Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study
In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classificat...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3714 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
03.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23073714 |
Cover
Loading…
Abstract | In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications. |
---|---|
AbstractList | In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (
p
< 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications. In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications. In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications. In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates ( < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications. |
Audience | Academic |
Author | Ali, Muhammad Umair Hussain, Shaik Javeed Zafar, Amad Lee, Seung Won |
AuthorAffiliation | 2 Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman 1 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea 3 Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman – name: 3 Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea – name: 1 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea |
Author_xml | – sequence: 1 givenname: Amad orcidid: 0000-0002-0716-3932 surname: Zafar fullname: Zafar, Amad – sequence: 2 givenname: Shaik Javeed orcidid: 0000-0001-5300-189X surname: Hussain fullname: Hussain, Shaik Javeed – sequence: 3 givenname: Muhammad Umair orcidid: 0000-0002-7326-1813 surname: Ali fullname: Ali, Muhammad Umair – sequence: 4 givenname: Seung Won orcidid: 0000-0001-5632-5208 surname: Lee fullname: Lee, Seung Won |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050774$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhiNURD_gwB9AkbjQw7Z27MQOl2qpKKxUqMSWszWxJ7teknixHaTtr8fbLau2Qj7YGj_zzjv2HGcHgxswy95ScsZYTc5DwYhggvIX2RHlBZ_IoiAHj86H2XEIK0IKxph8lR0yQUoiBD_K9DeMsMTR2xCtzm_W0fb2DqJ1w-QTBDT5FUIcPeZz7FBv43nrfD7rYYF-k8Ng8qm3cdnjNv8Wwq_wMZ8m6Pvsxzyfx9FsXmcvW-gCvnnYT7KfV59vL79Orm--zC6n1xNdkjpOkAJyqEpijGxMJXTTYM1JSVmLvGjrWreVMABGlw1BQouWUSG0IbxsWgENO8lmO13jYKXW3vbgN8qBVfcB5xcKfHLZoaLMyFSpYUYzzgCkQcYL2SBFLpnhSetip7Uemx6NxiF66J6IPr0Z7FIt3B9FCallWdZJ4cODgne_RwxR9TZo7DoY0I1BFZKQqkjdlQl9_wxdudEP6a1UIepacCnk1tLZjlpA6sAOrUuFdVoGe6vTRLQ2xaeCVzWXFSEp4d3jHvbm__1-Ak53gPYuBI_tHqFEbSdL7ScrsefPWG3j_ZwkF7b7T8ZftovPNg |
CitedBy_id | crossref_primary_10_3390_bioengineering10050608 crossref_primary_10_3390_s23177508 crossref_primary_10_1007_s11760_024_03368_x crossref_primary_10_1016_j_jpba_2025_116822 crossref_primary_10_3390_bioengineering10070825 crossref_primary_10_1016_j_bspc_2024_106943 crossref_primary_10_3390_bioengineering10121430 crossref_primary_10_3390_electronics13050899 crossref_primary_10_1016_j_compbiomed_2023_107604 crossref_primary_10_3390_make6020046 crossref_primary_10_3390_s23136001 crossref_primary_10_1016_j_neucom_2024_129018 crossref_primary_10_1007_s11042_023_17613_x |
Cites_doi | 10.1088/1741-2552/abb417 10.1016/j.jocs.2022.101636 10.1016/j.asoc.2019.105728 10.1016/B978-0-12-821986-7.00018-4 10.3390/math10111929 10.1007/978-3-319-13826-8_5 10.1016/j.infrared.2020.103589 10.3389/fnbot.2017.00006 10.1109/ICACI.2017.7974502 10.3233/IDA-1997-1302 10.1109/ACCESS.2021.3052149 10.1007/978-3-642-12538-6_6 10.1007/s10115-019-01358-x 10.1016/j.neuroimage.2013.11.033 10.1155/2023/8812844 10.1109/ACCESS.2019.2906980 10.1016/S1474-4422(08)70223-0 10.1117/1.JBO.19.7.077005 10.1371/journal.pone.0121279 10.1016/j.neulet.2013.08.021 10.3390/bios11100389 10.1109/IJCNN.2011.6033297 10.1109/MC.2008.409 10.1038/s41598-022-18936-9 10.1109/TNSRE.2022.3188560 10.1016/j.cmpb.2020.105535 10.1109/ICNSC.2019.8743245 10.3389/fnbot.2020.00010 10.1002/jdn.10166 10.3390/computers10110136 10.1016/j.dajour.2022.100144 10.1007/s00221-013-3764-1 10.3390/s22072575 10.3389/fnbot.2018.00069 10.3390/electronics8111208 10.1177/1094428116658959 10.1016/B978-0-12-821986-7.00013-5 10.1504/IJBIC.2013.055093 10.1007/s00521-017-3272-5 10.3389/fnhum.2018.00505 10.1109/TNSRE.2010.2077654 10.1016/j.heares.2016.01.009 10.3389/fnbot.2020.00025 10.1016/j.asoc.2020.106761 10.1155/2019/3807670 10.1504/IJBIC.2010.032124 10.1109/TNSRE.2016.2628057 10.1016/j.cobme.2017.09.011 10.3390/app9183845 10.1016/j.neucom.2022.04.083 10.1016/j.advengsoft.2016.01.008 10.1109/UBMK.2018.8566462 10.1016/j.neuroimage.2011.10.009 10.1016/j.cap.2010.11.051 10.1016/j.eswa.2022.116550 10.1016/j.neuron.2013.10.017 10.1109/TNSRE.2018.2860629 10.1155/2020/1838140 10.1111/nyas.13948 10.1016/j.eswa.2020.113917 10.1016/j.asoc.2018.11.047 10.1002/er.7168 10.1016/S0004-3702(97)00043-X 10.1364/BOE.6.004063 10.3389/fnhum.2018.00246 10.4103/1673-5374.332150 10.1155/2021/6614112 10.1109/NABIC.2009.5393690 10.1016/j.neuroimage.2013.01.021 10.1016/j.advengsoft.2013.12.007 10.1142/S0129065718500314 10.1016/j.neulet.2017.06.044 10.1002/er.7201 10.1109/IDAP.2018.8620828 10.1007/s00366-011-0241-y 10.1016/j.swevo.2013.06.001 10.1109/ACCESS.2019.2953535 10.1016/j.neucom.2015.06.083 10.1016/j.bbr.2017.06.034 10.1016/j.eswa.2019.112949 10.1088/1741-2552/aaf12e 10.1016/j.nicl.2020.102496 10.3390/s20236995 10.1016/j.bspc.2021.102595 10.1016/j.eswa.2015.10.039 10.1016/j.neulet.2017.03.013 10.3390/electronics10111239 10.1109/JPROC.2015.2411333 10.1364/BOE.8.000367 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23073714 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_13d8650b3dc343aa8de3428be1e483d4 PMC10098559 A746948600 37050774 10_3390_s23073714 |
Genre | Journal Article |
GeographicLocations | United States Massachusetts |
GeographicLocations_xml | – name: Massachusetts – name: United States |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF2021R1I1A2059735 – fundername: Korean government (MSIT); National Research Foundation of Korea (NRF) grantid: NRF2021R1I1A2059735 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-e1ae4a650dd8bd67cbbe940513fe42f99cf67daadc5b0e012f3177cd045bf7ab3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:22:44 EDT 2025 Thu Aug 21 18:38:08 EDT 2025 Fri Jul 11 06:45:13 EDT 2025 Fri Jul 25 20:22:49 EDT 2025 Tue Jul 01 05:45:15 EDT 2025 Wed Feb 19 02:24:20 EST 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 01:19:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | brain–computer interface (BCI) motor imagery fNIRS optimization mental arithmetic feature selection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-e1ae4a650dd8bd67cbbe940513fe42f99cf67daadc5b0e012f3177cd045bf7ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-5300-189X 0000-0002-7326-1813 0000-0001-5632-5208 0000-0002-0716-3932 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23073714 |
PMID | 37050774 |
PQID | 2799748784 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13d8650b3dc343aa8de3428be1e483d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098559 proquest_miscellaneous_2800625135 proquest_journals_2799748784 gale_infotracacademiconefile_A746948600 pubmed_primary_37050774 crossref_primary_10_3390_s23073714 crossref_citationtrail_10_3390_s23073714 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230403 |
PublicationDateYYYYMMDD | 2023-04-03 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230403 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Leeb (ref_7) 2015; 103 ref_94 Gandomi (ref_73) 2013; 29 Mirjalili (ref_87) 2014; 69 Scarpa (ref_34) 2013; 72 ref_98 Fister (ref_75) 2013; 13 ref_97 ref_96 Jiang (ref_95) 2019; 7 Khan (ref_18) 2022; 17 Aydin (ref_45) 2020; 195 Li (ref_25) 2019; 2019 Yang (ref_51) 2006; 2 Nazeer (ref_29) 2020; 17 Taghian (ref_90) 2021; 166 Rashid (ref_10) 2020; 14 ref_22 Hasan (ref_28) 2020; 2020 Dash (ref_59) 1997; 1 Faris (ref_93) 2018; 30 Selb (ref_15) 2017; 4 ref_72 Noori (ref_47) 2017; 647 ref_70 Weiskopf (ref_11) 2012; 62 ref_78 ref_77 Ghaffar (ref_41) 2021; 112 Hong (ref_14) 2018; 12 Dokeroglu (ref_50) 2022; 494 Kohavi (ref_62) 1997; 97 ref_82 Kim (ref_53) 2011; 11 Huang (ref_38) 2022; 30 Tu (ref_89) 2019; 76 Asam (ref_44) 2022; 12 Zafar (ref_21) 2017; 8 Naseer (ref_46) 2015; 9 ref_85 Yang (ref_74) 2010; 2 Zhang (ref_26) 2017; 655 (ref_13) 2013; 80 Ekinci (ref_68) 2019; 7 Li (ref_49) 2021; 2021 Quaresima (ref_16) 2019; 22 Pinti (ref_19) 2019; 12 Hassouneh (ref_86) 2021; 9 Royer (ref_3) 2010; 18 Mirjalili (ref_88) 2016; 47 Khan (ref_24) 2017; 11 Zafar (ref_31) 2020; 14 Ali (ref_54) 2022; 46 ref_52 Thaher (ref_71) 2022; 195 Zafar (ref_39) 2023; 2023 Khan (ref_27) 2015; 6 Yildizdan (ref_80) 2020; 141 Tursic (ref_12) 2020; 28 Zafar (ref_30) 2018; 28 Khorram (ref_61) 2018; 4 Yang (ref_79) 2013; 5 ref_66 ref_65 ref_63 Taghian (ref_64) 2020; 97 Petrantonakis (ref_40) 2018; 26 Mirjalili (ref_84) 2016; 95 Hong (ref_58) 2018; 12 Zabcikova (ref_5) 2022; 82 Hong (ref_56) 2017; 333 ref_36 Taghian (ref_91) 2022; 61 ref_35 Zafar (ref_43) 2019; 2019 Rodrigues (ref_81) 2015; 585 Naseer (ref_33) 2014; 232 Naseer (ref_32) 2013; 553 Boas (ref_17) 2014; 85 Hong (ref_23) 2016; 333 ref_37 Altabeeb (ref_76) 2019; 84 Daly (ref_4) 2008; 7 Shin (ref_55) 2016; 25 Guyon (ref_60) 2003; 3 Pinti (ref_20) 2020; 1464 Aljarah (ref_92) 2020; 62 ref_42 Hwang (ref_57) 2014; 19 ref_1 Liu (ref_8) 2021; 68 ref_2 Mannan (ref_69) 2021; 45 Emary (ref_67) 2016; 172 Ong (ref_83) 2022; 5 ref_48 Abiri (ref_9) 2019; 16 McFarland (ref_6) 2008; 41 |
References_xml | – volume: 17 start-page: 056025 year: 2020 ident: ref_29 article-title: Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abb417 – volume: 61 start-page: 101636 year: 2022 ident: ref_91 article-title: GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2022.101636 – volume: 84 start-page: 105728 year: 2019 ident: ref_76 article-title: An improved hybrid firefly algorithm for capacitated vehicle routing problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105728 – ident: ref_65 doi: 10.1016/B978-0-12-821986-7.00018-4 – ident: ref_96 doi: 10.3390/math10111929 – volume: 585 start-page: 85 year: 2015 ident: ref_81 article-title: Binary flower pollination algorithm and its application to feature selection publication-title: Recent Adv. Swarm Intell. Evol. Comput. doi: 10.1007/978-3-319-13826-8_5 – volume: 112 start-page: 103589 year: 2021 ident: ref_41 article-title: Improving classification performance of four class FNIRS-BCI using Mel Frequency Cepstral Coefficients (MFCC) publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103589 – volume: 11 start-page: 6 year: 2017 ident: ref_24 article-title: Hybrid EEG–fNIRS-based eight-command decoding for BCI: Application to quadcopter control publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2017.00006 – volume: 3 start-page: 1157 year: 2003 ident: ref_60 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – ident: ref_85 doi: 10.1109/ICACI.2017.7974502 – volume: 1 start-page: 131 year: 1997 ident: ref_59 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – volume: 9 start-page: 14239 year: 2021 ident: ref_86 article-title: Boosted Whale Optimization Algorithm With Natural Selection Operators for Software Fault Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052149 – volume: 2019 start-page: 116 year: 2019 ident: ref_43 article-title: Initial-dip-based classification for fNIRS-BCI publication-title: Proc. Neural Imaging Sens. – ident: ref_77 doi: 10.1007/978-3-642-12538-6_6 – volume: 62 start-page: 507 year: 2020 ident: ref_92 article-title: Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-019-01358-x – volume: 85 start-page: 1 year: 2014 ident: ref_17 article-title: Twenty years of functional near-infrared spectroscopy: Introduction for the special issue publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.033 – volume: 2023 start-page: 8812844 year: 2023 ident: ref_39 article-title: A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study publication-title: Int. J. Intell. Syst. doi: 10.1155/2023/8812844 – volume: 7 start-page: 39935 year: 2019 ident: ref_68 article-title: Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906980 – volume: 7 start-page: 1032 year: 2008 ident: ref_4 article-title: Brain–computer interfaces in neurological rehabilitation publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70223-0 – volume: 19 start-page: 077005 year: 2014 ident: ref_57 article-title: Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.7.077005 – ident: ref_22 doi: 10.1371/journal.pone.0121279 – volume: 553 start-page: 84 year: 2013 ident: ref_32 article-title: Classification of functional near-infrared spectroscopy signals corresponding to the right-and left-wrist motor imagery for development of a brain–computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.08.021 – ident: ref_42 doi: 10.3390/bios11100389 – volume: 2 start-page: 4 year: 2006 ident: ref_51 article-title: Distance metric learning: A comprehensive survey publication-title: Mich. State Univ. – ident: ref_1 doi: 10.1109/IJCNN.2011.6033297 – volume: 41 start-page: 52 year: 2008 ident: ref_6 article-title: Brain-computer interface operation of robotic and prosthetic devices publication-title: Computer doi: 10.1109/MC.2008.409 – volume: 12 start-page: 15498 year: 2022 ident: ref_44 article-title: IoT malware detection architecture using a novel channel boosted and squeezed CNN publication-title: Sci. Rep. doi: 10.1038/s41598-022-18936-9 – volume: 30 start-page: 1858 year: 2022 ident: ref_38 article-title: Joint-channel-connectivity-based feature selection and classification on fNIRS for stress detection in decision-making publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3188560 – volume: 195 start-page: 105535 year: 2020 ident: ref_45 article-title: Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105535 – ident: ref_66 doi: 10.1109/ICNSC.2019.8743245 – volume: 9 start-page: 3 year: 2015 ident: ref_46 article-title: fNIRS-based brain-computer interfaces: A review publication-title: Front. Hum. Neurosci. – volume: 14 start-page: 10 year: 2020 ident: ref_31 article-title: Reduction of onset delay in functional near-infrared spectroscopy: Prediction of HbO/HbR signals publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00010 – volume: 82 start-page: 107 year: 2022 ident: ref_5 article-title: Recent advances and current trends in brain-computer interface research and their applications publication-title: Int. J. Dev. Neurosci. doi: 10.1002/jdn.10166 – ident: ref_97 doi: 10.3390/computers10110136 – volume: 5 start-page: 100144 year: 2022 ident: ref_83 article-title: A new flower pollination algorithm with improved convergence and its application to engineering optimization publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2022.100144 – volume: 232 start-page: 555 year: 2014 ident: ref_33 article-title: Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface publication-title: Exp. Brain Res. doi: 10.1007/s00221-013-3764-1 – ident: ref_37 doi: 10.3390/s22072575 – volume: 12 start-page: 69 year: 2018 ident: ref_14 article-title: Existence of initial dip for BCI: An illusion or reality publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2018.00069 – ident: ref_2 doi: 10.3390/electronics8111208 – volume: 22 start-page: 46 year: 2019 ident: ref_16 article-title: Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: A concise review publication-title: Organ. Res. Methods doi: 10.1177/1094428116658959 – ident: ref_70 doi: 10.1016/B978-0-12-821986-7.00013-5 – volume: 5 start-page: 141 year: 2013 ident: ref_79 article-title: Bat algorithm: Literature review and applications publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2013.055093 – volume: 30 start-page: 413 year: 2018 ident: ref_93 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3272-5 – volume: 12 start-page: 505 year: 2019 ident: ref_19 article-title: Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00505 – volume: 18 start-page: 581 year: 2010 ident: ref_3 article-title: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2077654 – volume: 333 start-page: 157 year: 2016 ident: ref_23 article-title: Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy publication-title: Hear. Res. doi: 10.1016/j.heares.2016.01.009 – volume: 14 start-page: 25 year: 2020 ident: ref_10 article-title: Current status, challenges, and possible solutions of EEG-based brain-computer interface: A comprehensive review publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2020.00025 – volume: 97 start-page: 106761 year: 2020 ident: ref_64 article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106761 – volume: 2019 start-page: 3807670 year: 2019 ident: ref_25 article-title: Advances in hybrid brain-computer interfaces: Principles, design, and applications publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/3807670 – volume: 2 start-page: 78 year: 2010 ident: ref_74 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2010.032124 – volume: 25 start-page: 1735 year: 2016 ident: ref_55 article-title: Open access dataset for EEG+ NIRS single-trial classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2628057 – volume: 4 start-page: 78 year: 2017 ident: ref_15 article-title: Functional near infrared spectroscopy: Enabling routine functional brain imaging publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.09.011 – ident: ref_35 doi: 10.3390/app9183845 – volume: 494 start-page: 269 year: 2022 ident: ref_50 article-title: A comprehensive survey on recent metaheuristics for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.083 – volume: 95 start-page: 51 year: 2016 ident: ref_84 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – ident: ref_94 doi: 10.1109/UBMK.2018.8566462 – volume: 62 start-page: 682 year: 2012 ident: ref_11 article-title: Real-time fMRI and its application to neurofeedback publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.009 – volume: 11 start-page: 740 year: 2011 ident: ref_53 article-title: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.11.051 – ident: ref_82 doi: 10.1016/B978-0-12-821986-7.00013-5 – volume: 195 start-page: 116550 year: 2022 ident: ref_71 article-title: Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116550 – volume: 80 start-page: 1112 year: 2013 ident: ref_13 article-title: EEG and MEG: Relevance to Neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2013.10.017 – volume: 26 start-page: 1700 year: 2018 ident: ref_40 article-title: Single-trial NIRS data classification for brain–computer interfaces using graph signal processing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2860629 – volume: 4 start-page: 704 year: 2018 ident: ref_61 article-title: Feature selection in network intrusion detection using metaheuristic algorithms publication-title: Int. J. Adv. Res. Ideas Innov. Technol. – volume: 2020 start-page: 1838140 year: 2020 ident: ref_28 article-title: A computationally efficient method for hybrid EEG-fNIRS BCI based on the Pearson correlation publication-title: BioMed Res. Int. doi: 10.1155/2020/1838140 – ident: ref_52 – volume: 1464 start-page: 5 year: 2020 ident: ref_20 article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13948 – volume: 166 start-page: 113917 year: 2021 ident: ref_90 article-title: An improved grey wolf optimizer for solving engineering problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113917 – volume: 76 start-page: 16 year: 2019 ident: ref_89 article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.047 – volume: 45 start-page: 21140 year: 2021 ident: ref_69 article-title: Quintessential strategy to operate photovoltaic system coupled with dual battery storage and grid connection publication-title: Int. J. Energy Res. doi: 10.1002/er.7168 – volume: 97 start-page: 273 year: 1997 ident: ref_62 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 6 start-page: 4063 year: 2015 ident: ref_27 article-title: Passive BCI based on drowsiness detection: An fNIRS study publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.004063 – volume: 12 start-page: 246 year: 2018 ident: ref_58 article-title: Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00246 – volume: 17 start-page: 1850 year: 2022 ident: ref_18 article-title: Acupuncture enhances brain function in patients with mild cognitive impairment: Evidence from a functional-near infrared spectroscopy study publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.332150 – volume: 2021 start-page: 6614112 year: 2021 ident: ref_49 article-title: Decoding of walking imagery and idle state using sparse representation based on fNIRS publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/6614112 – ident: ref_72 doi: 10.1109/NABIC.2009.5393690 – volume: 72 start-page: 106 year: 2013 ident: ref_34 article-title: A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.021 – volume: 69 start-page: 46 year: 2014 ident: ref_87 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 28 start-page: 1850031 year: 2018 ident: ref_30 article-title: Neuronal activation detection using vector phase analysis with dual threshold circles: A functional near-infrared spectroscopy study publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500314 – ident: ref_78 doi: 10.1016/B978-0-12-821986-7.00018-4 – volume: 655 start-page: 35 year: 2017 ident: ref_26 article-title: Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.06.044 – volume: 46 start-page: 774 year: 2022 ident: ref_54 article-title: Early hotspot detection in photovoltaic modules using color image descriptors: An infrared thermography study publication-title: Int. J. Energy Res. doi: 10.1002/er.7201 – ident: ref_98 doi: 10.1109/IDAP.2018.8620828 – volume: 29 start-page: 17 year: 2013 ident: ref_73 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 13 start-page: 34 year: 2013 ident: ref_75 article-title: A comprehensive review of firefly algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.06.001 – volume: 7 start-page: 165303 year: 2019 ident: ref_95 article-title: Independent decision path fusion for bimodal asynchronous brain–computer interface to discriminate multiclass mental states publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2953535 – ident: ref_63 – volume: 172 start-page: 371 year: 2016 ident: ref_67 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 333 start-page: 225 year: 2017 ident: ref_56 article-title: Classification of somatosensory cortex activities using fNIRS publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2017.06.034 – volume: 141 start-page: 112949 year: 2020 ident: ref_80 article-title: A novel modified bat algorithm hybridizing by differential evolution algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112949 – volume: 16 start-page: 011001 year: 2019 ident: ref_9 article-title: A comprehensive review of EEG-based brain–computer interface paradigms publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf12e – volume: 28 start-page: 102496 year: 2020 ident: ref_12 article-title: A systematic review of fMRI neurofeedback reporting and effects in clinical populations publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2020.102496 – ident: ref_36 doi: 10.3390/s20236995 – volume: 68 start-page: 102595 year: 2021 ident: ref_8 article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102595 – volume: 47 start-page: 106 year: 2016 ident: ref_88 article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – volume: 647 start-page: 61 year: 2017 ident: ref_47 article-title: Optimal feature selection from fNIRS signals using genetic algorithms for BCI publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2017.03.013 – ident: ref_48 doi: 10.3390/electronics10111239 – volume: 103 start-page: 926 year: 2015 ident: ref_7 article-title: Towards noninvasive hybrid brain–computer interfaces: Framework, practice, clinical application, and beyond publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2411333 – volume: 8 start-page: 367 year: 2017 ident: ref_21 article-title: Detection and classification of three-class initial dips from prefrontal cortex publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000367 |
SSID | ssj0023338 |
Score | 2.461234 |
Snippet | In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s... In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3714 |
SubjectTerms | Algorithms Brain research Brain-Computer Interfaces brain–computer interface (BCI) Classification Datasets Electroencephalography Electroencephalography - methods Feature selection fNIRS Imagery, Psychotherapy Imagination Infrared spectroscopy Mathematical optimization mental arithmetic motor imagery optimization Optimization algorithms Physiology Spectroscopy, Near-Infrared - methods |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF-KJ3so1dY2frEthfYSTLKb7MbbUypa0EJV8Lbsx4Qn-qL48g7-984keSEPC730mgxhMx-Z35CZ3zD2LdESirKgpRlZFcsytXHpUh1LhKciA8zpFQ0Kn18Up9fy101-M1r1RT1hHT1wp7iDVASNKMKJ4IUU1uoAAiGzgxSkFqFlAsWctyym-lJLYOXV8QgJLOoP5tTuLNpRnVH2aUn6X3-KR7lotU9ylHhO3rN3PWLkk-6kG-wN1Jvs7YhH8APz59DYKSw61mX-Gz8Ds36-Mj7CNBU4Ib3FE_DLdu0NXucIVvnZjBgsnrmtAz7_tpnOaKSRX9n53fyQT1Do4uzPJadew-eP7Prk59XxadxvT4g9goAmhtSCtKi6ELQLhfLOQYnwLBUVyKwqS18VKlgbfO4SwDxVIZRQPiDGc5WyTmyxtfqhhs-M5wWmOgFZgSqXuc-c08EnaA7hKmGVjNiPpVaN76nFacPFvcESgwxgBgNE7Osg-tjxafxN6IhMMwgQBXZ7AR3D9I5h_uUYEftOhjUUqHgYb_t5A3wlorwyEyWLklZwJRHbXdre9BE8N5kqsdTSSuODvgy3Mfboh4qt4WGBMppGUFGjecQ-da4ynFmoBKE26UavONHKS63eqW-nLb93SiSvWOlt_w817LD1DOOhbTYSu2yteVrAHuKoxu23IfMCNAkbfQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIcImaxE7scEFbRNUitUi0lfYW-TFhK9hsu8ke-u-ZSbzprkBcEysaezyeb-KZbxh7n2gJRVlQ04ysjmWZmri0qY4lwlORAfr0mgqFT06Lowv5bZpPww-3NqRVrs_E_qD2C0f_yPczVSL01UrLz1fXMXWNotvV0ELjLrtH1GWU0qWmtwGXwPhrYBMSGNrvt5T0LPqCnQ0f1FP1_30gb3ik7WzJDfdz-JDtBtzIJ4OiH7E70DxmDzbYBJ8wdwKdmcFq4F7m3_EwmIcqy_gAnZXnhPdWS-BnffMbfM4RsvLjOfFY3HDTePz-ZTebU2EjPzftr_YTn-Cg0-MfZ5wyDm-esovDr-dfjuLQQyF2CAW6GFID0iAM815bXyhnLZQI0lJRg8zqsnR1obwx3uU2AfRWNQIK5TwiPVsrY8UzttMsGnjBeF6gwxOQFSC1zF1mrfYuEVIIWwujZMQ-rle1coFgnPpc_K4w0CAFVKMCIvZuHHo1sGr8a9ABqWYcQETY_YPF8mcV7KpKhdc4Oyu8Q0mM0R4ERlQWUpRSePzIB1JsReaKwjgTqg5wSkR8VU2ULEpqxJVEbG-t-yrYcVvd7rqIvR1fowXStYppYLHCMZoKUXFF84g9H7bKKLNQCQJuWhu9tYm2JrX9prmc9SzfKVG9Yrz38v9yvWL3M9zpfTKR2GM73XIFrxEndfZNbwx_AJHHEyg priority: 102 providerName: ProQuest |
Title | Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37050774 https://www.proquest.com/docview/2799748784 https://www.proquest.com/docview/2800625135 https://pubmed.ncbi.nlm.nih.gov/PMC10098559 https://doaj.org/article/13d8650b3dc343aa8de3428be1e483d4 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-R8EL-tnmUVQV_iNdltdiOItHL1TmiVuyv0LexX7OE11TYF-987k6ahwXvypQ_JdNndmcn8Jtn5DcCbjhI-TmJqmhFlgUhCHSQmVIFAeMojjzE9o0Lh4Sg-G4uvk-5kD7Y9NqsNXN6a2lE_qfHi5v2f3-tP6PAfKePElP1kSYeZiXluHw4xIEnyz6GoPyZEHNOwDalQU_wI7nDZQUAkRSMqleT9_z6id2JU8_zkTkAa3Id7FZJkvY3qH8Cezx_C3R1-wUdgh77QU7_asDGzb_h4mFV1l0Efw5djhABXC88uy3Y4eJ0hiGXnM2K2WDOdOxz_upjOqNSRXenlz-UH1kOh0fnFJaMziOvHMB6cXn0-C6quCoFFcFAEPtReaARmzinjYmmN8QnCtpBnXkRZktgslk5rZ7um4zF-ZQgxpHWI_UwmteFP4CCf5_4ZsG6MIZD7KPZCia6NjFHOdrjg3GRcS9GCd9tdTW1FOU6dL25STD1IF2mtixa8rkV_bXg2bhPqk2pqAaLGLi_MFz_SytPSkDuFqzPcWZyJ1sp5jjmW8SHOkjsc5C0pNiWTwslYXdUh4JKICivtSREn1Jqr04Ljre7TrWGmkUwwBVNS4UCv6tvok_ShRed-vkIZRaWpuKPdFjzdmEo9563FtUA1jKixqOad_Hpa8n6HRP6KGeDz___rCziK0CHKo0f8GA6Kxcq_RFRVmDbsy4nEXzX40obD_uno-0W7fEPRLr3pL4OXJkM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoAeEG8MBRYEgotV27u210gIpUCV0CZINJVyc_flpoI4JXaE8qf4jcz41UQgbr3aq9Xsztue-YaQV57gNkoiHJoRZC5PfOkmyhcuh_CUBRZ8eoaNwsNR1D_hXybhZIv8bnthsKyytYmVoTZzjd_I94I4gdBXxIJ_uPjp4tQo_LvajtCoxeLQrn5Byla8H3wC_r4OgoPP4499t5kq4GpwjqVrfWm5hMDEGKFMFGulbAJhi88yy4MsSXQWxUZKo0PlWbDfGbjYWBuIfVQWS8Vg32vkOjheDzUqnlwmeAzyvRq9iLHE2yuwyJpVDUJrPq8aDfC3A1jzgJvVmWvu7uA2udXEqbRXC9YdsmXzu2RnDb3wHtFDW8qpXdZYz_QrGJ9Z09Xp7oNzNBTjy-XC0uNq2A48pxAi08EMcTNWVOYG9j8vpzNspKRjWXwv3tEeLBoNvh1TrHBc3ScnV3K7D8h2Ps_tI0LDCBwss0FkueChDpQSRnuMM6YyJmPukLftraa6ATTHuRo_UkhskAFpxwCHvOyWXtQoHv9atI-s6RYg8Hb1YL44Sxs9Tn1mBJxOMaOBEimFsQwyOGV9oJIZ2OQNMjZF8wDEaNl0OcCREGgr7cU8SnDwl-eQ3Zb3aWM3ivRSyh3yonsNGo-_cWRu50tYI7DxFW40dMjDWlQ6mlnsQYCPdyM2hGjjUJtv8vNphSruI7Qs5JeP_0_Xc3KjPx4epUeD0eETcjMAqa8Kmdgu2S4XS_sUYrRSPasUg5LTq9bEP2DqUk0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrtnftXSMhlFKihtKAaCvlZvZlUkGcEjtC-Wv8Omb8SBOBuPVqb1azO-945htCngeSuyRNcGhGlPs8DZWf6lD6HMJTFjnw6Tk2Ch-Okv0T_mEcj7fI764XBssqO5tYG2o7M_gfeS8SKYS-Ukjey9uyiM97g7dnP32cIIVfWrtxGo2IHLjlL0jfyjfDPeD1iygavD9-t--3EwZ8A46y8l2oHFcQpFgrtU2E0dqlEMKELHc8ytPU5ImwSlkT68CBLc_B3QpjIQ7SuVCawb6XyGXB4BegS2J8nuwxyP0aJCPG0qBXYsE1q5uF1vxfPSbgb2ew5g03KzXXXN_gBrnexqy03wjZTbLlilvk2hqS4W1iDl2lJm7R4D7TT2CIpm2Hp78LjtJSjDUXc0eP6sE78JxCuEyHU8TQWFJVWNj_tJpMsamSHqvye_ma9mHRaPjliGK14_IOObmQ271LtotZ4e4TGifgbJmLEsclj02ktbQmYJwxnTMluEdedbeamRbcHGds_MggyUEGZCsGeOTZaulZg-jxr0W7yJrVAgThrh_M5t-yVqezkFkJp9PMGqBEKWkdg2xOuxCoZBY2eYmMzdBUADFGtR0PcCQE3cr6gicpDgELPLLT8T5rbUiZnUu8R56uXoP24ycdVbjZAtZIbIKFG409cq8RlRXNTAQQ7OPdyA0h2jjU5pvidFIjjIcIMwu55oP_0_WEXAEdzD4ORwcPydUIhL6uaWI7ZLuaL9wjCNcq_bjWC0q-XrQi_gHh_FaD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristic+Optimization-Based+Feature+Selection+for+Imagery+and+Arithmetic+Tasks%3A+An+fNIRS+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zafar%2C+Amad&rft.au=Hussain%2C+Shaik+Javeed&rft.au=Ali%2C+Muhammad+Umair&rft.au=Lee%2C+Seung+Won&rft.date=2023-04-03&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073714&rft_id=info%3Apmid%2F37050774&rft.externalDocID=PMC10098559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |