Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 44; pp. 22331 - 22340 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.10.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. |
---|---|
AbstractList | Bacterial infection has been extensively investigated; however, little is known about how bacterial pathogens timely shut down infecting machinery after successful infections. Here, a previously unknown sucrose–SghR/SghA–SAG–SA signaling axis was identified which controls the timing to shut off bacterial virulence expression and fine-tune host immune response. Sucrose, salicylic acid (SA), and its storage form SAG are small chemicals produced in plants whereas SghR is a bacterial sensor of sucrose and SghA is a bacterial enzyme that releases SA from SAG. Given that SA is an imperative signaling molecule in defense against a variety of microbial pathogens, these results depict a previously unknown 2-way chemical signaling cross-talk during microbe–host coevolution and shed mechanistic insights into host–bacteria interaction.
It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in
Agrobacterium tumefaciens
, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial
vir
genes and
sghA
are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces
sghA
expression. Disruption of
sghA
leads to increased
vir
expression
in planta
and enhances tumor formation whereas mutation of
sghR
decreases
vir
expression and tumor formation. These results depict a remarkable mechanism by which
A. tumefaciens
taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial genes and are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces expression. Disruption of leads to increased expression and enhances tumor formation whereas mutation of decreases expression and tumor formation. These results depict a remarkable mechanism by which taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens , which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection.It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study depicts that mutation of repressor SghR increases the expression of hydrolase SghA in Agrobacterium tumefaciens, which releases plant defense signal salicylic acid (SA) from its storage form SA β-glucoside (SAG). Addition of SA substantially reduces gene expression of bacterial virulence. Bacterial vir genes and sghA are differentially transcribed at early and later infection stages, respectively. Plant metabolite sucrose is a signal ligand that inactivates SghR and consequently induces sghA expression. Disruption of sghA leads to increased vir expression in planta and enhances tumor formation whereas mutation of sghR decreases vir expression and tumor formation. These results depict a remarkable mechanism by which A. tumefaciens taps on the reserved pool of plant signal SA to reprogram its virulence upon establishment of infection. |
Author | Chen, Shaohua Liu, Xiaoling Ye, Fuzhou Zhang, Lian-Hui Wang, Chao Yan, Xin-Fu Wang, Jianhe Wang, Jinpei Fu, Qinqin Gao, Yong-Gui Zhou, Jianuan Chang, Changqing |
Author_xml | – sequence: 1 givenname: Chao surname: Wang fullname: Wang, Chao – sequence: 2 givenname: Fuzhou surname: Ye fullname: Ye, Fuzhou – sequence: 3 givenname: Changqing surname: Chang fullname: Chang, Changqing – sequence: 4 givenname: Xiaoling surname: Liu fullname: Liu, Xiaoling – sequence: 5 givenname: Jianhe surname: Wang fullname: Wang, Jianhe – sequence: 6 givenname: Jinpei surname: Wang fullname: Wang, Jinpei – sequence: 7 givenname: Xin-Fu surname: Yan fullname: Yan, Xin-Fu – sequence: 8 givenname: Qinqin surname: Fu fullname: Fu, Qinqin – sequence: 9 givenname: Jianuan surname: Zhou fullname: Zhou, Jianuan – sequence: 10 givenname: Shaohua surname: Chen fullname: Chen, Shaohua – sequence: 11 givenname: Yong-Gui surname: Gao fullname: Gao, Yong-Gui – sequence: 12 givenname: Lian-Hui surname: Zhang fullname: Zhang, Lian-Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31604827$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVAR3RbOnECRuHBJO7bjxL4gVRVfUiUucLYc7zj1KmsHO6nov8dhywI9cJrD-5g3887ISYgBCXlJ4YJCxy-nYPIFVcBbJShtn5ANBUXrtlFwQjYArKtlw5pTcpbzDgCUkPCMnHLaQiNZtyHmakixN3bG5E2VcEpxSGZf3fm0jBgsVgMGrPDHlDBnH0PV31c2hjnFccRtUYxoMlbRVbcxz3WBdstg5gJlPwQz5ufkqSsDXzzMc_Ltw_uv15_qmy8fP19f3dRWgJprhFaB41zQpsVOcA5b5Vjf9T1zDq01LTipDJO86XrupJGNcSBMuWlLO9ryc_Lu4Dst_R63FktGM-op-b1J9zoar_9Fgr_VQ7zTrWSCydXg7YNBit8XzLPe-2xxHE3AuGTNOAgQDfu1680j6i4uab22sCgVTAjFCuv134mOUX5_vxAuDwSbYs4J3ZFCQa_96rVf_affohCPFNbPZvZrIcaP_9G9Ouh2eY7puIa1Uigpgf8Eike1lg |
CitedBy_id | crossref_primary_10_1093_plphys_kiab081 crossref_primary_10_3389_fpls_2021_685533 crossref_primary_10_1021_acssuschemeng_0c06865 crossref_primary_10_1021_acs_jpcb_3c02125 crossref_primary_10_1074_jbc_RA120_012908 crossref_primary_10_1016_j_jmb_2021_166892 crossref_primary_10_1128_mbio_03644_21 crossref_primary_10_3389_fmicb_2022_839025 crossref_primary_10_1016_j_hpj_2023_07_003 crossref_primary_10_1016_j_resmic_2022_104011 crossref_primary_10_1021_acs_jpcb_1c02150 crossref_primary_10_1146_annurev_micro_032521_025954 crossref_primary_10_1021_acs_jpcb_4c03464 crossref_primary_10_1186_s42483_023_00160_6 crossref_primary_10_1016_j_biortech_2025_132076 crossref_primary_10_1002_cctc_202101107 crossref_primary_10_1093_bbb_zbab200 crossref_primary_10_3389_fcimb_2022_1065561 crossref_primary_10_1111_febs_17096 crossref_primary_10_12677_AMB_2024_131002 crossref_primary_10_3389_fmicb_2022_887967 crossref_primary_10_1371_journal_pone_0241325 |
Cites_doi | 10.1016/j.pbi.2004.03.014 10.1093/jexbot/51.351.1721 10.1104/pp.104.045542 10.1128/JB.00373-15 10.1046/j.1365-313X.2003.01766.x 10.1093/jxb/ers129 10.1073/pnas.0600313103 10.1104/pp.107.4.1041 10.1111/j.0031-9317.2004.0263.x 10.1073/pnas.0600366103 10.3389/fpls.2014.00730 10.1111/j.1462-5822.2005.00821.x 10.1107/S0907444906045975 10.1104/pp.107.111302 10.1073/pnas.88.18.8179 10.3389/fpls.2014.00155 10.1128/jb.162.3.1030-1038.1985 10.1073/pnas.022056699 10.1073/pnas.0808005106 10.1111/j.1365-2958.2006.05351.x 10.1107/S0907444910007493 10.1104/pp.108.2.633 10.1016/j.phytochem.2010.07.007 10.1105/tpc.112.098343 10.1016/j.pbi.2009.07.014 10.1007/s00203-002-0442-2 10.1107/S0907444912013224 10.1107/S0907444912001308 10.1038/nprot.2008.91 10.1128/MMBR.69.1.155-194.2005 10.1073/pnas.0704866104 10.1105/tpc.108.064576 10.1128/aem.52.3.597-598.1986 10.1098/rspb.1979.0026 10.1016/0966-842X(93)90113-6 10.1111/j.1399-3054.2007.01041.x 10.1107/S2053230X15012881 10.1073/pnas.1006098107 10.1016/j.febslet.2007.03.009 10.1094/PHYTO.1998.88.7.692 10.1128/aem.63.1.201-207.1997 10.1128/IAI.73.9.5319-5328.2005 10.1007/BF00228148 |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Oct 29, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Oct 29, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1903695116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 22340 |
ExternalDocumentID | PMC6825286 31604827 10_1073_pnas_1903695116 26859880 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-e0690f335146e75330d9f2b7bb2ffecca60f89a28347b3f8a84af05a009d17163 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:26:43 EDT 2025 Fri Jul 11 06:55:57 EDT 2025 Mon Jun 30 08:39:37 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Tue Jul 01 03:40:10 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Thu May 29 13:20:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | Agrobacterium glucosidase cost–pathogen interaction sucrose chemical signaling |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-e0690f335146e75330d9f2b7bb2ffecca60f89a28347b3f8a84af05a009d17163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: C.W., Y.-G.G., and L.-H.Z. designed research; C.W., F.Y., C.C., X.L., Jianhe Wang, Jinpei Wang, X.-F.Y., Q.F., J.Z., and S.C. performed research; L.-H.Z. contributed new reagents/analytic tools; C.W., F.Y., Y.-G.G., and L.-H.Z. analyzed data; and C.W., Y.-G.G., and L.-H.Z. wrote the paper. Edited by P. Zambryski, University of California, Berkeley, CA, and approved September 18, 2019 (received for review March 4, 2019) 1C.W., F.Y., and C.C. contributed equally to this work. |
ORCID | 0000-0002-4136-0112 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6825286 |
PMID | 31604827 |
PQID | 2311525592 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6825286 proquest_miscellaneous_2305054216 proquest_journals_2311525592 pubmed_primary_31604827 crossref_primary_10_1073_pnas_1903695116 crossref_citationtrail_10_1073_pnas_1903695116 jstor_primary_26859880 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-29 |
PublicationDateYYYYMMDD | 2019-10-29 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Noutoshi Y. (e_1_3_4_19_2) 2012; 24 Zupan J. R. (e_1_3_4_1_2) 1995; 107 Liu P. (e_1_3_4_26_2) 2006; 103 Virts E. L. (e_1_3_4_22_2) 1985; 162 Knodler L. A. (e_1_3_4_3_2) 2010; 107 Dean J. V. (e_1_3_4_20_2) 2008; 132 Lee H. I. (e_1_3_4_24_2) 1998; 88 Coggan K. A. (e_1_3_4_2_2) 2012; 14 Huang W. E. (e_1_3_4_16_2) 2005; 7 Sykes L. C. (e_1_3_4_21_2) 1986; 52 Dean J. V. (e_1_3_4_23_2) 2004; 120 Chen Z. (e_1_3_4_11_2) 1991; 88 Hanson J. (e_1_3_4_31_2) 2009; 12 Koch K. (e_1_3_4_28_2) 2004; 7 Moore L. W. (e_1_3_4_4_2) 1997; 63 Nijikken Y. (e_1_3_4_14_2) 2007; 581 Larsen R. A. (e_1_3_4_35_2) 2002; 178 Lohaus G. (e_1_3_4_45_2) 2000; 51 Emsley P. (e_1_3_4_42_2) 2010; 66 Gaspar Y. M. (e_1_3_4_39_2) 2004; 135 Langer G. (e_1_3_4_40_2) 2008; 3 Wind J. (e_1_3_4_29_2) 2010; 71 Bolouri Moghaddam M. R. (e_1_3_4_30_2) 2012; 63 Wang C. (e_1_3_4_15_2) 2006; 62 Haudecoeur E. (e_1_3_4_18_2) 2009; 106 McCoy A. J. (e_1_3_4_41_2) 2007; 63 Lagonenko L. (e_1_3_4_34_2) 2013; 3 Yalpani N. (e_1_3_4_12_2) 1993; 1 Lee C. W. (e_1_3_4_32_2) 2009; 21 Afonine P. V. (e_1_3_4_43_2) 2012; 68 Zhang H. B. (e_1_3_4_38_2) 2002; 99 Deeken R. (e_1_3_4_46_2) 2003; 34 Chevrot R. (e_1_3_4_17_2) 2006; 103 Ye F. (e_1_3_4_37_2) 2015; 71 Jeng W. Y. (e_1_3_4_13_2) 2012; 68 Laskowski R. A. (e_1_3_4_44_2) 1996; 8 Braun A. C. (e_1_3_4_8_2) 1948; 12 Anand A. (e_1_3_4_9_2) 2008; 146 Brencic A. (e_1_3_4_5_2) 2005; 69 Prithiviraj B. (e_1_3_4_33_2) 2005; 73 Schell J. (e_1_3_4_6_2) 1979; 204 Yuan Z. C. (e_1_3_4_10_2) 2007; 104 Nester E. W. (e_1_3_4_7_2) 2015; 5 Silverman P. (e_1_3_4_25_2) 1995; 108 Gohlke J. (e_1_3_4_27_2) 2014; 5 Wang C. (e_1_3_4_36_2) 2016; 198 |
References_xml | – volume: 7 start-page: 235 year: 2004 ident: e_1_3_4_28_2 article-title: Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2004.03.014 – volume: 51 start-page: 1721 year: 2000 ident: e_1_3_4_45_2 article-title: Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching publication-title: J. Exp. Bot. doi: 10.1093/jexbot/51.351.1721 – volume: 135 start-page: 2162 year: 2004 ident: e_1_3_4_39_2 article-title: Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation publication-title: Plant Physiol. doi: 10.1104/pp.104.045542 – volume: 198 start-page: 930 year: 2016 ident: e_1_3_4_36_2 article-title: Succinic semialdehyde promotes prosurvival capability of Agrobacterium tumefaciens publication-title: J. Bacteriol. doi: 10.1128/JB.00373-15 – volume: 34 start-page: 778 year: 2003 ident: e_1_3_4_46_2 article-title: Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01766.x – volume: 63 start-page: 3989 year: 2012 ident: e_1_3_4_30_2 article-title: Sugars and plant innate immunity publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers129 – volume: 103 start-page: 7460 year: 2006 ident: e_1_3_4_17_2 article-title: GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600313103 – volume: 107 start-page: 1041 year: 1995 ident: e_1_3_4_1_2 article-title: Transfer of T-DNA from Agrobacterium to the plant cell publication-title: Plant Physiol. doi: 10.1104/pp.107.4.1041 – volume: 120 start-page: 603 year: 2004 ident: e_1_3_4_23_2 article-title: Uptake of salicylic acid 2-O-beta-D-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism publication-title: Physiol. Plant. doi: 10.1111/j.0031-9317.2004.0263.x – volume: 103 start-page: 4658 year: 2006 ident: e_1_3_4_26_2 article-title: Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600366103 – volume: 5 start-page: 730 year: 2015 ident: e_1_3_4_7_2 article-title: Agrobacterium: Nature’s genetic engineer publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00730 – volume: 7 start-page: 1339 year: 2005 ident: e_1_3_4_16_2 article-title: Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate publication-title: Environ. Microbiol. doi: 10.1111/j.1462-5822.2005.00821.x – volume: 63 start-page: 32 year: 2007 ident: e_1_3_4_41_2 article-title: Solving structures of protein complexes by molecular replacement with Phaser publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444906045975 – volume: 146 start-page: 703 year: 2008 ident: e_1_3_4_9_2 article-title: Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens publication-title: Plant Physiol. doi: 10.1104/pp.107.111302 – volume: 88 start-page: 8179 year: 1991 ident: e_1_3_4_11_2 article-title: Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.88.18.8179 – volume: 5 start-page: 155 year: 2014 ident: e_1_3_4_27_2 article-title: Plant responses to Agrobacterium tumefaciens and crown gall development publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00155 – volume: 162 start-page: 1030 year: 1985 ident: e_1_3_4_22_2 article-title: Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to Petunia protoplasts publication-title: J. Bacteriol. doi: 10.1128/jb.162.3.1030-1038.1985 – volume: 99 start-page: 4638 year: 2002 ident: e_1_3_4_38_2 article-title: Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.022056699 – volume: 106 start-page: 14587 year: 2009 ident: e_1_3_4_18_2 article-title: Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0808005106 – volume: 62 start-page: 45 year: 2006 ident: e_1_3_4_15_2 article-title: Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05351.x – volume: 66 start-page: 486 year: 2010 ident: e_1_3_4_42_2 article-title: Features and development of Coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 108 start-page: 633 year: 1995 ident: e_1_3_4_25_2 article-title: Salicylic acid in rice (biosynthesis, conjugation, and possible role) publication-title: Plant Physiol. doi: 10.1104/pp.108.2.633 – volume: 71 start-page: 1610 year: 2010 ident: e_1_3_4_29_2 article-title: Sucrose: Metabolite and signaling molecule publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.07.007 – volume: 24 start-page: 3795 year: 2012 ident: e_1_3_4_19_2 article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.098343 – volume: 12 start-page: 562 year: 2009 ident: e_1_3_4_31_2 article-title: Sugar perception and signaling–An update publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.07.014 – volume: 178 start-page: 193 year: 2002 ident: e_1_3_4_35_2 article-title: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria publication-title: Arch. Microbiol. doi: 10.1007/s00203-002-0442-2 – volume: 68 start-page: 829 year: 2012 ident: e_1_3_4_13_2 article-title: High-resolution structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444912013224 – volume: 68 start-page: 352 year: 2012 ident: e_1_3_4_43_2 article-title: Towards automated crystallographic structure refinement with phenix.refine publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444912001308 – volume: 3 start-page: 1171 year: 2008 ident: e_1_3_4_40_2 article-title: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.91 – volume: 14 start-page: 47 year: 2012 ident: e_1_3_4_2_2 article-title: Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype publication-title: Curr. Issues Mol. Biol. – volume: 69 start-page: 155 year: 2005 ident: e_1_3_4_5_2 article-title: Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.69.1.155-194.2005 – volume: 104 start-page: 11790 year: 2007 ident: e_1_3_4_10_2 article-title: The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0704866104 – volume: 21 start-page: 2948 year: 2009 ident: e_1_3_4_32_2 article-title: Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.108.064576 – volume: 52 start-page: 597 year: 1986 ident: e_1_3_4_21_2 article-title: Time required for tumor induction by Agrobacterium tumefaciens publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.52.3.597-598.1986 – volume: 12 start-page: 255 year: 1948 ident: e_1_3_4_8_2 article-title: Studies on the inactivation of the tumor-inducing principle in crown gall publication-title: Growth – volume: 3 start-page: 6 year: 2013 ident: e_1_3_4_34_2 article-title: Impact of salicylic acid on biofilm formation by plant pathogenic bacteria publication-title: J. Biol. Earth Sci. – volume: 204 start-page: 251 year: 1979 ident: e_1_3_4_6_2 article-title: Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host publication-title: Proc. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rspb.1979.0026 – volume: 1 start-page: 88 year: 1993 ident: e_1_3_4_12_2 article-title: Salicylic acid: A systemic signal in induced plant disease resistance publication-title: Trends Microbiol. doi: 10.1016/0966-842X(93)90113-6 – volume: 132 start-page: 417 year: 2008 ident: e_1_3_4_20_2 article-title: Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2007.01041.x – volume: 71 start-page: 1139 year: 2015 ident: e_1_3_4_37_2 article-title: Cloning, expression, purification and crystallization of a pair of novel virulence factors, SghA and SghR, from Agrobacterium tumefaciens publication-title: Acta Crystallogr. F Struct. Biol. Commun. doi: 10.1107/S2053230X15012881 – volume: 107 start-page: 17733 year: 2010 ident: e_1_3_4_3_2 article-title: Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1006098107 – volume: 581 start-page: 1514 year: 2007 ident: e_1_3_4_14_2 article-title: Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.03.009 – volume: 88 start-page: 692 year: 1998 ident: e_1_3_4_24_2 article-title: Glucosylation of salicylic acid in Nicotiana tabacum Cv. Xanthi-nc publication-title: Phytopathology doi: 10.1094/PHYTO.1998.88.7.692 – volume: 63 start-page: 201 year: 1997 ident: e_1_3_4_4_2 article-title: Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.1.201-207.1997 – volume: 73 start-page: 5319 year: 2005 ident: e_1_3_4_33_2 article-title: Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans publication-title: Infect. Immun. doi: 10.1128/IAI.73.9.5319-5328.2005 – volume: 8 start-page: 477 year: 1996 ident: e_1_3_4_44_2 article-title: AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR publication-title: J. Biomol. NMR doi: 10.1007/BF00228148 |
SSID | ssj0009580 |
Score | 2.434968 |
Snippet | It is highly intriguing how bacterial pathogens can quickly shut down energy-costly infection machinery once successful infection is established. This study... Bacterial infection has been extensively investigated; however, little is known about how bacterial pathogens timely shut down infecting machinery after... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22331 |
SubjectTerms | Agrobacterium tumefaciens - genetics Agrobacterium tumefaciens - pathogenicity Arabidopsis - metabolism Arabidopsis - microbiology Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Sciences Controlled release Disruption Gene expression Host-Pathogen Interactions Hydrolase Hydrolases - genetics Hydrolases - metabolism Infections Metabolites Mutation PNAS Plus Salicylic acid Salicylic Acid - metabolism Shutdowns Signal Transduction Sucrose Sucrose - metabolism Sugar Transcription Factors - genetics Transcription Factors - metabolism Tumors Virulence Virulence Factors - genetics |
Title | Agrobacteria reprogram virulence gene expression by controlled release of host-conjugated signals |
URI | https://www.jstor.org/stable/26859880 https://www.ncbi.nlm.nih.gov/pubmed/31604827 https://www.proquest.com/docview/2311525592 https://www.proquest.com/docview/2305054216 https://pubmed.ncbi.nlm.nih.gov/PMC6825286 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKeOEFMWAQGMhIPAxVKa3jOMljNYEqJKo9bKJvkZM4bacqhbZBYr-JH8md7Thp2RDwErWJa0W5L-fz9bvvCHkbJEWRi1Hhl2WQ-6j-gsXKys8SUYzAN4Sl1un-PBWTK_5pFs56vZ8d1lK9ywb5za11Jf9jVTgHdsUq2X-wrJsUTsBnsC8cwcJw_Csbj-cbeB213LLE7L_hWvW_Lze1riXC_sgKRfwN2bXCWNNy01eq0P1SpMnlY62HD5eua0yrFX2kdcjVthu6XrilbtsQC6ZNJnHc1qVYZ7Ht-_2Ladvl-IvNS58v5LrN0-rQub5ZrOsOzcANrObfmoUVKUPLGs_PlhL7DM276YpRgn6etU7xTzfW9dMMMMNNdfVAGdcMkY0vuGku6ny3KdS0IOW864pZUwummu9GGOq3RQO8HHY6ruR2AOFRICDoHB3Ic-sFn4k4TMDf3SP3GWxKNI100pV4jk3Bk733RkgqCt4fzL0XAxka7G0bnEOebifwuXxEHtodCx0b-B2Tnqoek-PmadIzK1z-7gmRXTxSh0fq8EgRj7TFI81-0BaP1OKRrkt6gEdq8fiUXH38cHk-8W0LDz-HSHTnKxTCLgMsFxEqQiZzkZQsi7KMIV0pl2JYxomEGJdHWVDGMuayHIYSnmaBQk7BCTmq1pV6TigXEGuWYR5LEfEik1kE6zgMznOuuEi4RwbNQ01zq2-PbVZWqeZZREGKVkhbK3jkzP3gq5F2uXvoibaSG9dAwSOnjdlS6xi2KUMFK9yqM4-8cZfBbeN_cbJS6xrHYAtJznDuZ8bKbvJgJIaozuuRaM_-bgBKwu9fqZYLLQ0vYhayWLy4635fkgftS3lKjnabWr2CqHqXvdZg_gWlnNF5 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agrobacteria+reprogram+virulence+gene+expression+by+controlled+release+of+host-conjugated+signals&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Chao&rft.au=Ye%2C+Fuzhou&rft.au=Chang%2C+Changqing&rft.au=Liu%2C+Xiaoling&rft.date=2019-10-29&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=44&rft.spage=22331&rft.epage=22340&rft_id=info:doi/10.1073%2Fpnas.1903695116&rft.externalDocID=26859880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |