Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division

The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellul...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 291; no. 33; pp. 17001 - 17008
Main Authors Gholkar, Ankur A., Cheung, Keith, Williams, Kevin J., Lo, Yu-Chen, Hamideh, Shadia A., Nnebe, Chelsea, Khuu, Cindy, Bensinger, Steven J., Torres, Jorge Z.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.08.2016
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.
AbstractList The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.
The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G 2 /M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.
The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies.
Author Bensinger, Steven J.
Gholkar, Ankur A.
Nnebe, Chelsea
Lo, Yu-Chen
Khuu, Cindy
Hamideh, Shadia A.
Cheung, Keith
Williams, Kevin J.
Torres, Jorge Z.
Author_xml – sequence: 1
  givenname: Ankur A.
  surname: Gholkar
  fullname: Gholkar, Ankur A.
  organization: Departments of Chemistry and Biochemistry
– sequence: 2
  givenname: Keith
  surname: Cheung
  fullname: Cheung, Keith
  organization: Departments of Chemistry and Biochemistry
– sequence: 3
  givenname: Kevin J.
  surname: Williams
  fullname: Williams, Kevin J.
  organization: Microbiology, Immunology and Molecular Genetics
– sequence: 4
  givenname: Yu-Chen
  surname: Lo
  fullname: Lo, Yu-Chen
  organization: Departments of Chemistry and Biochemistry
– sequence: 5
  givenname: Shadia A.
  surname: Hamideh
  fullname: Hamideh, Shadia A.
  organization: Departments of Chemistry and Biochemistry
– sequence: 6
  givenname: Chelsea
  surname: Nnebe
  fullname: Nnebe, Chelsea
  organization: Departments of Chemistry and Biochemistry
– sequence: 7
  givenname: Cindy
  surname: Khuu
  fullname: Khuu, Cindy
  organization: Departments of Chemistry and Biochemistry
– sequence: 8
  givenname: Steven J.
  surname: Bensinger
  fullname: Bensinger, Steven J.
  organization: Microbiology, Immunology and Molecular Genetics
– sequence: 9
  givenname: Jorge Z.
  surname: Torres
  fullname: Torres, Jorge Z.
  email: torres@chem.ucla.edu
  organization: Departments of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27378817$$D View this record in MEDLINE/PubMed
BookMark eNp1Uc1rFDEcDVKx2-rZm-ToZbbJTDIzuQjLaG2hoqCCt5BkkjZlNtkmmYX97_2104oKzeVB8j7IeyfoKMRgEXpLyZqSjp3darMeKG3XXdM1rH2BVpT0TdVw-usIrQipaSVq3h-jk5xvCRwm6Ct0XAO972m3QnfnqsRcVPEBX4Ybr33JeFDB2IQHO034W4qTdzYBIwasD3jjnDVAv8ZffInFG0CTYpn1PFn8fefDCLjJ2W71dMAqjIvRR7_3GTxeo5dOTdm-ecRT9PP804_horr6-vly2FxVhhNRqtHUljNVO8cFbVnrBBFNY1hjuOtabXTfaMZawYkShuqRwB21juna1YbVtjlFHxbf3ay3djQ2lKQmuUt-q9JBRuXlvy_B38jruJec0JYSDgbvHw1SvJttLnLrs4GvqGDjnCXtKa2FoD0B6ru_s_6EPPUMBL4QoKmck3XS-PJQKUT7SVIi7_eUsKe831Mue4Lu7D_dk_XzCrEoLHS79zbJbLyFPUefYDc5Rv-s9jfSSrhZ
CitedBy_id crossref_primary_10_1016_j_addr_2020_07_013
crossref_primary_10_2174_1871520622666220112104320
crossref_primary_10_3390_cancers15072144
crossref_primary_10_1186_s40880_018_0301_4
crossref_primary_10_1016_j_bmc_2017_03_029
crossref_primary_10_1016_j_tet_2020_130953
crossref_primary_10_1038_s41420_025_02390_3
crossref_primary_10_1080_14737159_2023_2195553
crossref_primary_10_1038_s41598_023_32922_9
crossref_primary_10_1210_en_2019_00274
crossref_primary_10_18632_oncotarget_24229
crossref_primary_10_1007_s10555_023_10156_5
crossref_primary_10_1016_j_molliq_2018_10_082
crossref_primary_10_14336_AD_2020_1120
crossref_primary_10_3389_fcell_2021_826248
crossref_primary_10_3389_fimmu_2023_1121864
crossref_primary_10_3390_biomedicines12081832
crossref_primary_10_3390_cancers13184696
crossref_primary_10_1016_j_bcp_2021_114654
crossref_primary_10_1016_j_biotechadv_2018_02_007
crossref_primary_10_3390_cancers14133255
crossref_primary_10_3390_cancers14235805
crossref_primary_10_1016_j_cellsig_2023_110686
crossref_primary_10_1007_s12272_023_01473_y
crossref_primary_10_1186_s12944_021_01593_8
crossref_primary_10_1038_s41389_018_0076_0
crossref_primary_10_1016_j_biopha_2023_115373
crossref_primary_10_1038_nrendo_2017_91
crossref_primary_10_1016_j_ejphar_2024_176519
crossref_primary_10_3390_molecules24091829
crossref_primary_10_1016_j_molmet_2024_102085
crossref_primary_10_3389_fonc_2020_01510
crossref_primary_10_3389_fonc_2021_682911
crossref_primary_10_3389_fonc_2022_952371
crossref_primary_10_7717_peerj_15203
crossref_primary_10_1016_j_jbc_2024_107351
crossref_primary_10_1038_s41419_023_05738_8
crossref_primary_10_3389_fcell_2021_622908
crossref_primary_10_1080_13543776_2023_2291393
crossref_primary_10_1021_acs_jproteome_3c00395
crossref_primary_10_3389_fcell_2024_1399065
crossref_primary_10_1016_j_isci_2021_102238
crossref_primary_10_3389_fphar_2023_1130747
crossref_primary_10_3892_ijo_2022_5399
crossref_primary_10_1016_j_bbadis_2018_10_026
crossref_primary_10_1039_D1TB02760C
crossref_primary_10_3390_cancers12113469
crossref_primary_10_1002_cam4_70342
crossref_primary_10_1038_s41401_022_00984_6
Cites_doi 10.1073/pnas.96.20.11235
10.1124/jpet.108.139626
10.1158/0008-5472.CAN-13-0382-T
10.1038/nrc2249
10.18632/oncotarget.5879
10.1016/j.bmcl.2007.06.031
10.1016/S0092-8674(00)80213-5
10.1016/S0092-8674(00)81304-5
10.1038/cddis.2014.420
10.1126/science.1160809
10.1016/j.ccr.2012.02.014
10.1038/ncb1474
10.1016/j.celrep.2015.12.035
10.2174/0929867321666140303122426
10.1073/pnas.90.24.11603
10.1016/j.chembiol.2009.07.007
10.1158/1535-7163.MCT-13-0797
10.4161/cc.26951
10.1515/hsz-2014-0194
10.1016/S0021-9258(19)85265-1
10.1371/journal.pcbi.1004153
10.1016/j.cmet.2010.12.004
10.1091/mbc.e09-07-0598
10.1016/j.tips.2015.04.010
10.2174/13816128113199990486
10.1074/jbc.M210283200
10.1016/j.cmet.2007.10.002
ContentType Journal Article
Copyright 2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2016 by The American Society for Biochemistry and Molecular Biology, Inc.
2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2016 © 2016 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
– notice: 2016 by The American Society for Biochemistry and Molecular Biology, Inc. 2016 The American Society for Biochemistry and Molecular Biology, Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.C116.737346
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate ACCELERATED COMMUNICATION: Fatostatin Inhibits Cell Division
EISSN 1083-351X
EndPage 17008
ExternalDocumentID PMC5016105
27378817
10_1074_jbc_C116_737346
S002192582033444X
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P30CA016042
– fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NHLBI NIH HHS
  grantid: R21 HL126556
– fundername: NIAID NIH HHS
  grantid: R01 AI093768
– fundername: National Institutes of Health
  grantid: P30CA016042; AI093768; HL126556
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c509t-dc2e54a2ff591646f90933c43c5f76bcb83b446950a9c1bd06bc1ef4b2f2c42e3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 13:41:42 EDT 2025
Fri Jul 11 09:42:18 EDT 2025
Wed Feb 19 02:29:44 EST 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Jul 01 00:48:35 EDT 2025
Fri Feb 23 02:45:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Betulin
Fatostatin
SREBP
cell death
lipid metabolism
cell division
PF-429242
cancer
mitosis
Language English
License This is an open access article under the CC BY license.
2016 by The American Society for Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-dc2e54a2ff591646f90933c43c5f76bcb83b446950a9c1bd06bc1ef4b2f2c42e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1074/jbc.C116.737346
PMID 27378817
PQID 1811299180
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5016105
proquest_miscellaneous_1811299180
pubmed_primary_27378817
crossref_citationtrail_10_1074_jbc_C116_737346
crossref_primary_10_1074_jbc_C116_737346
elsevier_sciencedirect_doi_10_1074_jbc_C116_737346
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-12
PublicationDateYYYYMMDD 2016-08-12
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2016
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References DeBerardinis, Lum, Hatzivassiliou, Thompson (bib1) 2008; 7
Senese, Lo, Huang, Zangle, Gholkar, Robert, Homet, Ribas, Summers, Teitell, Damoiseaux, Torres (bib22) 2014; 5
Hawkins, Robbins, Warren, Xia, Petras, Valentine, Varghese, Wang, Subashi, Shelly, Hay, Landschulz, Geoghegan, Harwood (bib16) 2008; 326
Nohturfft, DeBose-Boyd, Scheek, Goldstein, Brown (bib7) 1999; 96
Fukasawa (bib23) 2007; 7
Soyal, Nofziger, Dossena, Paulmichl, Patsch (bib6) 2015; 36
Li, Chen, Hu, Huang (bib18) 2014; 13
Sakai, Duncan, Rawson, Hua, Brown, Goldstein (bib9) 1996; 85
Lo, Senese, Li, Hu, Huang, Damoiseaux, Torres (bib27) 2015; 11
Brown, Goldstein (bib8) 1997; 89
Hay, Abrams, Zumbrunn, Valentine, Warren, Petras, Shelly, Xia, Varghese, Hawkins, Van Camp, Robbins, Landschulz, Harwood (bib17) 2007; 17
Briggs, Yokoyama, Wang, Brown, Goldstein (bib10) 1993; 268
Gholkar, Senese, Lo, Vides, Contreras, Hodara, Capri, Whitelegge, Torres (bib26) 2016; 14
Ward, Thompson (bib3) 2012; 21
Kamisuki, Mao, Abu-Elheiga, Gu, Kugimiya, Kwon, Shinohara, Kawazoe, Sato, Asakura, Choo, Sakai, Wakil, Uesugi (bib13) 2009; 16
Oshimori, Ohsugi, Yamamoto (bib24) 2006; 8
Notarnicola, Tutino, Caruso (bib5) 2014; 21
Tang, Li, Qi, Qiu, Li, Li, Song (bib15) 2011; 13
Williams, Argus, Zhu, Wilks, Marbois, York, Kidani, Pourzia, Akhavan, Lisiero, Komisopoulou, Henkin, Soto, Chamberlain, Vergnes (bib20) 2013; 73
Singh, Zapata, Choi, Yoon (bib25) 2014; 13
Hua, Yokoyama, Wu, Briggs, Brown, Goldstein, Wang (bib11) 1993; 90
Li, Wu, Chung, Huang (bib19) 2015; 6
Murai (bib4) 2015; 396
Torres, Ban, Jackson (bib21) 2010; 21
Vander Heiden, Cantley, Thompson (bib2) 2009; 324
Guo, Bell, Mischel, Chakravarti (bib12) 2014; 20
Choi, Kawazoe, Murakami, Misawa, Uesugi (bib14) 2003; 278
Nohturfft (10.1074/jbc.C116.737346_bib7) 1999; 96
Ward (10.1074/jbc.C116.737346_bib3) 2012; 21
Li (10.1074/jbc.C116.737346_bib18) 2014; 13
Guo (10.1074/jbc.C116.737346_bib12) 2014; 20
Choi (10.1074/jbc.C116.737346_bib14) 2003; 278
Li (10.1074/jbc.C116.737346_bib19) 2015; 6
Briggs (10.1074/jbc.C116.737346_bib10) 1993; 268
Senese (10.1074/jbc.C116.737346_bib22) 2014; 5
Tang (10.1074/jbc.C116.737346_bib15) 2011; 13
Murai (10.1074/jbc.C116.737346_bib4) 2015; 396
Hua (10.1074/jbc.C116.737346_bib11) 1993; 90
DeBerardinis (10.1074/jbc.C116.737346_bib1) 2008; 7
Hay (10.1074/jbc.C116.737346_bib17) 2007; 17
Lo (10.1074/jbc.C116.737346_bib27) 2015; 11
Vander Heiden (10.1074/jbc.C116.737346_bib2) 2009; 324
Soyal (10.1074/jbc.C116.737346_bib6) 2015; 36
Kamisuki (10.1074/jbc.C116.737346_bib13) 2009; 16
Gholkar (10.1074/jbc.C116.737346_bib26) 2016; 14
Williams (10.1074/jbc.C116.737346_bib20) 2013; 73
Fukasawa (10.1074/jbc.C116.737346_bib23) 2007; 7
Oshimori (10.1074/jbc.C116.737346_bib24) 2006; 8
Torres (10.1074/jbc.C116.737346_bib21) 2010; 21
Sakai (10.1074/jbc.C116.737346_bib9) 1996; 85
Notarnicola (10.1074/jbc.C116.737346_bib5) 2014; 21
Hawkins (10.1074/jbc.C116.737346_bib16) 2008; 326
Singh (10.1074/jbc.C116.737346_bib25) 2014; 13
Brown (10.1074/jbc.C116.737346_bib8) 1997; 89
References_xml – volume: 36
  start-page: 406
  year: 2015
  end-page: 416
  ident: bib6
  article-title: Targeting SREBPs for treatment of the metabolic syndrome
  publication-title: Trends Pharmacol. Sci
– volume: 90
  start-page: 11603
  year: 1993
  end-page: 11607
  ident: bib11
  article-title: SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 13
  start-page: 157
  year: 2014
  end-page: 166
  ident: bib25
  article-title: GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation
  publication-title: Cell Cycle
– volume: 8
  start-page: 1095
  year: 2006
  end-page: 1101
  ident: bib24
  article-title: The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity
  publication-title: Nat. Cell Biol
– volume: 326
  start-page: 801
  year: 2008
  end-page: 808
  ident: bib16
  article-title: Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals
  publication-title: J. Pharmacol. Exp. Ther
– volume: 7
  start-page: 911
  year: 2007
  end-page: 924
  ident: bib23
  article-title: Oncogenes and tumour suppressors take on centrosomes
  publication-title: Nat. Rev. Cancer
– volume: 268
  start-page: 14490
  year: 1993
  end-page: 14496
  ident: bib10
  article-title: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence
  publication-title: J. Biol. Chem
– volume: 20
  start-page: 2619
  year: 2014
  end-page: 2626
  ident: bib12
  article-title: Targeting SREBP-1-driven lipid metabolism to treat cancer
  publication-title: Curr. Pharm. Des
– volume: 17
  start-page: 4411
  year: 2007
  end-page: 4414
  ident: bib17
  article-title: Aminopyrrolidineamide inhibitors of site-1 protease
  publication-title: Bioorg Med. Chem. Lett
– volume: 5
  start-page: e1462
  year: 2014
  ident: bib22
  article-title: Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development
  publication-title: Cell Death Dis
– volume: 14
  start-page: 180
  year: 2016
  end-page: 188
  ident: bib26
  article-title: The X-linked-intellectual-disability-associated ubiquitin ligase Mid2 interacts with Astrin and regulates Astrin levels to promote cell division
  publication-title: Cell Rep
– volume: 13
  start-page: 44
  year: 2011
  end-page: 56
  ident: bib15
  article-title: Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques
  publication-title: Cell Metab
– volume: 73
  start-page: 2850
  year: 2013
  end-page: 2862
  ident: bib20
  article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity
  publication-title: Cancer Res
– volume: 85
  start-page: 1037
  year: 1996
  end-page: 1046
  ident: bib9
  article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment
  publication-title: Cell
– volume: 7
  start-page: 11
  year: 2008
  end-page: 20
  ident: bib1
  article-title: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
  publication-title: Cell Metab
– volume: 16
  start-page: 882
  year: 2009
  end-page: 892
  ident: bib13
  article-title: A small molecule that blocks fat synthesis by inhibiting the activation of SREBP
  publication-title: Chem. Biol
– volume: 21
  start-page: 897
  year: 2010
  end-page: 904
  ident: bib21
  article-title: A specific form of phospho protein phosphatase 2 regulates anaphase-promoting complex/cyclosome association with spindle poles
  publication-title: Mol. Biol. Cell
– volume: 21
  start-page: 2729
  year: 2014
  end-page: 2733
  ident: bib5
  article-title: Tumor-induced alterations in lipid metabolism
  publication-title: Curr. Med. Chem
– volume: 278
  start-page: 7320
  year: 2003
  end-page: 7324
  ident: bib14
  article-title: Identification of bioactive molecules by adipogenesis profiling of organic compounds
  publication-title: J. Biol. Chem
– volume: 96
  start-page: 11235
  year: 1999
  end-page: 11240
  ident: bib7
  article-title: Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib2
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 89
  start-page: 331
  year: 1997
  end-page: 340
  ident: bib8
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
– volume: 396
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib4
  article-title: Cholesterol lowering: role in cancer prevention and treatment
  publication-title: Biol. Chem
– volume: 13
  start-page: 855
  year: 2014
  end-page: 866
  ident: bib18
  article-title: Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling
  publication-title: Mol. Cancer Ther
– volume: 11
  start-page: e1004153
  year: 2015
  ident: bib27
  article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens
  publication-title: PLoS Comput. Biol
– volume: 21
  start-page: 297
  year: 2012
  end-page: 308
  ident: bib3
  article-title: Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
  publication-title: Cancer Cell
– volume: 6
  start-page: 41018
  year: 2015
  end-page: 41032
  ident: bib19
  article-title: Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations
  publication-title: Oncotarget
– volume: 96
  start-page: 11235
  year: 1999
  ident: 10.1074/jbc.C116.737346_bib7
  article-title: Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.96.20.11235
– volume: 326
  start-page: 801
  year: 2008
  ident: 10.1074/jbc.C116.737346_bib16
  article-title: Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals
  publication-title: J. Pharmacol. Exp. Ther
  doi: 10.1124/jpet.108.139626
– volume: 73
  start-page: 2850
  year: 2013
  ident: 10.1074/jbc.C116.737346_bib20
  article-title: An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-0382-T
– volume: 7
  start-page: 911
  year: 2007
  ident: 10.1074/jbc.C116.737346_bib23
  article-title: Oncogenes and tumour suppressors take on centrosomes
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2249
– volume: 6
  start-page: 41018
  year: 2015
  ident: 10.1074/jbc.C116.737346_bib19
  article-title: Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5879
– volume: 17
  start-page: 4411
  year: 2007
  ident: 10.1074/jbc.C116.737346_bib17
  article-title: Aminopyrrolidineamide inhibitors of site-1 protease
  publication-title: Bioorg Med. Chem. Lett
  doi: 10.1016/j.bmcl.2007.06.031
– volume: 89
  start-page: 331
  year: 1997
  ident: 10.1074/jbc.C116.737346_bib8
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80213-5
– volume: 85
  start-page: 1037
  year: 1996
  ident: 10.1074/jbc.C116.737346_bib9
  article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81304-5
– volume: 5
  start-page: e1462
  year: 2014
  ident: 10.1074/jbc.C116.737346_bib22
  article-title: Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2014.420
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1074/jbc.C116.737346_bib2
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 21
  start-page: 297
  year: 2012
  ident: 10.1074/jbc.C116.737346_bib3
  article-title: Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 8
  start-page: 1095
  year: 2006
  ident: 10.1074/jbc.C116.737346_bib24
  article-title: The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity
  publication-title: Nat. Cell Biol
  doi: 10.1038/ncb1474
– volume: 14
  start-page: 180
  year: 2016
  ident: 10.1074/jbc.C116.737346_bib26
  article-title: The X-linked-intellectual-disability-associated ubiquitin ligase Mid2 interacts with Astrin and regulates Astrin levels to promote cell division
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.12.035
– volume: 21
  start-page: 2729
  year: 2014
  ident: 10.1074/jbc.C116.737346_bib5
  article-title: Tumor-induced alterations in lipid metabolism
  publication-title: Curr. Med. Chem
  doi: 10.2174/0929867321666140303122426
– volume: 90
  start-page: 11603
  year: 1993
  ident: 10.1074/jbc.C116.737346_bib11
  article-title: SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.90.24.11603
– volume: 16
  start-page: 882
  year: 2009
  ident: 10.1074/jbc.C116.737346_bib13
  article-title: A small molecule that blocks fat synthesis by inhibiting the activation of SREBP
  publication-title: Chem. Biol
  doi: 10.1016/j.chembiol.2009.07.007
– volume: 13
  start-page: 855
  year: 2014
  ident: 10.1074/jbc.C116.737346_bib18
  article-title: Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling
  publication-title: Mol. Cancer Ther
  doi: 10.1158/1535-7163.MCT-13-0797
– volume: 13
  start-page: 157
  year: 2014
  ident: 10.1074/jbc.C116.737346_bib25
  article-title: GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation
  publication-title: Cell Cycle
  doi: 10.4161/cc.26951
– volume: 396
  start-page: 1
  year: 2015
  ident: 10.1074/jbc.C116.737346_bib4
  article-title: Cholesterol lowering: role in cancer prevention and treatment
  publication-title: Biol. Chem
  doi: 10.1515/hsz-2014-0194
– volume: 268
  start-page: 14490
  year: 1993
  ident: 10.1074/jbc.C116.737346_bib10
  article-title: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(19)85265-1
– volume: 11
  start-page: e1004153
  year: 2015
  ident: 10.1074/jbc.C116.737346_bib27
  article-title: Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1004153
– volume: 13
  start-page: 44
  year: 2011
  ident: 10.1074/jbc.C116.737346_bib15
  article-title: Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2010.12.004
– volume: 21
  start-page: 897
  year: 2010
  ident: 10.1074/jbc.C116.737346_bib21
  article-title: A specific form of phospho protein phosphatase 2 regulates anaphase-promoting complex/cyclosome association with spindle poles
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e09-07-0598
– volume: 36
  start-page: 406
  year: 2015
  ident: 10.1074/jbc.C116.737346_bib6
  article-title: Targeting SREBPs for treatment of the metabolic syndrome
  publication-title: Trends Pharmacol. Sci
  doi: 10.1016/j.tips.2015.04.010
– volume: 20
  start-page: 2619
  year: 2014
  ident: 10.1074/jbc.C116.737346_bib12
  article-title: Targeting SREBP-1-driven lipid metabolism to treat cancer
  publication-title: Curr. Pharm. Des
  doi: 10.2174/13816128113199990486
– volume: 278
  start-page: 7320
  year: 2003
  ident: 10.1074/jbc.C116.737346_bib14
  article-title: Identification of bioactive molecules by adipogenesis profiling of organic compounds
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.M210283200
– volume: 7
  start-page: 11
  year: 2008
  ident: 10.1074/jbc.C116.737346_bib1
  article-title: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2007.10.002
SSID ssj0000491
Score 2.4320066
Snippet The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17001
SubjectTerms Accelerated Communications
Betulin
cancer
cell death
cell division
Cell Division - drug effects
Fatostatin
G2 Phase - drug effects
HeLa Cells
Humans
lipid metabolism
mitosis
Neoplasm Proteins - antagonists & inhibitors
Neoplasm Proteins - metabolism
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
PF-429242
Pyridines - pharmacology
Spindle Apparatus - metabolism
SREBP
Sterol Regulatory Element Binding Proteins - antagonists & inhibitors
Sterol Regulatory Element Binding Proteins - metabolism
Thiazoles - pharmacology
Title Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division
URI https://dx.doi.org/10.1074/jbc.C116.737346
https://www.ncbi.nlm.nih.gov/pubmed/27378817
https://www.proquest.com/docview/1811299180
https://pubmed.ncbi.nlm.nih.gov/PMC5016105
Volume 291
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWq8QAvCDY-ypeMhBBSlVInztdjCUzTRhFIm1Seoth1tGhrWkryMH40v4F77ThJxyrBXqo2jZO058Q-vrk-l5A3EcPyaH7kSC-IHZ4tXAdgZnC7ZyKSATTTvgWzL8HRGT-e-_PB4Hcva6muxFj-unFdyW1QhW2AK66S_Q9k24PCBngP-MIrIAyv_4TxIcyYcUVQgZG980LgQ4AEYdyMEh2Tw5I8uWpABqE51dkbGB2YwZ2MXq0zTMiralFjTuG6QMsFhEwtxaVxZtIH-liYNeh9KdstKtNy1rg5Gb8RW0SuTe6BLvbCZHJPy4t6M5qOu7QCZbsbVVRtbLofBjqBsbscHbdNPuvo7vfagbZlP2rBAgzDsm6O2z6O6uemfihW7QWaNBNbIbgpzNnvHHVqiWts38fKdN4gJ3Flwrzfu7umGFhDY8_rddZoTch6Iz9-jm4cVkBn4bAi5DhhLBiHXuiZwGmPZOulZhnIQXToD7vxtc16_DpLfFTYaLl7x4VpDfbLJ986d3uYrZkKj81vs1ZUIX9_7dzoYd2caJeg-nvCdD3vtyekTh-Q-w1l6NTQ-SEZqHKfHExL4PLyir6lOidZ47BP7iYWqQPyo2M7tWynhu0USUq32E7FFW3ZThu20x7bacN2atlOgQvmQJbtj8jZ4afT5MhpCoY4EnRv5Sykq3yeuXnux-ibl8cYr5Pck34eBkKKyBOcB7E_yWLJxGIC25jKuXBzV3JXeY_JXrkq1VNCOVO-BO2vZKY4V0y4EWNZHi4Yl5M4iodkbP_1VDZu-ljU5TLVWR0hTwGxFBFLDWJD8q5tsDZGMrt3dS2MaaODjb5NgY-7G722gKcADD72y0q1qn-moOFB1McsmgzJE0OA9gosiYYk3KJGuwO6z29_Uxbn2oW-ofKzW7d8Tu51PcMLsldtavUSFH4lXunb4g-OvwCD
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatostatin+Inhibits+Cancer+Cell+Proliferation+by+Affecting+Mitotic+Microtubule+Spindle+Assembly+and+Cell+Division&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gholkar%2C+Ankur+A.&rft.au=Cheung%2C+Keith&rft.au=Williams%2C+Kevin+J.&rft.au=Lo%2C+Yu-Chen&rft.date=2016-08-12&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=291&rft.issue=33&rft.spage=17001&rft.epage=17008&rft_id=info:doi/10.1074%2Fjbc.C116.737346&rft_id=info%3Apmid%2F27378817&rft.externalDocID=PMC5016105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon