Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study

In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classificat...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 7; p. 3714
Main Authors Zafar, Amad, Hussain, Shaik Javeed, Ali, Muhammad Umair, Lee, Seung Won
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23073714

Cover

Loading…
Abstract In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
AbstractList In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates ( p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates ( < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
Audience Academic
Author Ali, Muhammad Umair
Hussain, Shaik Javeed
Zafar, Amad
Lee, Seung Won
AuthorAffiliation 2 Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman
1 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
3 Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman
– name: 3 Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
– name: 1 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
Author_xml – sequence: 1
  givenname: Amad
  orcidid: 0000-0002-0716-3932
  surname: Zafar
  fullname: Zafar, Amad
– sequence: 2
  givenname: Shaik Javeed
  orcidid: 0000-0001-5300-189X
  surname: Hussain
  fullname: Hussain, Shaik Javeed
– sequence: 3
  givenname: Muhammad Umair
  orcidid: 0000-0002-7326-1813
  surname: Ali
  fullname: Ali, Muhammad Umair
– sequence: 4
  givenname: Seung Won
  orcidid: 0000-0001-5632-5208
  surname: Lee
  fullname: Lee, Seung Won
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050774$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gwB9AkbjQw7Z27MQOl2qpKKxUqMSWszWxJ7teknixHaTtr8fbLau2Qj7YGj_zzjv2HGcHgxswy95ScsZYTc5DwYhggvIX2RHlBZ_IoiAHj86H2XEIK0IKxph8lR0yQUoiBD_K9DeMsMTR2xCtzm_W0fb2DqJ1w-QTBDT5FUIcPeZz7FBv43nrfD7rYYF-k8Ng8qm3cdnjNv8Wwq_wMZ8m6Pvsxzyfx9FsXmcvW-gCvnnYT7KfV59vL79Orm--zC6n1xNdkjpOkAJyqEpijGxMJXTTYM1JSVmLvGjrWreVMABGlw1BQouWUSG0IbxsWgENO8lmO13jYKXW3vbgN8qBVfcB5xcKfHLZoaLMyFSpYUYzzgCkQcYL2SBFLpnhSetip7Uemx6NxiF66J6IPr0Z7FIt3B9FCallWdZJ4cODgne_RwxR9TZo7DoY0I1BFZKQqkjdlQl9_wxdudEP6a1UIepacCnk1tLZjlpA6sAOrUuFdVoGe6vTRLQ2xaeCVzWXFSEp4d3jHvbm__1-Ak53gPYuBI_tHqFEbSdL7ScrsefPWG3j_ZwkF7b7T8ZftovPNg
CitedBy_id crossref_primary_10_3390_bioengineering10050608
crossref_primary_10_3390_s23177508
crossref_primary_10_1007_s11760_024_03368_x
crossref_primary_10_1016_j_jpba_2025_116822
crossref_primary_10_3390_bioengineering10070825
crossref_primary_10_1016_j_bspc_2024_106943
crossref_primary_10_3390_bioengineering10121430
crossref_primary_10_3390_electronics13050899
crossref_primary_10_1016_j_compbiomed_2023_107604
crossref_primary_10_3390_make6020046
crossref_primary_10_3390_s23136001
crossref_primary_10_1016_j_neucom_2024_129018
crossref_primary_10_1007_s11042_023_17613_x
Cites_doi 10.1088/1741-2552/abb417
10.1016/j.jocs.2022.101636
10.1016/j.asoc.2019.105728
10.1016/B978-0-12-821986-7.00018-4
10.3390/math10111929
10.1007/978-3-319-13826-8_5
10.1016/j.infrared.2020.103589
10.3389/fnbot.2017.00006
10.1109/ICACI.2017.7974502
10.3233/IDA-1997-1302
10.1109/ACCESS.2021.3052149
10.1007/978-3-642-12538-6_6
10.1007/s10115-019-01358-x
10.1016/j.neuroimage.2013.11.033
10.1155/2023/8812844
10.1109/ACCESS.2019.2906980
10.1016/S1474-4422(08)70223-0
10.1117/1.JBO.19.7.077005
10.1371/journal.pone.0121279
10.1016/j.neulet.2013.08.021
10.3390/bios11100389
10.1109/IJCNN.2011.6033297
10.1109/MC.2008.409
10.1038/s41598-022-18936-9
10.1109/TNSRE.2022.3188560
10.1016/j.cmpb.2020.105535
10.1109/ICNSC.2019.8743245
10.3389/fnbot.2020.00010
10.1002/jdn.10166
10.3390/computers10110136
10.1016/j.dajour.2022.100144
10.1007/s00221-013-3764-1
10.3390/s22072575
10.3389/fnbot.2018.00069
10.3390/electronics8111208
10.1177/1094428116658959
10.1016/B978-0-12-821986-7.00013-5
10.1504/IJBIC.2013.055093
10.1007/s00521-017-3272-5
10.3389/fnhum.2018.00505
10.1109/TNSRE.2010.2077654
10.1016/j.heares.2016.01.009
10.3389/fnbot.2020.00025
10.1016/j.asoc.2020.106761
10.1155/2019/3807670
10.1504/IJBIC.2010.032124
10.1109/TNSRE.2016.2628057
10.1016/j.cobme.2017.09.011
10.3390/app9183845
10.1016/j.neucom.2022.04.083
10.1016/j.advengsoft.2016.01.008
10.1109/UBMK.2018.8566462
10.1016/j.neuroimage.2011.10.009
10.1016/j.cap.2010.11.051
10.1016/j.eswa.2022.116550
10.1016/j.neuron.2013.10.017
10.1109/TNSRE.2018.2860629
10.1155/2020/1838140
10.1111/nyas.13948
10.1016/j.eswa.2020.113917
10.1016/j.asoc.2018.11.047
10.1002/er.7168
10.1016/S0004-3702(97)00043-X
10.1364/BOE.6.004063
10.3389/fnhum.2018.00246
10.4103/1673-5374.332150
10.1155/2021/6614112
10.1109/NABIC.2009.5393690
10.1016/j.neuroimage.2013.01.021
10.1016/j.advengsoft.2013.12.007
10.1142/S0129065718500314
10.1016/j.neulet.2017.06.044
10.1002/er.7201
10.1109/IDAP.2018.8620828
10.1007/s00366-011-0241-y
10.1016/j.swevo.2013.06.001
10.1109/ACCESS.2019.2953535
10.1016/j.neucom.2015.06.083
10.1016/j.bbr.2017.06.034
10.1016/j.eswa.2019.112949
10.1088/1741-2552/aaf12e
10.1016/j.nicl.2020.102496
10.3390/s20236995
10.1016/j.bspc.2021.102595
10.1016/j.eswa.2015.10.039
10.1016/j.neulet.2017.03.013
10.3390/electronics10111239
10.1109/JPROC.2015.2411333
10.1364/BOE.8.000367
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23073714
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_13d8650b3dc343aa8de3428be1e483d4
PMC10098559
A746948600
37050774
10_3390_s23073714
Genre Journal Article
GeographicLocations United States
Massachusetts
GeographicLocations_xml – name: Massachusetts
– name: United States
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF2021R1I1A2059735
– fundername: Korean government (MSIT); National Research Foundation of Korea (NRF)
  grantid: NRF2021R1I1A2059735
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-e1ae4a650dd8bd67cbbe940513fe42f99cf67daadc5b0e012f3177cd045bf7ab3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:22:44 EDT 2025
Thu Aug 21 18:38:08 EDT 2025
Fri Jul 11 06:45:13 EDT 2025
Fri Jul 25 20:22:49 EDT 2025
Tue Jul 01 05:45:15 EDT 2025
Wed Feb 19 02:24:20 EST 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 01:19:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords brain–computer interface (BCI)
motor imagery
fNIRS
optimization
mental arithmetic
feature selection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e1ae4a650dd8bd67cbbe940513fe42f99cf67daadc5b0e012f3177cd045bf7ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-5300-189X
0000-0002-7326-1813
0000-0001-5632-5208
0000-0002-0716-3932
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23073714
PMID 37050774
PQID 2799748784
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_13d8650b3dc343aa8de3428be1e483d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098559
proquest_miscellaneous_2800625135
proquest_journals_2799748784
gale_infotracacademiconefile_A746948600
pubmed_primary_37050774
crossref_primary_10_3390_s23073714
crossref_citationtrail_10_3390_s23073714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230403
PublicationDateYYYYMMDD 2023-04-03
PublicationDate_xml – month: 4
  year: 2023
  text: 20230403
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Leeb (ref_7) 2015; 103
ref_94
Gandomi (ref_73) 2013; 29
Mirjalili (ref_87) 2014; 69
Scarpa (ref_34) 2013; 72
ref_98
Fister (ref_75) 2013; 13
ref_97
ref_96
Jiang (ref_95) 2019; 7
Khan (ref_18) 2022; 17
Aydin (ref_45) 2020; 195
Li (ref_25) 2019; 2019
Yang (ref_51) 2006; 2
Nazeer (ref_29) 2020; 17
Taghian (ref_90) 2021; 166
Rashid (ref_10) 2020; 14
ref_22
Hasan (ref_28) 2020; 2020
Dash (ref_59) 1997; 1
Faris (ref_93) 2018; 30
Selb (ref_15) 2017; 4
ref_72
Noori (ref_47) 2017; 647
ref_70
Weiskopf (ref_11) 2012; 62
ref_78
ref_77
Ghaffar (ref_41) 2021; 112
Hong (ref_14) 2018; 12
Dokeroglu (ref_50) 2022; 494
Kohavi (ref_62) 1997; 97
ref_82
Kim (ref_53) 2011; 11
Huang (ref_38) 2022; 30
Tu (ref_89) 2019; 76
Asam (ref_44) 2022; 12
Zafar (ref_21) 2017; 8
Naseer (ref_46) 2015; 9
ref_85
Yang (ref_74) 2010; 2
Zhang (ref_26) 2017; 655
(ref_13) 2013; 80
Ekinci (ref_68) 2019; 7
Li (ref_49) 2021; 2021
Quaresima (ref_16) 2019; 22
Pinti (ref_19) 2019; 12
Hassouneh (ref_86) 2021; 9
Royer (ref_3) 2010; 18
Mirjalili (ref_88) 2016; 47
Khan (ref_24) 2017; 11
Zafar (ref_31) 2020; 14
Ali (ref_54) 2022; 46
ref_52
Thaher (ref_71) 2022; 195
Zafar (ref_39) 2023; 2023
Khan (ref_27) 2015; 6
Yildizdan (ref_80) 2020; 141
Tursic (ref_12) 2020; 28
Zafar (ref_30) 2018; 28
Khorram (ref_61) 2018; 4
Yang (ref_79) 2013; 5
ref_66
ref_65
ref_63
Taghian (ref_64) 2020; 97
Petrantonakis (ref_40) 2018; 26
Mirjalili (ref_84) 2016; 95
Hong (ref_58) 2018; 12
Zabcikova (ref_5) 2022; 82
Hong (ref_56) 2017; 333
ref_36
Taghian (ref_91) 2022; 61
ref_35
Zafar (ref_43) 2019; 2019
Rodrigues (ref_81) 2015; 585
Naseer (ref_33) 2014; 232
Naseer (ref_32) 2013; 553
Boas (ref_17) 2014; 85
Hong (ref_23) 2016; 333
ref_37
Altabeeb (ref_76) 2019; 84
Daly (ref_4) 2008; 7
Shin (ref_55) 2016; 25
Guyon (ref_60) 2003; 3
Pinti (ref_20) 2020; 1464
Aljarah (ref_92) 2020; 62
ref_42
Hwang (ref_57) 2014; 19
ref_1
Liu (ref_8) 2021; 68
ref_2
Mannan (ref_69) 2021; 45
Emary (ref_67) 2016; 172
Ong (ref_83) 2022; 5
ref_48
Abiri (ref_9) 2019; 16
McFarland (ref_6) 2008; 41
References_xml – volume: 17
  start-page: 056025
  year: 2020
  ident: ref_29
  article-title: Enhancing classification accuracy of fNIRS-BCI using features acquired from vector-based phase analysis
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abb417
– volume: 61
  start-page: 101636
  year: 2022
  ident: ref_91
  article-title: GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101636
– volume: 84
  start-page: 105728
  year: 2019
  ident: ref_76
  article-title: An improved hybrid firefly algorithm for capacitated vehicle routing problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105728
– ident: ref_65
  doi: 10.1016/B978-0-12-821986-7.00018-4
– ident: ref_96
  doi: 10.3390/math10111929
– volume: 585
  start-page: 85
  year: 2015
  ident: ref_81
  article-title: Binary flower pollination algorithm and its application to feature selection
  publication-title: Recent Adv. Swarm Intell. Evol. Comput.
  doi: 10.1007/978-3-319-13826-8_5
– volume: 112
  start-page: 103589
  year: 2021
  ident: ref_41
  article-title: Improving classification performance of four class FNIRS-BCI using Mel Frequency Cepstral Coefficients (MFCC)
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103589
– volume: 11
  start-page: 6
  year: 2017
  ident: ref_24
  article-title: Hybrid EEG–fNIRS-based eight-command decoding for BCI: Application to quadcopter control
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00006
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_60
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– ident: ref_85
  doi: 10.1109/ICACI.2017.7974502
– volume: 1
  start-page: 131
  year: 1997
  ident: ref_59
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– volume: 9
  start-page: 14239
  year: 2021
  ident: ref_86
  article-title: Boosted Whale Optimization Algorithm With Natural Selection Operators for Software Fault Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052149
– volume: 2019
  start-page: 116
  year: 2019
  ident: ref_43
  article-title: Initial-dip-based classification for fNIRS-BCI
  publication-title: Proc. Neural Imaging Sens.
– ident: ref_77
  doi: 10.1007/978-3-642-12538-6_6
– volume: 62
  start-page: 507
  year: 2020
  ident: ref_92
  article-title: Clustering analysis using a novel locality-informed grey wolf-inspired clustering approach
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-019-01358-x
– volume: 85
  start-page: 1
  year: 2014
  ident: ref_17
  article-title: Twenty years of functional near-infrared spectroscopy: Introduction for the special issue
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.033
– volume: 2023
  start-page: 8812844
  year: 2023
  ident: ref_39
  article-title: A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/8812844
– volume: 7
  start-page: 39935
  year: 2019
  ident: ref_68
  article-title: Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906980
– volume: 7
  start-page: 1032
  year: 2008
  ident: ref_4
  article-title: Brain–computer interfaces in neurological rehabilitation
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70223-0
– volume: 19
  start-page: 077005
  year: 2014
  ident: ref_57
  article-title: Evaluation of various mental task combinations for near-infrared spectroscopy-based brain-computer interfaces
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.7.077005
– ident: ref_22
  doi: 10.1371/journal.pone.0121279
– volume: 553
  start-page: 84
  year: 2013
  ident: ref_32
  article-title: Classification of functional near-infrared spectroscopy signals corresponding to the right-and left-wrist motor imagery for development of a brain–computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.08.021
– ident: ref_42
  doi: 10.3390/bios11100389
– volume: 2
  start-page: 4
  year: 2006
  ident: ref_51
  article-title: Distance metric learning: A comprehensive survey
  publication-title: Mich. State Univ.
– ident: ref_1
  doi: 10.1109/IJCNN.2011.6033297
– volume: 41
  start-page: 52
  year: 2008
  ident: ref_6
  article-title: Brain-computer interface operation of robotic and prosthetic devices
  publication-title: Computer
  doi: 10.1109/MC.2008.409
– volume: 12
  start-page: 15498
  year: 2022
  ident: ref_44
  article-title: IoT malware detection architecture using a novel channel boosted and squeezed CNN
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18936-9
– volume: 30
  start-page: 1858
  year: 2022
  ident: ref_38
  article-title: Joint-channel-connectivity-based feature selection and classification on fNIRS for stress detection in decision-making
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3188560
– volume: 195
  start-page: 105535
  year: 2020
  ident: ref_45
  article-title: Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105535
– ident: ref_66
  doi: 10.1109/ICNSC.2019.8743245
– volume: 9
  start-page: 3
  year: 2015
  ident: ref_46
  article-title: fNIRS-based brain-computer interfaces: A review
  publication-title: Front. Hum. Neurosci.
– volume: 14
  start-page: 10
  year: 2020
  ident: ref_31
  article-title: Reduction of onset delay in functional near-infrared spectroscopy: Prediction of HbO/HbR signals
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.00010
– volume: 82
  start-page: 107
  year: 2022
  ident: ref_5
  article-title: Recent advances and current trends in brain-computer interface research and their applications
  publication-title: Int. J. Dev. Neurosci.
  doi: 10.1002/jdn.10166
– ident: ref_97
  doi: 10.3390/computers10110136
– volume: 5
  start-page: 100144
  year: 2022
  ident: ref_83
  article-title: A new flower pollination algorithm with improved convergence and its application to engineering optimization
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2022.100144
– volume: 232
  start-page: 555
  year: 2014
  ident: ref_33
  article-title: Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-013-3764-1
– ident: ref_37
  doi: 10.3390/s22072575
– volume: 12
  start-page: 69
  year: 2018
  ident: ref_14
  article-title: Existence of initial dip for BCI: An illusion or reality
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2018.00069
– ident: ref_2
  doi: 10.3390/electronics8111208
– volume: 22
  start-page: 46
  year: 2019
  ident: ref_16
  article-title: Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: A concise review
  publication-title: Organ. Res. Methods
  doi: 10.1177/1094428116658959
– ident: ref_70
  doi: 10.1016/B978-0-12-821986-7.00013-5
– volume: 5
  start-page: 141
  year: 2013
  ident: ref_79
  article-title: Bat algorithm: Literature review and applications
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2013.055093
– volume: 30
  start-page: 413
  year: 2018
  ident: ref_93
  article-title: Grey wolf optimizer: A review of recent variants and applications
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3272-5
– volume: 12
  start-page: 505
  year: 2019
  ident: ref_19
  article-title: Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear model framework
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00505
– volume: 18
  start-page: 581
  year: 2010
  ident: ref_3
  article-title: EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2077654
– volume: 333
  start-page: 157
  year: 2016
  ident: ref_23
  article-title: Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2016.01.009
– volume: 14
  start-page: 25
  year: 2020
  ident: ref_10
  article-title: Current status, challenges, and possible solutions of EEG-based brain-computer interface: A comprehensive review
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.00025
– volume: 97
  start-page: 106761
  year: 2020
  ident: ref_64
  article-title: MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106761
– volume: 2019
  start-page: 3807670
  year: 2019
  ident: ref_25
  article-title: Advances in hybrid brain-computer interfaces: Principles, design, and applications
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/3807670
– volume: 2
  start-page: 78
  year: 2010
  ident: ref_74
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2010.032124
– volume: 25
  start-page: 1735
  year: 2016
  ident: ref_55
  article-title: Open access dataset for EEG+ NIRS single-trial classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2628057
– volume: 4
  start-page: 78
  year: 2017
  ident: ref_15
  article-title: Functional near infrared spectroscopy: Enabling routine functional brain imaging
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.09.011
– ident: ref_35
  doi: 10.3390/app9183845
– volume: 494
  start-page: 269
  year: 2022
  ident: ref_50
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_84
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: ref_94
  doi: 10.1109/UBMK.2018.8566462
– volume: 62
  start-page: 682
  year: 2012
  ident: ref_11
  article-title: Real-time fMRI and its application to neurofeedback
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.009
– volume: 11
  start-page: 740
  year: 2011
  ident: ref_53
  article-title: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.11.051
– ident: ref_82
  doi: 10.1016/B978-0-12-821986-7.00013-5
– volume: 195
  start-page: 116550
  year: 2022
  ident: ref_71
  article-title: Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116550
– volume: 80
  start-page: 1112
  year: 2013
  ident: ref_13
  article-title: EEG and MEG: Relevance to Neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– volume: 26
  start-page: 1700
  year: 2018
  ident: ref_40
  article-title: Single-trial NIRS data classification for brain–computer interfaces using graph signal processing
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2860629
– volume: 4
  start-page: 704
  year: 2018
  ident: ref_61
  article-title: Feature selection in network intrusion detection using metaheuristic algorithms
  publication-title: Int. J. Adv. Res. Ideas Innov. Technol.
– volume: 2020
  start-page: 1838140
  year: 2020
  ident: ref_28
  article-title: A computationally efficient method for hybrid EEG-fNIRS BCI based on the Pearson correlation
  publication-title: BioMed Res. Int.
  doi: 10.1155/2020/1838140
– ident: ref_52
– volume: 1464
  start-page: 5
  year: 2020
  ident: ref_20
  article-title: The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.13948
– volume: 166
  start-page: 113917
  year: 2021
  ident: ref_90
  article-title: An improved grey wolf optimizer for solving engineering problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113917
– volume: 76
  start-page: 16
  year: 2019
  ident: ref_89
  article-title: Multi-strategy ensemble grey wolf optimizer and its application to feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.047
– volume: 45
  start-page: 21140
  year: 2021
  ident: ref_69
  article-title: Quintessential strategy to operate photovoltaic system coupled with dual battery storage and grid connection
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7168
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_62
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 6
  start-page: 4063
  year: 2015
  ident: ref_27
  article-title: Passive BCI based on drowsiness detection: An fNIRS study
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.004063
– volume: 12
  start-page: 246
  year: 2018
  ident: ref_58
  article-title: Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00246
– volume: 17
  start-page: 1850
  year: 2022
  ident: ref_18
  article-title: Acupuncture enhances brain function in patients with mild cognitive impairment: Evidence from a functional-near infrared spectroscopy study
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.332150
– volume: 2021
  start-page: 6614112
  year: 2021
  ident: ref_49
  article-title: Decoding of walking imagery and idle state using sparse representation based on fNIRS
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/6614112
– ident: ref_72
  doi: 10.1109/NABIC.2009.5393690
– volume: 72
  start-page: 106
  year: 2013
  ident: ref_34
  article-title: A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.021
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_87
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 28
  start-page: 1850031
  year: 2018
  ident: ref_30
  article-title: Neuronal activation detection using vector phase analysis with dual threshold circles: A functional near-infrared spectroscopy study
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500314
– ident: ref_78
  doi: 10.1016/B978-0-12-821986-7.00018-4
– volume: 655
  start-page: 35
  year: 2017
  ident: ref_26
  article-title: Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.06.044
– volume: 46
  start-page: 774
  year: 2022
  ident: ref_54
  article-title: Early hotspot detection in photovoltaic modules using color image descriptors: An infrared thermography study
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7201
– ident: ref_98
  doi: 10.1109/IDAP.2018.8620828
– volume: 29
  start-page: 17
  year: 2013
  ident: ref_73
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– volume: 13
  start-page: 34
  year: 2013
  ident: ref_75
  article-title: A comprehensive review of firefly algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.06.001
– volume: 7
  start-page: 165303
  year: 2019
  ident: ref_95
  article-title: Independent decision path fusion for bimodal asynchronous brain–computer interface to discriminate multiclass mental states
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953535
– ident: ref_63
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_67
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 333
  start-page: 225
  year: 2017
  ident: ref_56
  article-title: Classification of somatosensory cortex activities using fNIRS
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2017.06.034
– volume: 141
  start-page: 112949
  year: 2020
  ident: ref_80
  article-title: A novel modified bat algorithm hybridizing by differential evolution algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112949
– volume: 16
  start-page: 011001
  year: 2019
  ident: ref_9
  article-title: A comprehensive review of EEG-based brain–computer interface paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 28
  start-page: 102496
  year: 2020
  ident: ref_12
  article-title: A systematic review of fMRI neurofeedback reporting and effects in clinical populations
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2020.102496
– ident: ref_36
  doi: 10.3390/s20236995
– volume: 68
  start-page: 102595
  year: 2021
  ident: ref_8
  article-title: A systematic review on hybrid EEG/fNIRS in brain-computer interface
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102595
– volume: 47
  start-page: 106
  year: 2016
  ident: ref_88
  article-title: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.039
– volume: 647
  start-page: 61
  year: 2017
  ident: ref_47
  article-title: Optimal feature selection from fNIRS signals using genetic algorithms for BCI
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2017.03.013
– ident: ref_48
  doi: 10.3390/electronics10111239
– volume: 103
  start-page: 926
  year: 2015
  ident: ref_7
  article-title: Towards noninvasive hybrid brain–computer interfaces: Framework, practice, clinical application, and beyond
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2411333
– volume: 8
  start-page: 367
  year: 2017
  ident: ref_21
  article-title: Detection and classification of three-class initial dips from prefrontal cortex
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000367
SSID ssj0023338
Score 2.461234
Snippet In recent decades, the brain–computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset’s...
In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3714
SubjectTerms Algorithms
Brain research
Brain-Computer Interfaces
brain–computer interface (BCI)
Classification
Datasets
Electroencephalography
Electroencephalography - methods
Feature selection
fNIRS
Imagery, Psychotherapy
Imagination
Infrared spectroscopy
Mathematical optimization
mental arithmetic
motor imagery
optimization
Optimization algorithms
Physiology
Spectroscopy, Near-Infrared - methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF-KJ3so1dY2frEthfYSTLKb7MbbUypa0EJV8Lbsx4Qn-qL48g7-984keSEPC730mgxhMx-Z35CZ3zD2LdESirKgpRlZFcsytXHpUh1LhKciA8zpFQ0Kn18Up9fy101-M1r1RT1hHT1wp7iDVASNKMKJ4IUU1uoAAiGzgxSkFqFlAsWctyym-lJLYOXV8QgJLOoP5tTuLNpRnVH2aUn6X3-KR7lotU9ylHhO3rN3PWLkk-6kG-wN1Jvs7YhH8APz59DYKSw61mX-Gz8Ds36-Mj7CNBU4Ib3FE_DLdu0NXucIVvnZjBgsnrmtAz7_tpnOaKSRX9n53fyQT1Do4uzPJadew-eP7Prk59XxadxvT4g9goAmhtSCtKi6ELQLhfLOQYnwLBUVyKwqS18VKlgbfO4SwDxVIZRQPiDGc5WyTmyxtfqhhs-M5wWmOgFZgSqXuc-c08EnaA7hKmGVjNiPpVaN76nFacPFvcESgwxgBgNE7Osg-tjxafxN6IhMMwgQBXZ7AR3D9I5h_uUYEftOhjUUqHgYb_t5A3wlorwyEyWLklZwJRHbXdre9BE8N5kqsdTSSuODvgy3Mfboh4qt4WGBMppGUFGjecQ-da4ynFmoBKE26UavONHKS63eqW-nLb93SiSvWOlt_w817LD1DOOhbTYSu2yteVrAHuKoxu23IfMCNAkbfQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8SZQkEFIcImaxE7scEFbRNUitUi0lfYW-TFhK9hsu8ke-u-ZSbzprkBcEysaezyeb-KZbxh7n2gJRVlQ04ysjmWZmri0qY4lwlORAfr0mgqFT06Lowv5bZpPww-3NqRVrs_E_qD2C0f_yPczVSL01UrLz1fXMXWNotvV0ELjLrtH1GWU0qWmtwGXwPhrYBMSGNrvt5T0LPqCnQ0f1FP1_30gb3ik7WzJDfdz-JDtBtzIJ4OiH7E70DxmDzbYBJ8wdwKdmcFq4F7m3_EwmIcqy_gAnZXnhPdWS-BnffMbfM4RsvLjOfFY3HDTePz-ZTebU2EjPzftr_YTn-Cg0-MfZ5wyDm-esovDr-dfjuLQQyF2CAW6GFID0iAM815bXyhnLZQI0lJRg8zqsnR1obwx3uU2AfRWNQIK5TwiPVsrY8UzttMsGnjBeF6gwxOQFSC1zF1mrfYuEVIIWwujZMQ-rle1coFgnPpc_K4w0CAFVKMCIvZuHHo1sGr8a9ABqWYcQETY_YPF8mcV7KpKhdc4Oyu8Q0mM0R4ERlQWUpRSePzIB1JsReaKwjgTqg5wSkR8VU2ULEpqxJVEbG-t-yrYcVvd7rqIvR1fowXStYppYLHCMZoKUXFF84g9H7bKKLNQCQJuWhu9tYm2JrX9prmc9SzfKVG9Yrz38v9yvWL3M9zpfTKR2GM73XIFrxEndfZNbwx_AJHHEyg
  priority: 102
  providerName: ProQuest
Title Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study
URI https://www.ncbi.nlm.nih.gov/pubmed/37050774
https://www.proquest.com/docview/2799748784
https://www.proquest.com/docview/2800625135
https://pubmed.ncbi.nlm.nih.gov/PMC10098559
https://doaj.org/article/13d8650b3dc343aa8de3428be1e483d4
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-R8EL-tnmUVQV_iNdltdiOItHL1TmiVuyv0LexX7OE11TYF-987k6ahwXvypQ_JdNndmcn8Jtn5DcCbjhI-TmJqmhFlgUhCHSQmVIFAeMojjzE9o0Lh4Sg-G4uvk-5kD7Y9NqsNXN6a2lE_qfHi5v2f3-tP6PAfKePElP1kSYeZiXluHw4xIEnyz6GoPyZEHNOwDalQU_wI7nDZQUAkRSMqleT9_z6id2JU8_zkTkAa3Id7FZJkvY3qH8Cezx_C3R1-wUdgh77QU7_asDGzb_h4mFV1l0Efw5djhABXC88uy3Y4eJ0hiGXnM2K2WDOdOxz_upjOqNSRXenlz-UH1kOh0fnFJaMziOvHMB6cXn0-C6quCoFFcFAEPtReaARmzinjYmmN8QnCtpBnXkRZktgslk5rZ7um4zF-ZQgxpHWI_UwmteFP4CCf5_4ZsG6MIZD7KPZCia6NjFHOdrjg3GRcS9GCd9tdTW1FOU6dL25STD1IF2mtixa8rkV_bXg2bhPqk2pqAaLGLi_MFz_SytPSkDuFqzPcWZyJ1sp5jjmW8SHOkjsc5C0pNiWTwslYXdUh4JKICivtSREn1Jqr04Ljre7TrWGmkUwwBVNS4UCv6tvok_ShRed-vkIZRaWpuKPdFjzdmEo9563FtUA1jKixqOad_Hpa8n6HRP6KGeDz___rCziK0CHKo0f8GA6Kxcq_RFRVmDbsy4nEXzX40obD_uno-0W7fEPRLr3pL4OXJkM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoAeEG8MBRYEgotV27u210gIpUCV0CZINJVyc_flpoI4JXaE8qf4jcz41UQgbr3aq9Xsztue-YaQV57gNkoiHJoRZC5PfOkmyhcuh_CUBRZ8eoaNwsNR1D_hXybhZIv8bnthsKyytYmVoTZzjd_I94I4gdBXxIJ_uPjp4tQo_LvajtCoxeLQrn5Byla8H3wC_r4OgoPP4499t5kq4GpwjqVrfWm5hMDEGKFMFGulbAJhi88yy4MsSXQWxUZKo0PlWbDfGbjYWBuIfVQWS8Vg32vkOjheDzUqnlwmeAzyvRq9iLHE2yuwyJpVDUJrPq8aDfC3A1jzgJvVmWvu7uA2udXEqbRXC9YdsmXzu2RnDb3wHtFDW8qpXdZYz_QrGJ9Z09Xp7oNzNBTjy-XC0uNq2A48pxAi08EMcTNWVOYG9j8vpzNspKRjWXwv3tEeLBoNvh1TrHBc3ScnV3K7D8h2Ps_tI0LDCBwss0FkueChDpQSRnuMM6YyJmPukLftraa6ATTHuRo_UkhskAFpxwCHvOyWXtQoHv9atI-s6RYg8Hb1YL44Sxs9Tn1mBJxOMaOBEimFsQwyOGV9oJIZ2OQNMjZF8wDEaNl0OcCREGgr7cU8SnDwl-eQ3Zb3aWM3ivRSyh3yonsNGo-_cWRu50tYI7DxFW40dMjDWlQ6mlnsQYCPdyM2hGjjUJtv8vNphSruI7Qs5JeP_0_Xc3KjPx4epUeD0eETcjMAqa8Kmdgu2S4XS_sUYrRSPasUg5LTq9bEP2DqUk0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN4YCiwIBBcrtnftXSMhlFKihtKAaCvlZvZlUkGcEjtC-Wv8Omb8SBOBuPVqb1azO-945htCngeSuyRNcGhGlPs8DZWf6lD6HMJTFjnw6Tk2Ch-Okv0T_mEcj7fI764XBssqO5tYG2o7M_gfeS8SKYS-Ukjey9uyiM97g7dnP32cIIVfWrtxGo2IHLjlL0jfyjfDPeD1iygavD9-t--3EwZ8A46y8l2oHFcQpFgrtU2E0dqlEMKELHc8ytPU5ImwSlkT68CBLc_B3QpjIQ7SuVCawb6XyGXB4BegS2J8nuwxyP0aJCPG0qBXYsE1q5uF1vxfPSbgb2ew5g03KzXXXN_gBrnexqy03wjZTbLlilvk2hqS4W1iDl2lJm7R4D7TT2CIpm2Hp78LjtJSjDUXc0eP6sE78JxCuEyHU8TQWFJVWNj_tJpMsamSHqvye_ma9mHRaPjliGK14_IOObmQ271LtotZ4e4TGifgbJmLEsclj02ktbQmYJwxnTMluEdedbeamRbcHGds_MggyUEGZCsGeOTZaulZg-jxr0W7yJrVAgThrh_M5t-yVqezkFkJp9PMGqBEKWkdg2xOuxCoZBY2eYmMzdBUADFGtR0PcCQE3cr6gicpDgELPLLT8T5rbUiZnUu8R56uXoP24ycdVbjZAtZIbIKFG409cq8RlRXNTAQQ7OPdyA0h2jjU5pvidFIjjIcIMwu55oP_0_WEXAEdzD4ORwcPydUIhL6uaWI7ZLuaL9wjCNcq_bjWC0q-XrQi_gHh_FaD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristic+Optimization-Based+Feature+Selection+for+Imagery+and+Arithmetic+Tasks%3A+An+fNIRS+Study&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zafar%2C+Amad&rft.au=Hussain%2C+Shaik+Javeed&rft.au=Ali%2C+Muhammad+Umair&rft.au=Lee%2C+Seung+Won&rft.date=2023-04-03&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073714&rft_id=info%3Apmid%2F37050774&rft.externalDocID=PMC10098559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon