Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals

It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 44; pp. 22331 - 22340
Main Authors Wang, Chao, Ye, Fuzhou, Chang, Changqing, Liu, Xiaoling, Wang, Jianhe, Wang, Jinpei, Yan, Xin-Fu, Fu, Qinqin, Zhou, Jianuan, Chen, Shaohua, Gao, Yong-Gui, Zhang, Lian-Hui
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.10.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
AbstractList Bacterial infection has been extensively investigated; however, little is known about how bacterial pathogens timely shut down infecting machinery after successful infections. Here, a previously unknown sucrose–SghR/SghA–SAG–SA signaling axis was identified which controls the timing to shut off bacterial virulence expression and fine-tune host immune response. Sucrose, salicylic acid (SA), and its storage form SAG are small chemicals produced in plants whereas SghR is a bacterial sensor of sucrose and SghA is a bacterial enzyme that releases SA from SAG. Given that SA is an imperative signaling molecule in defense against a variety of microbial pathogens, these results depict a previously unknown 2-way chemical signaling cross-talk during microbe–host coevolution and shed mechanistic insights into host–bacteria interaction. It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial genes and are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces expression. Disruption of leads to increased expression and enhances tumor formation whereas mutation of decreases expression and tumor formation. These results depict a remarkable mechanism by which taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.
Author Chen, Shaohua
Liu, Xiaoling
Ye, Fuzhou
Zhang, Lian-Hui
Wang, Chao
Yan, Xin-Fu
Wang, Jianhe
Wang, Jinpei
Fu, Qinqin
Gao, Yong-Gui
Zhou, Jianuan
Chang, Changqing
Author_xml – sequence: 1
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
– sequence: 2
  givenname: Fuzhou
  surname: Ye
  fullname: Ye, Fuzhou
– sequence: 3
  givenname: Changqing
  surname: Chang
  fullname: Chang, Changqing
– sequence: 4
  givenname: Xiaoling
  surname: Liu
  fullname: Liu, Xiaoling
– sequence: 5
  givenname: Jianhe
  surname: Wang
  fullname: Wang, Jianhe
– sequence: 6
  givenname: Jinpei
  surname: Wang
  fullname: Wang, Jinpei
– sequence: 7
  givenname: Xin-Fu
  surname: Yan
  fullname: Yan, Xin-Fu
– sequence: 8
  givenname: Qinqin
  surname: Fu
  fullname: Fu, Qinqin
– sequence: 9
  givenname: Jianuan
  surname: Zhou
  fullname: Zhou, Jianuan
– sequence: 10
  givenname: Shaohua
  surname: Chen
  fullname: Chen, Shaohua
– sequence: 11
  givenname: Yong-Gui
  surname: Gao
  fullname: Gao, Yong-Gui
– sequence: 12
  givenname: Lian-Hui
  surname: Zhang
  fullname: Zhang, Lian-Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31604827$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAR3RbOnECRuHBJO7bjxL4gVRVfUiUucLYc7zj1KmsHO6nov8dhywI9cJrD-5g3887ISYgBCXlJ4YJCxy-nYPIFVcBbJShtn5ANBUXrtlFwQjYArKtlw5pTcpbzDgCUkPCMnHLaQiNZtyHmakixN3bG5E2VcEpxSGZf3fm0jBgsVgMGrPDHlDBnH0PV31c2hjnFccRtUYxoMlbRVbcxz3WBdstg5gJlPwQz5ufkqSsDXzzMc_Ltw_uv15_qmy8fP19f3dRWgJprhFaB41zQpsVOcA5b5Vjf9T1zDq01LTipDJO86XrupJGNcSBMuWlLO9ryc_Lu4Dst_R63FktGM-op-b1J9zoar_9Fgr_VQ7zTrWSCydXg7YNBit8XzLPe-2xxHE3AuGTNOAgQDfu1680j6i4uab22sCgVTAjFCuv134mOUX5_vxAuDwSbYs4J3ZFCQa_96rVf_affohCPFNbPZvZrIcaP_9G9Ouh2eY7puIa1Uigpgf8Eike1lg
CitedBy_id crossref_primary_10_1093_plphys_kiab081
crossref_primary_10_3389_fpls_2021_685533
crossref_primary_10_1021_acssuschemeng_0c06865
crossref_primary_10_1021_acs_jpcb_3c02125
crossref_primary_10_1074_jbc_RA120_012908
crossref_primary_10_1016_j_jmb_2021_166892
crossref_primary_10_1128_mbio_03644_21
crossref_primary_10_3389_fmicb_2022_839025
crossref_primary_10_1016_j_hpj_2023_07_003
crossref_primary_10_1016_j_resmic_2022_104011
crossref_primary_10_1021_acs_jpcb_1c02150
crossref_primary_10_1146_annurev_micro_032521_025954
crossref_primary_10_1021_acs_jpcb_4c03464
crossref_primary_10_1186_s42483_023_00160_6
crossref_primary_10_1016_j_biortech_2025_132076
crossref_primary_10_1002_cctc_202101107
crossref_primary_10_1093_bbb_zbab200
crossref_primary_10_3389_fcimb_2022_1065561
crossref_primary_10_1111_febs_17096
crossref_primary_10_12677_AMB_2024_131002
crossref_primary_10_3389_fmicb_2022_887967
crossref_primary_10_1371_journal_pone_0241325
Cites_doi 10.1016/j.pbi.2004.03.014
10.1093/jexbot/51.351.1721
10.1104/pp.104.045542
10.1128/JB.00373-15
10.1046/j.1365-313X.2003.01766.x
10.1093/jxb/ers129
10.1073/pnas.0600313103
10.1104/pp.107.4.1041
10.1111/j.0031-9317.2004.0263.x
10.1073/pnas.0600366103
10.3389/fpls.2014.00730
10.1111/j.1462-5822.2005.00821.x
10.1107/S0907444906045975
10.1104/pp.107.111302
10.1073/pnas.88.18.8179
10.3389/fpls.2014.00155
10.1128/jb.162.3.1030-1038.1985
10.1073/pnas.022056699
10.1073/pnas.0808005106
10.1111/j.1365-2958.2006.05351.x
10.1107/S0907444910007493
10.1104/pp.108.2.633
10.1016/j.phytochem.2010.07.007
10.1105/tpc.112.098343
10.1016/j.pbi.2009.07.014
10.1007/s00203-002-0442-2
10.1107/S0907444912013224
10.1107/S0907444912001308
10.1038/nprot.2008.91
10.1128/MMBR.69.1.155-194.2005
10.1073/pnas.0704866104
10.1105/tpc.108.064576
10.1128/aem.52.3.597-598.1986
10.1098/rspb.1979.0026
10.1016/0966-842X(93)90113-6
10.1111/j.1399-3054.2007.01041.x
10.1107/S2053230X15012881
10.1073/pnas.1006098107
10.1016/j.febslet.2007.03.009
10.1094/PHYTO.1998.88.7.692
10.1128/aem.63.1.201-207.1997
10.1128/IAI.73.9.5319-5328.2005
10.1007/BF00228148
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Oct 29, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Oct 29, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1903695116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 22340
ExternalDocumentID PMC6825286
31604827
10_1073_pnas_1903695116
26859880
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-e0690f335146e75330d9f2b7bb2ffecca60f89a28347b3f8a84af05a009d17163
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:26:43 EDT 2025
Fri Jul 11 06:55:57 EDT 2025
Mon Jun 30 08:39:37 EDT 2025
Wed Feb 19 02:31:21 EST 2025
Tue Jul 01 03:40:10 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Thu May 29 13:20:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords Agrobacterium
glucosidase
cost–pathogen interaction
sucrose
chemical signaling
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-e0690f335146e75330d9f2b7bb2ffecca60f89a28347b3f8a84af05a009d17163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: C.W., Y.-G.G., and L.-H.Z. designed research; C.W., F.Y., C.C., X.L., Jianhe Wang, Jinpei Wang, X.-F.Y., Q.F., J.Z., and S.C. performed research; L.-H.Z. contributed new reagents/analytic tools; C.W., F.Y., Y.-G.G., and L.-H.Z. analyzed data; and C.W., Y.-G.G., and L.-H.Z. wrote the paper.
Edited by P. Zambryski, University of California, Berkeley, CA, and approved September 18, 2019 (received for review March 4, 2019)
1C.W., F.Y., and C.C. contributed equally to this work.
ORCID 0000-0002-4136-0112
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6825286
PMID 31604827
PQID 2311525592
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825286
proquest_miscellaneous_2305054216
proquest_journals_2311525592
pubmed_primary_31604827
crossref_primary_10_1073_pnas_1903695116
crossref_citationtrail_10_1073_pnas_1903695116
jstor_primary_26859880
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-29
PublicationDateYYYYMMDD 2019-10-29
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Noutoshi Y. (e_1_3_4_19_2) 2012; 24
Zupan J. R. (e_1_3_4_1_2) 1995; 107
Liu P. (e_1_3_4_26_2) 2006; 103
Virts E. L. (e_1_3_4_22_2) 1985; 162
Knodler L. A. (e_1_3_4_3_2) 2010; 107
Dean J. V. (e_1_3_4_20_2) 2008; 132
Lee H. I. (e_1_3_4_24_2) 1998; 88
Coggan K. A. (e_1_3_4_2_2) 2012; 14
Huang W. E. (e_1_3_4_16_2) 2005; 7
Sykes L. C. (e_1_3_4_21_2) 1986; 52
Dean J. V. (e_1_3_4_23_2) 2004; 120
Chen Z. (e_1_3_4_11_2) 1991; 88
Hanson J. (e_1_3_4_31_2) 2009; 12
Koch K. (e_1_3_4_28_2) 2004; 7
Moore L. W. (e_1_3_4_4_2) 1997; 63
Nijikken Y. (e_1_3_4_14_2) 2007; 581
Larsen R. A. (e_1_3_4_35_2) 2002; 178
Lohaus G. (e_1_3_4_45_2) 2000; 51
Emsley P. (e_1_3_4_42_2) 2010; 66
Gaspar Y. M. (e_1_3_4_39_2) 2004; 135
Langer G. (e_1_3_4_40_2) 2008; 3
Wind J. (e_1_3_4_29_2) 2010; 71
Bolouri Moghaddam M. R. (e_1_3_4_30_2) 2012; 63
Wang C. (e_1_3_4_15_2) 2006; 62
Haudecoeur E. (e_1_3_4_18_2) 2009; 106
McCoy A. J. (e_1_3_4_41_2) 2007; 63
Lagonenko L. (e_1_3_4_34_2) 2013; 3
Yalpani N. (e_1_3_4_12_2) 1993; 1
Lee C. W. (e_1_3_4_32_2) 2009; 21
Afonine P. V. (e_1_3_4_43_2) 2012; 68
Zhang H. B. (e_1_3_4_38_2) 2002; 99
Deeken R. (e_1_3_4_46_2) 2003; 34
Chevrot R. (e_1_3_4_17_2) 2006; 103
Ye F. (e_1_3_4_37_2) 2015; 71
Jeng W. Y. (e_1_3_4_13_2) 2012; 68
Laskowski R. A. (e_1_3_4_44_2) 1996; 8
Braun A. C. (e_1_3_4_8_2) 1948; 12
Anand A. (e_1_3_4_9_2) 2008; 146
Brencic A. (e_1_3_4_5_2) 2005; 69
Prithiviraj B. (e_1_3_4_33_2) 2005; 73
Schell J. (e_1_3_4_6_2) 1979; 204
Yuan Z. C. (e_1_3_4_10_2) 2007; 104
Nester E. W. (e_1_3_4_7_2) 2015; 5
Silverman P. (e_1_3_4_25_2) 1995; 108
Gohlke J. (e_1_3_4_27_2) 2014; 5
Wang C. (e_1_3_4_36_2) 2016; 198
References_xml – volume: 7
  start-page: 235
  year: 2004
  ident: e_1_3_4_28_2
  article-title: Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2004.03.014
– volume: 51
  start-page: 1721
  year: 2000
  ident: e_1_3_4_45_2
  article-title: Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/51.351.1721
– volume: 135
  start-page: 2162
  year: 2004
  ident: e_1_3_4_39_2
  article-title: Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.045542
– volume: 198
  start-page: 930
  year: 2016
  ident: e_1_3_4_36_2
  article-title: Succinic semialdehyde promotes prosurvival capability of Agrobacterium tumefaciens
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00373-15
– volume: 34
  start-page: 778
  year: 2003
  ident: e_1_3_4_46_2
  article-title: Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01766.x
– volume: 63
  start-page: 3989
  year: 2012
  ident: e_1_3_4_30_2
  article-title: Sugars and plant innate immunity
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers129
– volume: 103
  start-page: 7460
  year: 2006
  ident: e_1_3_4_17_2
  article-title: GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0600313103
– volume: 107
  start-page: 1041
  year: 1995
  ident: e_1_3_4_1_2
  article-title: Transfer of T-DNA from Agrobacterium to the plant cell
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.4.1041
– volume: 120
  start-page: 603
  year: 2004
  ident: e_1_3_4_23_2
  article-title: Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism
  publication-title: Physiol. Plant.
  doi: 10.1111/j.0031-9317.2004.0263.x
– volume: 103
  start-page: 4658
  year: 2006
  ident: e_1_3_4_26_2
  article-title: Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0600366103
– volume: 5
  start-page: 730
  year: 2015
  ident: e_1_3_4_7_2
  article-title: Agrobacterium: Nature’s genetic engineer
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00730
– volume: 7
  start-page: 1339
  year: 2005
  ident: e_1_3_4_16_2
  article-title: Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-5822.2005.00821.x
– volume: 63
  start-page: 32
  year: 2007
  ident: e_1_3_4_41_2
  article-title: Solving structures of protein complexes by molecular replacement with Phaser
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444906045975
– volume: 146
  start-page: 703
  year: 2008
  ident: e_1_3_4_9_2
  article-title: Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.111302
– volume: 88
  start-page: 8179
  year: 1991
  ident: e_1_3_4_11_2
  article-title: Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.88.18.8179
– volume: 5
  start-page: 155
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Plant responses to Agrobacterium tumefaciens and crown gall development
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00155
– volume: 162
  start-page: 1030
  year: 1985
  ident: e_1_3_4_22_2
  article-title: Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.162.3.1030-1038.1985
– volume: 99
  start-page: 4638
  year: 2002
  ident: e_1_3_4_38_2
  article-title: Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.022056699
– volume: 106
  start-page: 14587
  year: 2009
  ident: e_1_3_4_18_2
  article-title: Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0808005106
– volume: 62
  start-page: 45
  year: 2006
  ident: e_1_3_4_15_2
  article-title: Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05351.x
– volume: 66
  start-page: 486
  year: 2010
  ident: e_1_3_4_42_2
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 108
  start-page: 633
  year: 1995
  ident: e_1_3_4_25_2
  article-title: Salicylic acid in rice (biosynthesis, conjugation, and possible role)
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.2.633
– volume: 71
  start-page: 1610
  year: 2010
  ident: e_1_3_4_29_2
  article-title: Sucrose: Metabolite and signaling molecule
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.07.007
– volume: 24
  start-page: 3795
  year: 2012
  ident: e_1_3_4_19_2
  article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098343
– volume: 12
  start-page: 562
  year: 2009
  ident: e_1_3_4_31_2
  article-title: Sugar perception and signaling–An update
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.07.014
– volume: 178
  start-page: 193
  year: 2002
  ident: e_1_3_4_35_2
  article-title: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-002-0442-2
– volume: 68
  start-page: 829
  year: 2012
  ident: e_1_3_4_13_2
  article-title: High-resolution structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444912013224
– volume: 68
  start-page: 352
  year: 2012
  ident: e_1_3_4_43_2
  article-title: Towards automated crystallographic structure refinement with phenix.refine
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444912001308
– volume: 3
  start-page: 1171
  year: 2008
  ident: e_1_3_4_40_2
  article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.91
– volume: 14
  start-page: 47
  year: 2012
  ident: e_1_3_4_2_2
  article-title: Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype
  publication-title: Curr. Issues Mol. Biol.
– volume: 69
  start-page: 155
  year: 2005
  ident: e_1_3_4_5_2
  article-title: Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.69.1.155-194.2005
– volume: 104
  start-page: 11790
  year: 2007
  ident: e_1_3_4_10_2
  article-title: The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0704866104
– volume: 21
  start-page: 2948
  year: 2009
  ident: e_1_3_4_32_2
  article-title: Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.064576
– volume: 52
  start-page: 597
  year: 1986
  ident: e_1_3_4_21_2
  article-title: Time required for tumor induction by Agrobacterium tumefaciens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.52.3.597-598.1986
– volume: 12
  start-page: 255
  year: 1948
  ident: e_1_3_4_8_2
  article-title: Studies on the inactivation of the tumor-inducing principle in crown gall
  publication-title: Growth
– volume: 3
  start-page: 6
  year: 2013
  ident: e_1_3_4_34_2
  article-title: Impact of salicylic acid on biofilm formation by plant pathogenic bacteria
  publication-title: J. Biol. Earth Sci.
– volume: 204
  start-page: 251
  year: 1979
  ident: e_1_3_4_6_2
  article-title: Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host
  publication-title: Proc. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rspb.1979.0026
– volume: 1
  start-page: 88
  year: 1993
  ident: e_1_3_4_12_2
  article-title: Salicylic acid: A systemic signal in induced plant disease resistance
  publication-title: Trends Microbiol.
  doi: 10.1016/0966-842X(93)90113-6
– volume: 132
  start-page: 417
  year: 2008
  ident: e_1_3_4_20_2
  article-title: Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2007.01041.x
– volume: 71
  start-page: 1139
  year: 2015
  ident: e_1_3_4_37_2
  article-title: Cloning, expression, purification and crystallization of a pair of novel virulence factors, SghA and SghR, from Agrobacterium tumefaciens
  publication-title: Acta Crystallogr. F Struct. Biol. Commun.
  doi: 10.1107/S2053230X15012881
– volume: 107
  start-page: 17733
  year: 2010
  ident: e_1_3_4_3_2
  article-title: Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1006098107
– volume: 581
  start-page: 1514
  year: 2007
  ident: e_1_3_4_14_2
  article-title: Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.03.009
– volume: 88
  start-page: 692
  year: 1998
  ident: e_1_3_4_24_2
  article-title: Glucosylation of salicylic acid in Nicotiana tabacum Cv. Xanthi-nc
  publication-title: Phytopathology
  doi: 10.1094/PHYTO.1998.88.7.692
– volume: 63
  start-page: 201
  year: 1997
  ident: e_1_3_4_4_2
  article-title: Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.1.201-207.1997
– volume: 73
  start-page: 5319
  year: 2005
  ident: e_1_3_4_33_2
  article-title: Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.9.5319-5328.2005
– volume: 8
  start-page: 477
  year: 1996
  ident: e_1_3_4_44_2
  article-title: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR
  publication-title: J. Biomol. NMR
  doi: 10.1007/BF00228148
SSID ssj0009580
Score 2.434968
Snippet It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study...
Bacterial infection has been extensively investigated; however, little is known about how bacterial pathogens timely shut down infecting machinery after...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22331
SubjectTerms Agrobacterium tumefaciens - genetics
Agrobacterium tumefaciens - pathogenicity
Arabidopsis - metabolism
Arabidopsis - microbiology
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Sciences
Controlled release
Disruption
Gene expression
Host-Pathogen Interactions
Hydrolase
Hydrolases - genetics
Hydrolases - metabolism
Infections
Metabolites
Mutation
PNAS Plus
Salicylic acid
Salicylic Acid - metabolism
Shutdowns
Signal Transduction
Sucrose
Sucrose - metabolism
Sugar
Transcription Factors - genetics
Transcription Factors - metabolism
Tumors
Virulence
Virulence Factors - genetics
Title Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals
URI https://www.jstor.org/stable/26859880
https://www.ncbi.nlm.nih.gov/pubmed/31604827
https://www.proquest.com/docview/2311525592
https://www.proquest.com/docview/2305054216
https://pubmed.ncbi.nlm.nih.gov/PMC6825286
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKeOEFMWAQGMhIPAxVKa3jOMljNYEqJKo9bKJvkZM4bacqhbZBYr-JH8md7Thp2RDwErWJa0W5L-fz9bvvCHkbJEWRi1Hhl2WQ-6j-gsXKys8SUYzAN4Sl1un-PBWTK_5pFs56vZ8d1lK9ywb5za11Jf9jVTgHdsUq2X-wrJsUTsBnsC8cwcJw_Csbj-cbeB213LLE7L_hWvW_Lze1riXC_sgKRfwN2bXCWNNy01eq0P1SpMnlY62HD5eua0yrFX2kdcjVthu6XrilbtsQC6ZNJnHc1qVYZ7Ht-_2Ladvl-IvNS58v5LrN0-rQub5ZrOsOzcANrObfmoUVKUPLGs_PlhL7DM276YpRgn6etU7xTzfW9dMMMMNNdfVAGdcMkY0vuGku6ny3KdS0IOW864pZUwummu9GGOq3RQO8HHY6ruR2AOFRICDoHB3Ic-sFn4k4TMDf3SP3GWxKNI100pV4jk3Bk733RkgqCt4fzL0XAxka7G0bnEOebifwuXxEHtodCx0b-B2Tnqoek-PmadIzK1z-7gmRXTxSh0fq8EgRj7TFI81-0BaP1OKRrkt6gEdq8fiUXH38cHk-8W0LDz-HSHTnKxTCLgMsFxEqQiZzkZQsi7KMIV0pl2JYxomEGJdHWVDGMuayHIYSnmaBQk7BCTmq1pV6TigXEGuWYR5LEfEik1kE6zgMznOuuEi4RwbNQ01zq2-PbVZWqeZZREGKVkhbK3jkzP3gq5F2uXvoibaSG9dAwSOnjdlS6xi2KUMFK9yqM4-8cZfBbeN_cbJS6xrHYAtJznDuZ8bKbvJgJIaozuuRaM_-bgBKwu9fqZYLLQ0vYhayWLy4635fkgftS3lKjnabWr2CqHqXvdZg_gWlnNF5
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agrobacteria+reprogram+virulence+gene+expression+by+controlled+release+of+host-conjugated+signals&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Chao&rft.au=Ye%2C+Fuzhou&rft.au=Chang%2C+Changqing&rft.au=Liu%2C+Xiaoling&rft.date=2019-10-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=44&rft.spage=22331&rft.epage=22340&rft_id=info:doi/10.1073%2Fpnas.1903695116&rft.externalDocID=26859880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon