3, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1702914114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate miR-34/449 promotes differentiation
EISSN 1091-6490
EndPage 10665
ExternalDocumentID PMC5635871
28923932
10_1073_pnas_1702914114
26488113
Genre Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA202634
– fundername: NCI NIH HHS
  grantid: R01 CA132740
– fundername: NCI NIH HHS
  grantid: R01 CA190509
– fundername: NCI NIH HHS
  grantid: R01 CA083688
– fundername: HHS | National Institutes of Health (NIH)
  grantid: CA132740
– fundername: HHS | National Institutes of Health (NIH)
  grantid: CA083688
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-e1f07b749641a4aa717292f0b7b7d918ec5905bd1df70f62f39be4d8d2e297d63
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:40:32 EDT 2025
Thu Sep 04 17:01:13 EDT 2025
Mon Jun 30 08:31:14 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Tue Jul 01 03:19:41 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Fri May 30 11:46:52 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Keywords epithelial differentiation
cell cycle
ciliogenesis
miR-34
cyclins
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-e1f07b749641a4aa717292f0b7b7d918ec5905bd1df70f62f39be4d8d2e297d63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: T.O. and P.S. designed research; T.O., S.V.C., M.S.P., E.S., M.B., I.A.L., K.M., A.F., R.C.H., and E.S.J. performed research; T.O., E.S., R.T.B., M.B., and P.S. analyzed data; and T.O. and P.S. wrote the paper.
1Present address: Department of Internal Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen 52074, Germany.
Edited by Terry L. Orr-Weaver, Whitehead Institute, Cambridge, MA, and approved August 24, 2017 (received for review February 22, 2017)
ORCID 0000-0001-5594-3055
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5635871
PMID 28923932
PQID 1979945150
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5635871
proquest_miscellaneous_1940592997
proquest_journals_1979945150
pubmed_primary_28923932
crossref_primary_10_1073_pnas_1702914114
crossref_citationtrail_10_1073_pnas_1702914114
jstor_primary_26488113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-03
PublicationDateYYYYMMDD 2017-10-03
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Lu J (e_1_3_4_25_2) 2005; 435
Raver-Shapira N (e_1_3_4_8_2) 2007; 26
Bartel DP (e_1_3_4_1_2) 2009; 136
Yang X (e_1_3_4_7_2) 2009; 23
Bao J (e_1_3_4_16_2) 2012; 287
Okada N (e_1_3_4_28_2) 2014; 28
Corney DC (e_1_3_4_26_2) 2007; 67
Comazzetto S (e_1_3_4_36_2) 2014; 10
Yuan S (e_1_3_4_37_2) 2015; 4
Lujambio A (e_1_3_4_6_2) 2008; 105
Song R (e_1_3_4_20_2) 2014; 510
Tazawa H (e_1_3_4_27_2) 2007; 104
Wei J (e_1_3_4_18_2) 2012; 197
Wu J (e_1_3_4_21_2) 2014; 111
Chang TC (e_1_3_4_9_2) 2007; 26
Agostini M (e_1_3_4_12_2) 2014; 5
Wang H (e_1_3_4_24_2) 2011; 108
Cheng CY (e_1_3_4_29_2) 2014; 6
Wei JS (e_1_3_4_35_2) 2008; 27
Bommer GT (e_1_3_4_11_2) 2007; 17
Marcet B (e_1_3_4_22_2) 2011; 13
Lal A (e_1_3_4_34_2) 2011; 7
He L (e_1_3_4_4_2) 2007; 447
Tarasov V (e_1_3_4_10_2) 2007; 6
Tsao PN (e_1_3_4_23_2) 2009; 136
Boon RA (e_1_3_4_19_2) 2013; 495
Choi YJ (e_1_3_4_15_2) 2011; 13
Lizé M (e_1_3_4_13_2) 2011; 10
Lizé M (e_1_3_4_33_2) 2010; 9
Concepcion CP (e_1_3_4_17_2) 2012; 8
Thor T (e_1_3_4_31_2) 2015; 136
Baek D (e_1_3_4_2_2) 2008; 455
Welch C (e_1_3_4_3_2) 2007; 26
Noonan EJ (e_1_3_4_14_2) 2009; 28
Rokavec M (e_1_3_4_30_2) 2014; 124
Izawa I (e_1_3_4_32_2) 2015; 4
Sun F (e_1_3_4_5_2) 2008; 582
17554199 - Cell Cycle. 2007 Jul 1;6(13):1586-93
22844244 - PLoS Genet. 2012;8(7):e1002797
17554337 - Nature. 2007 Jun 28;447(7148):1130-4
25617420 - Biol Open. 2015 Jan 23;4(2):212-23
21088493 - Cell Cycle. 2010 Nov 15;9(22):4579-83
18768788 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13556-61
17875987 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15472-7
21857159 - Cell Cycle. 2011 Sep 1;10(17):2874-82
25348795 - Int J Cancer. 2015 May 15;136(10):2293-303
17540599 - Mol Cell. 2007 Jun 8;26(5):745-52
19833767 - Genes Dev. 2009 Oct 15;23(20):2388-93
17823410 - Cancer Res. 2007 Sep 15;67(18):8433-8
24532687 - Genes Dev. 2014 Mar 1;28(5):438-50
17540598 - Mol Cell. 2007 Jun 8;26(5):731-43
15944708 - Nature. 2005 Jun 9;435(7043):834-8
24982181 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2851-7
22570483 - J Biol Chem. 2012 Jun 22;287(26):21686-98
24630988 - Cell Rep. 2014 Mar 27;6(6):1000-1007
24899310 - Nature. 2014 Jun 5;510(7503):115-20
21737748 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14908-13
19252524 - Oncogene. 2009 Apr 9;28(14):1714-24
22564414 - J Cell Biol. 2012 May 14;197(4):509-21
19167326 - Cell. 2009 Jan 23;136(2):215-33
17297439 - Oncogene. 2007 Jul 26;26(34):5017-22
26719793 - Cilia. 2015 Dec 29;4:12
24642471 - J Clin Invest. 2014 Apr;124(4):1853-67
18406353 - FEBS Lett. 2008 Apr 30;582(10):1564-8
21602795 - Nat Cell Biol. 2011 Jun;13(6):693-9
22102825 - PLoS Genet. 2011 Nov;7(11):e1002363
17656095 - Curr Biol. 2007 Aug 7;17(15):1298-307
23426265 - Nature. 2013 Mar 7;495(7439):107-10
19502490 - Development. 2009 Jul;136(13):2297-307
18668037 - Nature. 2008 Sep 4;455(7209):64-71
24657911 - Oncotarget. 2014 Feb 28;5(4):872-81
22020437 - Nat Cell Biol. 2011 Oct 23;13(11):1353-60
25329700 - PLoS Genet. 2014 Oct 16;10(10):e1004597
18504438 - Oncogene. 2008 Sep 4;27(39):5204-13
References_xml – volume: 455
  start-page: 64
  year: 2008
  ident: e_1_3_4_2_2
  article-title: The impact of microRNAs on protein output
  publication-title: Nature
  doi: 10.1038/nature07242
– volume: 136
  start-page: 215
  year: 2009
  ident: e_1_3_4_1_2
  article-title: MicroRNAs: Target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 105
  start-page: 13556
  year: 2008
  ident: e_1_3_4_6_2
  article-title: A microRNA DNA methylation signature for human cancer metastasis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0803055105
– volume: 6
  start-page: 1586
  year: 2007
  ident: e_1_3_4_10_2
  article-title: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.13.4436
– volume: 5
  start-page: 872
  year: 2014
  ident: e_1_3_4_12_2
  article-title: miR-34: From bench to bedside
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1825
– volume: 4
  start-page: 212
  year: 2015
  ident: e_1_3_4_37_2
  article-title: mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice
  publication-title: Biol Open
  doi: 10.1242/bio.201410959
– volume: 13
  start-page: 693
  year: 2011
  ident: e_1_3_4_22_2
  article-title: Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2241
– volume: 7
  start-page: e1002363
  year: 2011
  ident: e_1_3_4_34_2
  article-title: Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002363
– volume: 136
  start-page: 2293
  year: 2015
  ident: e_1_3_4_31_2
  article-title: miR-34a deficiency accelerates medulloblastoma formation in vivo
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29294
– volume: 28
  start-page: 1714
  year: 2009
  ident: e_1_3_4_14_2
  article-title: miR-449a targets HDAC-1 and induces growth arrest in prostate cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2009.19
– volume: 287
  start-page: 21686
  year: 2012
  ident: e_1_3_4_16_2
  article-title: MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb) pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.328054
– volume: 10
  start-page: 2874
  year: 2011
  ident: e_1_3_4_13_2
  article-title: MicroRNA-449 in cell fate determination
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.17.17181
– volume: 23
  start-page: 2388
  year: 2009
  ident: e_1_3_4_7_2
  article-title: miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A
  publication-title: Genes Dev
  doi: 10.1101/gad.1819009
– volume: 435
  start-page: 834
  year: 2005
  ident: e_1_3_4_25_2
  article-title: MicroRNA expression profiles classify human cancers
  publication-title: Nature
  doi: 10.1038/nature03702
– volume: 67
  start-page: 8433
  year: 2007
  ident: e_1_3_4_26_2
  article-title: MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-1585
– volume: 6
  start-page: 1000
  year: 2014
  ident: e_1_3_4_29_2
  article-title: miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.02.023
– volume: 4
  start-page: 12
  year: 2015
  ident: e_1_3_4_32_2
  article-title: Current topics of functional links between primary cilia and cell cycle
  publication-title: Cilia
  doi: 10.1186/s13630-015-0021-1
– volume: 17
  start-page: 1298
  year: 2007
  ident: e_1_3_4_11_2
  article-title: p53-mediated activation of miRNA34 candidate tumor-suppressor genes
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.06.068
– volume: 10
  start-page: e1004597
  year: 2014
  ident: e_1_3_4_36_2
  article-title: Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004597
– volume: 26
  start-page: 5017
  year: 2007
  ident: e_1_3_4_3_2
  article-title: MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210293
– volume: 8
  start-page: e1002797
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Intact p53-dependent responses in miR-34-deficient mice
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002797
– volume: 27
  start-page: 5204
  year: 2008
  ident: e_1_3_4_35_2
  article-title: The MYCN oncogene is a direct target of miR-34a
  publication-title: Oncogene
  doi: 10.1038/onc.2008.154
– volume: 197
  start-page: 509
  year: 2012
  ident: e_1_3_4_18_2
  article-title: miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201201057
– volume: 13
  start-page: 1353
  year: 2011
  ident: e_1_3_4_15_2
  article-title: miR-34 miRNAs provide a barrier for somatic cell reprogramming
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2366
– volume: 104
  start-page: 15472
  year: 2007
  ident: e_1_3_4_27_2
  article-title: Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0707351104
– volume: 495
  start-page: 107
  year: 2013
  ident: e_1_3_4_19_2
  article-title: MicroRNA-34a regulates cardiac ageing and function
  publication-title: Nature
  doi: 10.1038/nature11919
– volume: 447
  start-page: 1130
  year: 2007
  ident: e_1_3_4_4_2
  article-title: A microRNA component of the p53 tumour suppressor network
  publication-title: Nature
  doi: 10.1038/nature05939
– volume: 26
  start-page: 745
  year: 2007
  ident: e_1_3_4_9_2
  article-title: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.05.010
– volume: 108
  start-page: 14908
  year: 2011
  ident: e_1_3_4_24_2
  article-title: Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1109023108
– volume: 124
  start-page: 1853
  year: 2014
  ident: e_1_3_4_30_2
  article-title: IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis
  publication-title: J Clin Invest
  doi: 10.1172/JCI73531
– volume: 111
  start-page: E2851
  year: 2014
  ident: e_1_3_4_21_2
  article-title: Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 510
  start-page: 115
  year: 2014
  ident: e_1_3_4_20_2
  article-title: miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110
  publication-title: Nature
  doi: 10.1038/nature13413
– volume: 26
  start-page: 731
  year: 2007
  ident: e_1_3_4_8_2
  article-title: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2007.05.017
– volume: 9
  start-page: 4579
  year: 2010
  ident: e_1_3_4_33_2
  article-title: MicroRNA-449a levels increase by several orders of magnitude during mucociliary differentiation of airway epithelia
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.22.13870
– volume: 582
  start-page: 1564
  year: 2008
  ident: e_1_3_4_5_2
  article-title: Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2008.03.057
– volume: 28
  start-page: 438
  year: 2014
  ident: e_1_3_4_28_2
  article-title: A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression
  publication-title: Genes Dev
  doi: 10.1101/gad.233585.113
– volume: 136
  start-page: 2297
  year: 2009
  ident: e_1_3_4_23_2
  article-title: Notch signaling controls the balance of ciliated and secretory cell fates in developing airways
  publication-title: Development
  doi: 10.1242/dev.034884
– reference: 22844244 - PLoS Genet. 2012;8(7):e1002797
– reference: 25617420 - Biol Open. 2015 Jan 23;4(2):212-23
– reference: 24642471 - J Clin Invest. 2014 Apr;124(4):1853-67
– reference: 19833767 - Genes Dev. 2009 Oct 15;23(20):2388-93
– reference: 17297439 - Oncogene. 2007 Jul 26;26(34):5017-22
– reference: 17540598 - Mol Cell. 2007 Jun 8;26(5):731-43
– reference: 24630988 - Cell Rep. 2014 Mar 27;6(6):1000-1007
– reference: 24899310 - Nature. 2014 Jun 5;510(7503):115-20
– reference: 21857159 - Cell Cycle. 2011 Sep 1;10(17):2874-82
– reference: 17875987 - Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15472-7
– reference: 18768788 - Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13556-61
– reference: 19502490 - Development. 2009 Jul;136(13):2297-307
– reference: 18406353 - FEBS Lett. 2008 Apr 30;582(10):1564-8
– reference: 25348795 - Int J Cancer. 2015 May 15;136(10):2293-303
– reference: 17823410 - Cancer Res. 2007 Sep 15;67(18):8433-8
– reference: 24657911 - Oncotarget. 2014 Feb 28;5(4):872-81
– reference: 17540599 - Mol Cell. 2007 Jun 8;26(5):745-52
– reference: 24532687 - Genes Dev. 2014 Mar 1;28(5):438-50
– reference: 19252524 - Oncogene. 2009 Apr 9;28(14):1714-24
– reference: 22102825 - PLoS Genet. 2011 Nov;7(11):e1002363
– reference: 22564414 - J Cell Biol. 2012 May 14;197(4):509-21
– reference: 15944708 - Nature. 2005 Jun 9;435(7043):834-8
– reference: 17554199 - Cell Cycle. 2007 Jul 1;6(13):1586-93
– reference: 17656095 - Curr Biol. 2007 Aug 7;17(15):1298-307
– reference: 25329700 - PLoS Genet. 2014 Oct 16;10(10):e1004597
– reference: 18668037 - Nature. 2008 Sep 4;455(7209):64-71
– reference: 24982181 - Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2851-7
– reference: 23426265 - Nature. 2013 Mar 7;495(7439):107-10
– reference: 22020437 - Nat Cell Biol. 2011 Oct 23;13(11):1353-60
– reference: 22570483 - J Biol Chem. 2012 Jun 22;287(26):21686-98
– reference: 21737748 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14908-13
– reference: 17554337 - Nature. 2007 Jun 28;447(7148):1130-4
– reference: 26719793 - Cilia. 2015 Dec 29;4:12
– reference: 18504438 - Oncogene. 2008 Sep 4;27(39):5204-13
– reference: 21088493 - Cell Cycle. 2010 Nov 15;9(22):4579-83
– reference: 19167326 - Cell. 2009 Jan 23;136(2):215-33
– reference: 21602795 - Nat Cell Biol. 2011 Jun;13(6):693-9
SSID ssj0009580
Score 2.5100996
Snippet MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of...
The interplay between microRNAs and the cell-cycle machinery in vivo remains poorly understood. Here we report that the microRNA family miR-34/449 plays an...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10660
SubjectTerms Biological activity
Biological Sciences
Cell cycle
Cell differentiation
Derepression
Differentiation (biology)
Epithelial cells
Epithelium
Fallopian tube
Gene expression
Genes
Infertility
Machinery and equipment
MicroRNAs
miRNA
Proteins
Respiratory tract diseases
Rodents
Title Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit
URI https://www.jstor.org/stable/26488113
https://www.ncbi.nlm.nih.gov/pubmed/28923932
https://www.proquest.com/docview/1979945150
https://www.proquest.com/docview/1940592997
https://pubmed.ncbi.nlm.nih.gov/PMC5635871
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLeqceGCGDAIDBQkDkNVSuw4cXKsqsGEtFLRDu1WJY6jVWzpRFNB99fzXuw4aVUQ7BK1tuM0fr--D_t9EPJOKJaneMLIJGUeBxPDy3iQekXOWaoEywOOwcnn4-jsgn--DC97vW6G4HWVDeTd3riS-1AV2oCuGCX7H5S1k0IDfAb6whUoDNd_ovEIN97kBlo97dGNdv8Nuth9HQ9X6HsFhFC2CEqlyYAap8IoJFkH3MIcXj1HX_1abO3UT6xwWzWuBONm73DYRqIY9rDqe_3JuK1r_KWqKzT1Z8tskVrNfYRhNHndMb1Sm-u0_21g2fMCzOw7E0EEPM12TPH4f_W91nNPf6bdnQqQfnjOHrSOHH_5hV0WzUBsch1YPVCaK4NS40Vc1xW1bFsHnxp86pxPhguDmauLFBiRjt_DvfICGBwWOS7T1YAKnyWUm2k76Lm9qeEDlimmi2Ot4LTujJPzUQiKW4y5DB4wIWp_gU-XtJP9OdaxUObdmhxTIviw82xMTm0etKUpaWfZfWbQrjdvRz2aPSaPjF3jDjVID0lPlU_IYbPw7olJb_7-KZkiat0d1LoWta5BrbuDWjfbuBa1botaF1H7jFx8PJ2NzjxT2sOToKFWnqKFLzLBk4jTlKepAD06YYWfQWOe0FjJMPHDLKd5IfwiYkWQZIrncc4US0QeBUfkoFyW6gVxi0CCCuzD--eSy4jHILCzhEkwDUQoaeKQQbOMc2ny3mP5let57X8hgjmSYN6SwCEn9oZbnfLlz0OParrYcegvGlMaOOS4IdTcMAy4D4_QORgQvkPe2m5g57hmaamWaxwDFhSYLIlwyHNN13ZyAwyHiC2K2wGYKn67p1xc1SnjDTxf3vvOV-Rh-5c-JgfVj7V6Dep4lb2pof4b-_rhpg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell+cycle-targeting+microRNAs+promote+differentiation+by+enforcing+cell-cycle+exit&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Otto%2C+Tobias&rft.au=Candido%2C+Sheyla+V.&rft.au=Pilarz%2C+Mary+S.&rft.au=Sicinska%2C+Ewa&rft.date=2017-10-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=40&rft.spage=10660&rft.epage=10665&rft_id=info:doi/10.1073%2Fpnas.1702914114&rft_id=info%3Apmid%2F28923932&rft.externalDocID=PMC5635871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon