IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome

Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechan...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 36; pp. 22351 - 22356
Main Authors Kang, Sujin, Tanaka, Toshio, Inoue, Hitomi, Ono, Chikako, Hashimoto, Shoji, Kioi, Yoshiyuki, Matsumoto, Hisatake, Matsuura, Hiroshi, Matsubara, Tsunehiro, Shimizu, Kentaro, Ogura, Hiroshi, Matsuura, Yoshiharu, Kishimoto, Tadamitsu
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.
AbstractList Cytokine release syndrome (CRS) is a life-threatening complication induced by hyperinflammatory responses. However, no specific immunotherapies are available for its treatment. In this study, we found that interleukin (IL)-6 signaling plays a crucial role in endothelial cell dysfunction during bacterial and viral CRS. Specifically, we identified that the pathogenesis of CRS in patients with sepsis, acute respiratory distress syndrome, and burns involved the IL-6–mediated production of hyperinflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1), which indicates that IL-6 signaling blockade has potential as a therapy for CRS. We also found that the inhibition of IL-6 signaling by tocilizumab treatment decreased PAI-1 production and alleviated clinical manifestations in severe COVID-19 patients. Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.
Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.
Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.
Author Kang, Sujin
Matsubara, Tsunehiro
Hashimoto, Shoji
Ogura, Hiroshi
Inoue, Hitomi
Matsumoto, Hisatake
Shimizu, Kentaro
Tanaka, Toshio
Ono, Chikako
Kioi, Yoshiyuki
Matsuura, Hiroshi
Kishimoto, Tadamitsu
Matsuura, Yoshiharu
Author_xml – sequence: 1
  givenname: Sujin
  surname: Kang
  fullname: Kang, Sujin
– sequence: 2
  givenname: Toshio
  surname: Tanaka
  fullname: Tanaka, Toshio
– sequence: 3
  givenname: Hitomi
  surname: Inoue
  fullname: Inoue, Hitomi
– sequence: 4
  givenname: Chikako
  surname: Ono
  fullname: Ono, Chikako
– sequence: 5
  givenname: Shoji
  surname: Hashimoto
  fullname: Hashimoto, Shoji
– sequence: 6
  givenname: Yoshiyuki
  surname: Kioi
  fullname: Kioi, Yoshiyuki
– sequence: 7
  givenname: Hisatake
  surname: Matsumoto
  fullname: Matsumoto, Hisatake
– sequence: 8
  givenname: Hiroshi
  surname: Matsuura
  fullname: Matsuura, Hiroshi
– sequence: 9
  givenname: Tsunehiro
  surname: Matsubara
  fullname: Matsubara, Tsunehiro
– sequence: 10
  givenname: Kentaro
  surname: Shimizu
  fullname: Shimizu, Kentaro
– sequence: 11
  givenname: Hiroshi
  surname: Ogura
  fullname: Ogura, Hiroshi
– sequence: 12
  givenname: Yoshiharu
  surname: Matsuura
  fullname: Matsuura, Yoshiharu
– sequence: 13
  givenname: Tadamitsu
  surname: Kishimoto
  fullname: Kishimoto, Tadamitsu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32826331$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFDEYxoNU7LZ69qQEvHiZNl-TTC5CKX4UFrzoOWSSzG7WTLImMwuL_7wZtq1a8JTA-3senvd9LsBZTNEB8BqjK4wEvd5HXa4IwogQibF4BlYYSdxwJtEZWCFERNMxws7BRSk7hJBsO_QCnFPSEU4pXoFfd-uGwynrWJriN1EHHzfQRzsbV-A-6DL6mDYuQm0mf9BTynW69b2vvwbDIacRHnQxc9AZumjTtHXB6wCNC6FUFprjlH746GB2weniYDlGW2XuJXg-6FDcq_v3Enz_9PHb7Zdm_fXz3e3NujEtklNjDRIWUWlp11mOXeuoabk2A8c9FdKKAfUCtYz2QkiB5NBz1PXDYAjX2nJNL8GHk-9-7kdnjYt136D22Y86H1XSXv07iX6rNumgBOu4aHE1eH9vkNPP2ZVJjb4s--no0lwUYZRTiblsK_ruCbpLc65nXSjGuMCMLtTbvxM9RnnopQLtCTA5lZLdoIyf9OTTEtAHhZFa-ldL_-pP_1V3_UT3YP1_xZuTYldqo4844ZJLzDD9Df8Vvzk
CitedBy_id crossref_primary_10_1186_s13046_021_02148_6
crossref_primary_10_17816_mechnikov87291
crossref_primary_10_1248_bpb_b24_00472
crossref_primary_10_1016_j_ebiom_2023_104851
crossref_primary_10_1016_j_jtha_2023_08_004
crossref_primary_10_1039_D4OB01475H
crossref_primary_10_1016_j_bone_2021_116261
crossref_primary_10_3390_biomedicines10092117
crossref_primary_10_3103_S0096392522030026
crossref_primary_10_1038_s41419_021_04070_3
crossref_primary_10_14797_mdcvj_1044
crossref_primary_10_1093_bfgp_elac033
crossref_primary_10_3389_fped_2024_1351478
crossref_primary_10_1186_s12879_024_09131_4
crossref_primary_10_1248_bpb_b22_00284
crossref_primary_10_1073_pnas_2315898120
crossref_primary_10_1097_YCO_0000000000000789
crossref_primary_10_1371_journal_pone_0289508
crossref_primary_10_1073_pnas_2105040118
crossref_primary_10_1038_s41598_023_30305_8
crossref_primary_10_1002_gch2_202100004
crossref_primary_10_1016_j_jep_2023_117424
crossref_primary_10_1016_j_bcp_2022_114909
crossref_primary_10_1016_j_resuscitation_2022_08_013
crossref_primary_10_1126_scitranslmed_adg8656
crossref_primary_10_3389_fcimb_2020_586054
crossref_primary_10_1093_intimm_dxab011
crossref_primary_10_1002_sstr_202200403
crossref_primary_10_1186_s12885_020_07548_z
crossref_primary_10_1007_s11239_024_02961_8
crossref_primary_10_1016_j_heliyon_2021_e06350
crossref_primary_10_1016_j_mocell_2024_100138
crossref_primary_10_1182_bloodadvances_2021004575
crossref_primary_10_2217_imt_2022_0027
crossref_primary_10_1248_bpb_b23_00482
crossref_primary_10_1073_pnas_2102960118
crossref_primary_10_3390_ijms222313009
crossref_primary_10_1016_j_tma_2023_06_005
crossref_primary_10_3389_fimmu_2022_930673
crossref_primary_10_1159_000532067
crossref_primary_10_1097_SHK_0000000000001756
crossref_primary_10_3390_microorganisms11041015
crossref_primary_10_1128_jvi_01622_21
crossref_primary_10_1111_bjh_18596
crossref_primary_10_3390_jcm11030590
crossref_primary_10_1016_j_cytogfr_2021_10_007
crossref_primary_10_3390_ijms22157853
crossref_primary_10_1089_neu_2023_0135
crossref_primary_10_3390_ijms231810242
crossref_primary_10_1007_s00210_024_03394_z
crossref_primary_10_1128_jvi_01873_21
crossref_primary_10_1007_s11427_022_2173_9
crossref_primary_10_3389_fphar_2022_1031906
crossref_primary_10_1159_000528310
crossref_primary_10_1007_s00018_021_03889_5
crossref_primary_10_1016_j_jcm_2021_12_005
crossref_primary_10_1016_j_bbadis_2025_167745
crossref_primary_10_1007_s11033_022_07166_x
crossref_primary_10_3390_ph16040584
crossref_primary_10_3389_fmed_2022_871714
crossref_primary_10_1051_medsci_2021021
crossref_primary_10_3389_fmed_2023_1212201
crossref_primary_10_1038_s41598_021_00809_2
crossref_primary_10_1097_QAD_0000000000003346
crossref_primary_10_3389_fimmu_2020_618387
crossref_primary_10_1016_j_atherosclerosis_2021_02_009
crossref_primary_10_1146_annurev_immunol_101220_023458
crossref_primary_10_1002_rmv_2500
crossref_primary_10_1007_s11033_021_06770_7
crossref_primary_10_1515_med_2024_1018
crossref_primary_10_3389_fimmu_2023_1114917
crossref_primary_10_1016_j_ijantimicag_2024_107374
crossref_primary_10_1016_j_biopha_2023_114863
crossref_primary_10_1007_s13760_023_02403_x
crossref_primary_10_3390_cancers15225443
crossref_primary_10_1038_s41392_023_01496_3
crossref_primary_10_3390_ijms252313157
crossref_primary_10_1080_17512433_2022_2097905
crossref_primary_10_1093_bib_bbab446
crossref_primary_10_1016_j_virol_2024_110052
crossref_primary_10_1001_jamapediatrics_2021_2613
crossref_primary_10_1016_j_phrs_2022_106511
crossref_primary_10_62151_2786_9288_2_2_2024_07
crossref_primary_10_1038_s41392_022_01087_8
crossref_primary_10_1016_j_amjsurg_2022_09_011
crossref_primary_10_3389_fmed_2023_1289194
crossref_primary_10_2139_ssrn_4121726
crossref_primary_10_3389_fcvm_2021_795624
crossref_primary_10_3390_biom15010034
crossref_primary_10_1111_imm_13564
crossref_primary_10_1038_s12276_021_00649_0
crossref_primary_10_1631_jzus_B2300512
crossref_primary_10_3390_app11209505
crossref_primary_10_1186_s13054_024_05149_x
crossref_primary_10_3390_life14010093
crossref_primary_10_1016_j_biopha_2024_116618
crossref_primary_10_1038_s41598_022_12252_y
crossref_primary_10_1093_infdis_jiae392
crossref_primary_10_1097_SHK_0000000000001709
crossref_primary_10_1186_s12959_025_00700_4
crossref_primary_10_62151_2786_9288_1_2_2023_08
crossref_primary_10_1002_wsbm_1576
crossref_primary_10_1016_j_jff_2022_105029
crossref_primary_10_1096_fj_202101044RRR
crossref_primary_10_3390_v13081597
crossref_primary_10_1007_s00277_023_05477_y
crossref_primary_10_1186_s13326_021_00250_4
crossref_primary_10_3389_fimmu_2022_862522
crossref_primary_10_1152_physiol_00001_2023
crossref_primary_10_3390_ijms24021147
crossref_primary_10_1016_j_jpha_2021_09_009
crossref_primary_10_2174_1386207325666220519112846
crossref_primary_10_1182_blood_2020007208
crossref_primary_10_1002_hon_3155
crossref_primary_10_3389_fmed_2023_1042487
crossref_primary_10_18231_j_ijirm_2022_041
crossref_primary_10_1096_fj_202301804R
crossref_primary_10_1016_j_trim_2024_102110
crossref_primary_10_1080_1547691X_2024_2369123
crossref_primary_10_1007_s00277_024_05630_1
crossref_primary_10_1016_j_micpath_2021_104799
crossref_primary_10_1016_j_mtbio_2025_101590
crossref_primary_10_3389_fmolb_2022_804109
crossref_primary_10_1080_09273948_2021_1909071
crossref_primary_10_1159_000541399
crossref_primary_10_3390_ncrna10050048
crossref_primary_10_1016_j_compbiomed_2021_104293
crossref_primary_10_1080_14787210_2022_2020097
crossref_primary_10_3389_fimmu_2022_837180
crossref_primary_10_1097_SHK_0000000000002216
crossref_primary_10_1097_SHK_0000000000001925
crossref_primary_10_1016_j_mvr_2021_104224
crossref_primary_10_14336_AD_2023_0314
crossref_primary_10_37699_2308_7005_3_2022_04
crossref_primary_10_3389_fmed_2021_734838
crossref_primary_10_1002_eji_202048959
crossref_primary_10_1016_j_omtn_2022_12_019
crossref_primary_10_3390_ijms23105516
crossref_primary_10_1002_1873_3468_14225
crossref_primary_10_1007_s00795_022_00347_4
crossref_primary_10_1097_MD_0000000000030455
crossref_primary_10_1515_tjb_2022_0044
crossref_primary_10_1007_s10753_024_02102_6
crossref_primary_10_3390_jcm13102794
crossref_primary_10_1016_j_semcancer_2021_01_003
crossref_primary_10_1038_s41392_025_02127_9
crossref_primary_10_1097_MOH_0000000000000666
crossref_primary_10_1093_infdis_jiab005
crossref_primary_10_1371_journal_pone_0264072
crossref_primary_10_3390_jcm12020601
crossref_primary_10_1016_j_bvth_2024_100038
crossref_primary_10_1109_TMBMC_2021_3071788
crossref_primary_10_2491_jjsth_32_46
crossref_primary_10_1038_s41401_022_00998_0
crossref_primary_10_1093_infdis_jiaf041
crossref_primary_10_1007_s10753_021_01520_0
crossref_primary_10_1016_j_arcmed_2024_103101
crossref_primary_10_3390_biomedicines11030929
crossref_primary_10_3390_ijms23136931
crossref_primary_10_5847_wjem_j_1920_8642_2021_03_004
crossref_primary_10_1016_j_lfs_2021_119882
crossref_primary_10_1002_smll_202407038
crossref_primary_10_1007_s13577_024_01083_w
crossref_primary_10_1016_j_jmccpl_2022_100013
crossref_primary_10_2174_1389450123666221005092350
crossref_primary_10_1016_j_tips_2021_03_006
crossref_primary_10_2147_JIR_S320685
crossref_primary_10_3389_fcvm_2022_967926
crossref_primary_10_1038_s41408_021_00536_x
crossref_primary_10_1002_ams2_683
crossref_primary_10_1080_09603123_2023_2252461
crossref_primary_10_1186_s41479_023_00106_8
crossref_primary_10_1007_s10557_021_07207_w
crossref_primary_10_3389_fimmu_2021_651545
crossref_primary_10_3389_fvets_2023_1127099
crossref_primary_10_3389_fimmu_2022_891456
crossref_primary_10_1038_s41392_022_00907_1
crossref_primary_10_1111_1744_9987_14054
crossref_primary_10_1038_s41598_023_50445_1
crossref_primary_10_1182_bloodadvances_2023010728
crossref_primary_10_1002_hep4_1843
crossref_primary_10_1002_ptr_7258
crossref_primary_10_3390_jcm9103296
crossref_primary_10_3389_fcvm_2022_854421
crossref_primary_10_3389_fimmu_2023_1130288
crossref_primary_10_3390_ijms22052721
crossref_primary_10_1016_j_imbio_2023_152384
crossref_primary_10_1186_s43162_022_00141_9
crossref_primary_10_4252_wjsc_v13_i10_1513
crossref_primary_10_1055_s_0042_1757882
crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_114
crossref_primary_10_1016_j_imlet_2022_09_005
crossref_primary_10_4049_jimmunol_2000981
crossref_primary_10_1007_s00394_023_03306_6
crossref_primary_10_1007_s40521_022_00326_1
crossref_primary_10_3389_fphar_2023_1265177
crossref_primary_10_1002_ppul_25245
crossref_primary_10_1016_j_jhep_2021_04_050
crossref_primary_10_1016_j_intimp_2024_111732
crossref_primary_10_1007_s11010_023_04785_1
crossref_primary_10_1016_j_burnso_2021_09_001
crossref_primary_10_3389_fcvm_2021_653655
crossref_primary_10_3389_fimmu_2021_755579
crossref_primary_10_1016_j_jphs_2024_08_001
crossref_primary_10_31083_j_fbl2703102
crossref_primary_10_3389_fcvm_2022_1054541
crossref_primary_10_1002_ctm2_268
crossref_primary_10_30629_0023_2149_2023_101_1_26_31
crossref_primary_10_1002_adma_202401369
crossref_primary_10_3390_diseases12100231
crossref_primary_10_1093_cvr_cvab105
crossref_primary_10_3831_KPI_2024_27_2_101
crossref_primary_10_1016_j_intimp_2021_107598
crossref_primary_10_1371_journal_pone_0289206
crossref_primary_10_1038_s41586_021_03995_1
crossref_primary_10_1186_s40001_025_02369_x
crossref_primary_10_1007_s00277_024_05640_z
crossref_primary_10_3390_biomedicines12122740
crossref_primary_10_1016_j_cyto_2021_155684
crossref_primary_10_1016_j_intimp_2022_109040
crossref_primary_10_5115_acb_22_098
crossref_primary_10_1073_pnas_2203437119
crossref_primary_10_1186_s13054_024_04883_6
crossref_primary_10_1155_2022_7137900
crossref_primary_10_1182_bloodadvances_2022007454
crossref_primary_10_1248_bpbreports_6_2_47
crossref_primary_10_3389_fimmu_2023_1144229
crossref_primary_10_1165_rcmb_2020_0544OC
crossref_primary_10_1111_odi_14575
crossref_primary_10_30802_AALAS_CM_21_000011
crossref_primary_10_1016_j_talanta_2023_124284
crossref_primary_10_1177_1076029621999099
crossref_primary_10_3389_fimmu_2023_1134556
crossref_primary_10_3390_ijms241512376
crossref_primary_10_1002_ptr_7107
crossref_primary_10_1007_s12026_023_09412_1
Cites_doi 10.1016/S0140-6736(20)30183-5
10.1146/annurev-pathol-011110-130327
10.1016/S0140-6736(20)30628-0
10.1038/s41598-018-32275-8
10.1016/S0140-6736(14)60687-5
10.1056/NEJMoa1215134
10.1073/pnas.2005615117
10.1055/s-0038-1646614
10.1016/S1074-7613(00)80334-9
10.1182/blood-2008-05-155846
10.1002/cpt.782
10.1056/NEJMoa2002032
10.1161/01.ATV.0000051384.43104.FC
10.1056/NEJMoa1202290
10.1097/SHK.0000000000001152
10.1001/jamainternmed.2020.0994
10.1016/S0140-6736(20)30937-5
10.1056/NEJMoa2015432
10.1016/S0140-6736(20)30566-3
10.1038/nrd4368
10.1097/01.ccm.0000435669.60811.24
10.1161/ATVBAHA.112.251181
10.1016/j.immuni.2019.03.026
10.1038/s41591-018-0036-4
10.1186/s12964-018-0268-4
10.1182/blood-2013-02-485623
10.1084/jem.169.1.333
10.1186/cc8872
10.1126/science.abb8925
10.1038/nri.2017.36
10.1186/s40364-018-0116-0
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Sep 8, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Sep 8, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2010229117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 22356
ExternalDocumentID PMC7486751
32826331
10_1073_pnas_2010229117
26969141
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-dc07d039d388d61e5e3c56acf61b379d7f0b70543b779709fb608bffc26aad6a3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:32:33 EDT 2025
Fri Jul 11 03:25:07 EDT 2025
Mon Jun 30 08:39:15 EDT 2025
Mon Jul 21 06:02:46 EDT 2025
Thu Apr 24 22:51:46 EDT 2025
Tue Jul 01 03:40:29 EDT 2025
Thu May 29 09:12:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords COVID-19
tocilizumab
cytokine release syndrome
endothelial cell
IL-6
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-dc07d039d388d61e5e3c56acf61b379d7f0b70543b779709fb608bffc26aad6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: S.K. and T.K. designed research; S.K., H.I., C.O., and Y.K. performed research; T.T., S.H., H. Matsumoto, H. Matsuura, T.M., K.S., H.O., and Y.M. contributed new reagents/analytic tools; S.K., T.T., and T.K. analyzed data; and S.K. and T.K. wrote the paper.
Contributed by Tadamitsu Kishimoto, June 16, 2020 (sent for review May 22, 2020; reviewed by Yihai Cao and Stefan Rose-John)
Reviewers: Y.C., Karolinska Institute; and S.R.-J., Biochemisches Institut, Christian Albrechts Universität.
ORCID 0000-0001-9091-8285
0000-0002-8618-0385
0000-0001-5771-570X
0000-0002-0590-2893
0000-0001-5086-1405
0000-0002-0910-3124
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7486751
PMID 32826331
PQID 2444671435
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486751
proquest_miscellaneous_2436391695
proquest_journals_2444671435
pubmed_primary_32826331
crossref_citationtrail_10_1073_pnas_2010229117
crossref_primary_10_1073_pnas_2010229117
jstor_primary_26969141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-08
PublicationDateYYYYMMDD 2020-09-08
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
Esmon C. T. (e_1_3_4_23_2) 1999; 84
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
33972411 - Proc Natl Acad Sci U S A. 2021 May 25;118(21)
References_xml – ident: e_1_3_4_13_2
  doi: 10.1016/S0140-6736(20)30183-5
– ident: e_1_3_4_20_2
  doi: 10.1146/annurev-pathol-011110-130327
– ident: e_1_3_4_26_2
  doi: 10.1016/S0140-6736(20)30628-0
– ident: e_1_3_4_17_2
  doi: 10.1038/s41598-018-32275-8
– ident: e_1_3_4_1_2
  doi: 10.1016/S0140-6736(14)60687-5
– ident: e_1_3_4_10_2
  doi: 10.1056/NEJMoa1215134
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.2005615117
– ident: e_1_3_4_19_2
  doi: 10.1055/s-0038-1646614
– ident: e_1_3_4_24_2
  doi: 10.1016/S1074-7613(00)80334-9
– ident: e_1_3_4_25_2
  doi: 10.1182/blood-2008-05-155846
– ident: e_1_3_4_9_2
  doi: 10.1002/cpt.782
– ident: e_1_3_4_12_2
  doi: 10.1056/NEJMoa2002032
– ident: e_1_3_4_14_2
  doi: 10.1161/01.ATV.0000051384.43104.FC
– ident: e_1_3_4_7_2
  doi: 10.1056/NEJMoa1202290
– ident: e_1_3_4_18_2
  doi: 10.1097/SHK.0000000000001152
– ident: e_1_3_4_29_2
  doi: 10.1001/jamainternmed.2020.0994
– ident: e_1_3_4_31_2
  doi: 10.1016/S0140-6736(20)30937-5
– ident: e_1_3_4_32_2
  doi: 10.1056/NEJMoa2015432
– ident: e_1_3_4_30_2
  doi: 10.1016/S0140-6736(20)30566-3
– ident: e_1_3_4_6_2
  doi: 10.1038/nrd4368
– ident: e_1_3_4_16_2
  doi: 10.1097/01.ccm.0000435669.60811.24
– ident: e_1_3_4_22_2
  doi: 10.1161/ATVBAHA.112.251181
– ident: e_1_3_4_8_2
  doi: 10.1016/j.immuni.2019.03.026
– ident: e_1_3_4_4_2
  doi: 10.1038/s41591-018-0036-4
– ident: e_1_3_4_28_2
  doi: 10.1186/s12964-018-0268-4
– ident: e_1_3_4_27_2
  doi: 10.1182/blood-2013-02-485623
– ident: e_1_3_4_21_2
  doi: 10.1084/jem.169.1.333
– ident: e_1_3_4_15_2
  doi: 10.1186/cc8872
– volume: 84
  start-page: 254
  year: 1999
  ident: e_1_3_4_23_2
  article-title: Inflammation, sepsis, and coagulation
  publication-title: Haematologica
– ident: e_1_3_4_2_2
  doi: 10.1126/science.abb8925
– ident: e_1_3_4_3_2
  doi: 10.1038/nri.2017.36
– ident: e_1_3_4_5_2
  doi: 10.1186/s40364-018-0116-0
– reference: 33972411 - Proc Natl Acad Sci U S A. 2021 May 25;118(21):
SSID ssj0009580
Score 2.6757011
Snippet Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric...
Cytokine release syndrome (CRS) is a life-threatening complication induced by hyperinflammatory responses. However, no specific immunotherapies are available...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22351
SubjectTerms Adult
Aged
Antibodies, Monoclonal, Humanized - therapeutic use
Antigens
Bacteria
Bacterial diseases
Bacterial infections
Betacoronavirus
Biological Sciences
Burns - metabolism
Burns - pathology
Cell activation
Cell therapy
Cells, Cultured
Chimeric antigen receptors
Circuits
Coagulation
Coronavirus Infections - drug therapy
Coronavirus Infections - metabolism
Coronavirus Infections - pathology
Coronaviruses
COVID-19
Cytokine Release Syndrome - drug therapy
Cytokine Release Syndrome - metabolism
Cytokine Release Syndrome - pathology
Cytokines
Cytokines - blood
Cytokines - metabolism
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Female
Humans
Immunotherapy
Inflammation
Inhibitors
Interleukin 10
Interleukin 6
Interleukin 8
Interleukin-6 - blood
Interleukin-6 - metabolism
Lymphocytes
Lymphocytes T
Male
Middle Aged
Molecular modelling
Monoclonal antibodies
Monocyte chemoattractant protein 1
Monocytes
Pandemics
Pathogenesis
Patients
Plasminogen Activator Inhibitor 1 - blood
Plasminogen Activator Inhibitor 1 - metabolism
Plasminogen activator inhibitors
Pneumonia, Viral - drug therapy
Pneumonia, Viral - metabolism
Pneumonia, Viral - pathology
Receptors, Interleukin-6 - antagonists & inhibitors
Receptors, Interleukin-6 - metabolism
Respiratory distress syndrome
Respiratory Distress Syndrome - metabolism
Respiratory Distress Syndrome - pathology
SARS-CoV-2
Sepsis
Sepsis - metabolism
Sepsis - pathology
Signal Transduction
Signaling
Viral diseases
Title IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome
URI https://www.jstor.org/stable/26969141
https://www.ncbi.nlm.nih.gov/pubmed/32826331
https://www.proquest.com/docview/2444671435
https://www.proquest.com/docview/2436391695
https://pubmed.ncbi.nlm.nih.gov/PMC7486751
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkNBeEAMGhYGMxMPQlJHEqRM_TghUvqo9bNLeKjt21KytU60NEvC38L9ytuM0LZ0EvERV_FE198v57vq7O4Rek1jwyLglGRcqSGioAlEQuEhKRUwoITYX5uuIDi-TT1eDq17vV4e1VK_Eaf5jZ17J_0gV7oFcTZbsP0i23RRuwGeQL1xBwnD9Kxl__BJQ0-RBLwPDw-Azl6Aia0OzWoBdPC91BattxYxvxr2G0Ukp4C2-CSKXWtJSUZWWJhtrZkLoJpxvibL591U1NYao6a0CB97OCgfn7SG49JSDkY8xnq0zVho1sjwJTs5H6_7Hn33Eur4u16xgrvnU2rUX1XLiuGIWwbqqbQh2CL9hXrYhYu0ivpNyyqdVN5IB-DD_yzjlq5z2BeMloInrH9qqZ5fb2eCQbGjbmLhqtX-cA6C4TPNizZeWvRfHrNmmg4rF3MKCgNNJfdrYZultP3QH3Y3BC7G80WG3pnMW-mpRKXm79W376J5fv2HzONrrLodmm5fbMXQuHqD7jYeCzxzcDlBP6YfowAsPHzeFyt88Qj8N_vAW_nCDP9zBH27xhzv4wwZ_2OMPd_CHLf5gLvb4ww3-sMffY3T54f3Fu2HQNPMIcrBJV4HMw1SGhEmSZZJGaqBIPqA8L2gkSMpkWoQiBf-BiDRlacgKQcNMFEUeU84l5eQQ7elKq6cIMwn3MgmHh1AJo5InhNOC8UyJImEy66NT_7jHeVPp3jRcmY0t4yIlYyOq8VpUfXTcLli4Ii-3Tz208mvnxZRRFiVRHx15gY4bFQHrkgQMEeOS9NGrdhgUuHmMXKuqNnNAI4KTxmDOEyf_dnMPoD5KN5DRTjDF4TdHdDmxReJTU0pzED27dc_naH_9Eh6hvdVNrV6Agb0SLy3MfwOx_dX5
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IL-6+trans-signaling+induces+plasminogen+activator+inhibitor-1+from+vascular+endothelial+cells+in+cytokine+release+syndrome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kang%2C+Sujin&rft.au=Tanaka%2C+Toshio&rft.au=Inoue%2C+Hitomi&rft.au=Ono%2C+Chikako&rft.date=2020-09-08&rft.eissn=1091-6490&rft.volume=117&rft.issue=36&rft.spage=22351&rft_id=info:doi/10.1073%2Fpnas.2010229117&rft_id=info%3Apmid%2F32826331&rft.externalDocID=32826331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon