IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome
Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechan...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 36; pp. 22351 - 22356 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
08.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19. |
---|---|
AbstractList | Cytokine release syndrome (CRS) is a life-threatening complication induced by hyperinflammatory responses. However, no specific immunotherapies are available for its treatment. In this study, we found that interleukin (IL)-6 signaling plays a crucial role in endothelial cell dysfunction during bacterial and viral CRS. Specifically, we identified that the pathogenesis of CRS in patients with sepsis, acute respiratory distress syndrome, and burns involved the IL-6–mediated production of hyperinflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1), which indicates that IL-6 signaling blockade has potential as a therapy for CRS. We also found that the inhibition of IL-6 signaling by tocilizumab treatment decreased PAI-1 production and alleviated clinical manifestations in severe COVID-19 patients.
Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19. Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19. Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19. |
Author | Kang, Sujin Matsubara, Tsunehiro Hashimoto, Shoji Ogura, Hiroshi Inoue, Hitomi Matsumoto, Hisatake Shimizu, Kentaro Tanaka, Toshio Ono, Chikako Kioi, Yoshiyuki Matsuura, Hiroshi Kishimoto, Tadamitsu Matsuura, Yoshiharu |
Author_xml | – sequence: 1 givenname: Sujin surname: Kang fullname: Kang, Sujin – sequence: 2 givenname: Toshio surname: Tanaka fullname: Tanaka, Toshio – sequence: 3 givenname: Hitomi surname: Inoue fullname: Inoue, Hitomi – sequence: 4 givenname: Chikako surname: Ono fullname: Ono, Chikako – sequence: 5 givenname: Shoji surname: Hashimoto fullname: Hashimoto, Shoji – sequence: 6 givenname: Yoshiyuki surname: Kioi fullname: Kioi, Yoshiyuki – sequence: 7 givenname: Hisatake surname: Matsumoto fullname: Matsumoto, Hisatake – sequence: 8 givenname: Hiroshi surname: Matsuura fullname: Matsuura, Hiroshi – sequence: 9 givenname: Tsunehiro surname: Matsubara fullname: Matsubara, Tsunehiro – sequence: 10 givenname: Kentaro surname: Shimizu fullname: Shimizu, Kentaro – sequence: 11 givenname: Hiroshi surname: Ogura fullname: Ogura, Hiroshi – sequence: 12 givenname: Yoshiharu surname: Matsuura fullname: Matsuura, Yoshiharu – sequence: 13 givenname: Tadamitsu surname: Kishimoto fullname: Kishimoto, Tadamitsu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32826331$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFDEYxoNU7LZ69qQEvHiZNl-TTC5CKX4UFrzoOWSSzG7WTLImMwuL_7wZtq1a8JTA-3senvd9LsBZTNEB8BqjK4wEvd5HXa4IwogQibF4BlYYSdxwJtEZWCFERNMxws7BRSk7hJBsO_QCnFPSEU4pXoFfd-uGwynrWJriN1EHHzfQRzsbV-A-6DL6mDYuQm0mf9BTynW69b2vvwbDIacRHnQxc9AZumjTtHXB6wCNC6FUFprjlH746GB2weniYDlGW2XuJXg-6FDcq_v3Enz_9PHb7Zdm_fXz3e3NujEtklNjDRIWUWlp11mOXeuoabk2A8c9FdKKAfUCtYz2QkiB5NBz1PXDYAjX2nJNL8GHk-9-7kdnjYt136D22Y86H1XSXv07iX6rNumgBOu4aHE1eH9vkNPP2ZVJjb4s--no0lwUYZRTiblsK_ruCbpLc65nXSjGuMCMLtTbvxM9RnnopQLtCTA5lZLdoIyf9OTTEtAHhZFa-ldL_-pP_1V3_UT3YP1_xZuTYldqo4844ZJLzDD9Df8Vvzk |
CitedBy_id | crossref_primary_10_1186_s13046_021_02148_6 crossref_primary_10_17816_mechnikov87291 crossref_primary_10_1248_bpb_b24_00472 crossref_primary_10_1016_j_ebiom_2023_104851 crossref_primary_10_1016_j_jtha_2023_08_004 crossref_primary_10_1039_D4OB01475H crossref_primary_10_1016_j_bone_2021_116261 crossref_primary_10_3390_biomedicines10092117 crossref_primary_10_3103_S0096392522030026 crossref_primary_10_1038_s41419_021_04070_3 crossref_primary_10_14797_mdcvj_1044 crossref_primary_10_1093_bfgp_elac033 crossref_primary_10_3389_fped_2024_1351478 crossref_primary_10_1186_s12879_024_09131_4 crossref_primary_10_1248_bpb_b22_00284 crossref_primary_10_1073_pnas_2315898120 crossref_primary_10_1097_YCO_0000000000000789 crossref_primary_10_1371_journal_pone_0289508 crossref_primary_10_1073_pnas_2105040118 crossref_primary_10_1038_s41598_023_30305_8 crossref_primary_10_1002_gch2_202100004 crossref_primary_10_1016_j_jep_2023_117424 crossref_primary_10_1016_j_bcp_2022_114909 crossref_primary_10_1016_j_resuscitation_2022_08_013 crossref_primary_10_1126_scitranslmed_adg8656 crossref_primary_10_3389_fcimb_2020_586054 crossref_primary_10_1093_intimm_dxab011 crossref_primary_10_1002_sstr_202200403 crossref_primary_10_1186_s12885_020_07548_z crossref_primary_10_1007_s11239_024_02961_8 crossref_primary_10_1016_j_heliyon_2021_e06350 crossref_primary_10_1016_j_mocell_2024_100138 crossref_primary_10_1182_bloodadvances_2021004575 crossref_primary_10_2217_imt_2022_0027 crossref_primary_10_1248_bpb_b23_00482 crossref_primary_10_1073_pnas_2102960118 crossref_primary_10_3390_ijms222313009 crossref_primary_10_1016_j_tma_2023_06_005 crossref_primary_10_3389_fimmu_2022_930673 crossref_primary_10_1159_000532067 crossref_primary_10_1097_SHK_0000000000001756 crossref_primary_10_3390_microorganisms11041015 crossref_primary_10_1128_jvi_01622_21 crossref_primary_10_1111_bjh_18596 crossref_primary_10_3390_jcm11030590 crossref_primary_10_1016_j_cytogfr_2021_10_007 crossref_primary_10_3390_ijms22157853 crossref_primary_10_1089_neu_2023_0135 crossref_primary_10_3390_ijms231810242 crossref_primary_10_1007_s00210_024_03394_z crossref_primary_10_1128_jvi_01873_21 crossref_primary_10_1007_s11427_022_2173_9 crossref_primary_10_3389_fphar_2022_1031906 crossref_primary_10_1159_000528310 crossref_primary_10_1007_s00018_021_03889_5 crossref_primary_10_1016_j_jcm_2021_12_005 crossref_primary_10_1016_j_bbadis_2025_167745 crossref_primary_10_1007_s11033_022_07166_x crossref_primary_10_3390_ph16040584 crossref_primary_10_3389_fmed_2022_871714 crossref_primary_10_1051_medsci_2021021 crossref_primary_10_3389_fmed_2023_1212201 crossref_primary_10_1038_s41598_021_00809_2 crossref_primary_10_1097_QAD_0000000000003346 crossref_primary_10_3389_fimmu_2020_618387 crossref_primary_10_1016_j_atherosclerosis_2021_02_009 crossref_primary_10_1146_annurev_immunol_101220_023458 crossref_primary_10_1002_rmv_2500 crossref_primary_10_1007_s11033_021_06770_7 crossref_primary_10_1515_med_2024_1018 crossref_primary_10_3389_fimmu_2023_1114917 crossref_primary_10_1016_j_ijantimicag_2024_107374 crossref_primary_10_1016_j_biopha_2023_114863 crossref_primary_10_1007_s13760_023_02403_x crossref_primary_10_3390_cancers15225443 crossref_primary_10_1038_s41392_023_01496_3 crossref_primary_10_3390_ijms252313157 crossref_primary_10_1080_17512433_2022_2097905 crossref_primary_10_1093_bib_bbab446 crossref_primary_10_1016_j_virol_2024_110052 crossref_primary_10_1001_jamapediatrics_2021_2613 crossref_primary_10_1016_j_phrs_2022_106511 crossref_primary_10_62151_2786_9288_2_2_2024_07 crossref_primary_10_1038_s41392_022_01087_8 crossref_primary_10_1016_j_amjsurg_2022_09_011 crossref_primary_10_3389_fmed_2023_1289194 crossref_primary_10_2139_ssrn_4121726 crossref_primary_10_3389_fcvm_2021_795624 crossref_primary_10_3390_biom15010034 crossref_primary_10_1111_imm_13564 crossref_primary_10_1038_s12276_021_00649_0 crossref_primary_10_1631_jzus_B2300512 crossref_primary_10_3390_app11209505 crossref_primary_10_1186_s13054_024_05149_x crossref_primary_10_3390_life14010093 crossref_primary_10_1016_j_biopha_2024_116618 crossref_primary_10_1038_s41598_022_12252_y crossref_primary_10_1093_infdis_jiae392 crossref_primary_10_1097_SHK_0000000000001709 crossref_primary_10_1186_s12959_025_00700_4 crossref_primary_10_62151_2786_9288_1_2_2023_08 crossref_primary_10_1002_wsbm_1576 crossref_primary_10_1016_j_jff_2022_105029 crossref_primary_10_1096_fj_202101044RRR crossref_primary_10_3390_v13081597 crossref_primary_10_1007_s00277_023_05477_y crossref_primary_10_1186_s13326_021_00250_4 crossref_primary_10_3389_fimmu_2022_862522 crossref_primary_10_1152_physiol_00001_2023 crossref_primary_10_3390_ijms24021147 crossref_primary_10_1016_j_jpha_2021_09_009 crossref_primary_10_2174_1386207325666220519112846 crossref_primary_10_1182_blood_2020007208 crossref_primary_10_1002_hon_3155 crossref_primary_10_3389_fmed_2023_1042487 crossref_primary_10_18231_j_ijirm_2022_041 crossref_primary_10_1096_fj_202301804R crossref_primary_10_1016_j_trim_2024_102110 crossref_primary_10_1080_1547691X_2024_2369123 crossref_primary_10_1007_s00277_024_05630_1 crossref_primary_10_1016_j_micpath_2021_104799 crossref_primary_10_1016_j_mtbio_2025_101590 crossref_primary_10_3389_fmolb_2022_804109 crossref_primary_10_1080_09273948_2021_1909071 crossref_primary_10_1159_000541399 crossref_primary_10_3390_ncrna10050048 crossref_primary_10_1016_j_compbiomed_2021_104293 crossref_primary_10_1080_14787210_2022_2020097 crossref_primary_10_3389_fimmu_2022_837180 crossref_primary_10_1097_SHK_0000000000002216 crossref_primary_10_1097_SHK_0000000000001925 crossref_primary_10_1016_j_mvr_2021_104224 crossref_primary_10_14336_AD_2023_0314 crossref_primary_10_37699_2308_7005_3_2022_04 crossref_primary_10_3389_fmed_2021_734838 crossref_primary_10_1002_eji_202048959 crossref_primary_10_1016_j_omtn_2022_12_019 crossref_primary_10_3390_ijms23105516 crossref_primary_10_1002_1873_3468_14225 crossref_primary_10_1007_s00795_022_00347_4 crossref_primary_10_1097_MD_0000000000030455 crossref_primary_10_1515_tjb_2022_0044 crossref_primary_10_1007_s10753_024_02102_6 crossref_primary_10_3390_jcm13102794 crossref_primary_10_1016_j_semcancer_2021_01_003 crossref_primary_10_1038_s41392_025_02127_9 crossref_primary_10_1097_MOH_0000000000000666 crossref_primary_10_1093_infdis_jiab005 crossref_primary_10_1371_journal_pone_0264072 crossref_primary_10_3390_jcm12020601 crossref_primary_10_1016_j_bvth_2024_100038 crossref_primary_10_1109_TMBMC_2021_3071788 crossref_primary_10_2491_jjsth_32_46 crossref_primary_10_1038_s41401_022_00998_0 crossref_primary_10_1093_infdis_jiaf041 crossref_primary_10_1007_s10753_021_01520_0 crossref_primary_10_1016_j_arcmed_2024_103101 crossref_primary_10_3390_biomedicines11030929 crossref_primary_10_3390_ijms23136931 crossref_primary_10_5847_wjem_j_1920_8642_2021_03_004 crossref_primary_10_1016_j_lfs_2021_119882 crossref_primary_10_1002_smll_202407038 crossref_primary_10_1007_s13577_024_01083_w crossref_primary_10_1016_j_jmccpl_2022_100013 crossref_primary_10_2174_1389450123666221005092350 crossref_primary_10_1016_j_tips_2021_03_006 crossref_primary_10_2147_JIR_S320685 crossref_primary_10_3389_fcvm_2022_967926 crossref_primary_10_1038_s41408_021_00536_x crossref_primary_10_1002_ams2_683 crossref_primary_10_1080_09603123_2023_2252461 crossref_primary_10_1186_s41479_023_00106_8 crossref_primary_10_1007_s10557_021_07207_w crossref_primary_10_3389_fimmu_2021_651545 crossref_primary_10_3389_fvets_2023_1127099 crossref_primary_10_3389_fimmu_2022_891456 crossref_primary_10_1038_s41392_022_00907_1 crossref_primary_10_1111_1744_9987_14054 crossref_primary_10_1038_s41598_023_50445_1 crossref_primary_10_1182_bloodadvances_2023010728 crossref_primary_10_1002_hep4_1843 crossref_primary_10_1002_ptr_7258 crossref_primary_10_3390_jcm9103296 crossref_primary_10_3389_fcvm_2022_854421 crossref_primary_10_3389_fimmu_2023_1130288 crossref_primary_10_3390_ijms22052721 crossref_primary_10_1016_j_imbio_2023_152384 crossref_primary_10_1186_s43162_022_00141_9 crossref_primary_10_4252_wjsc_v13_i10_1513 crossref_primary_10_1055_s_0042_1757882 crossref_primary_10_17749_2070_4909_farmakoekonomika_2021_114 crossref_primary_10_1016_j_imlet_2022_09_005 crossref_primary_10_4049_jimmunol_2000981 crossref_primary_10_1007_s00394_023_03306_6 crossref_primary_10_1007_s40521_022_00326_1 crossref_primary_10_3389_fphar_2023_1265177 crossref_primary_10_1002_ppul_25245 crossref_primary_10_1016_j_jhep_2021_04_050 crossref_primary_10_1016_j_intimp_2024_111732 crossref_primary_10_1007_s11010_023_04785_1 crossref_primary_10_1016_j_burnso_2021_09_001 crossref_primary_10_3389_fcvm_2021_653655 crossref_primary_10_3389_fimmu_2021_755579 crossref_primary_10_1016_j_jphs_2024_08_001 crossref_primary_10_31083_j_fbl2703102 crossref_primary_10_3389_fcvm_2022_1054541 crossref_primary_10_1002_ctm2_268 crossref_primary_10_30629_0023_2149_2023_101_1_26_31 crossref_primary_10_1002_adma_202401369 crossref_primary_10_3390_diseases12100231 crossref_primary_10_1093_cvr_cvab105 crossref_primary_10_3831_KPI_2024_27_2_101 crossref_primary_10_1016_j_intimp_2021_107598 crossref_primary_10_1371_journal_pone_0289206 crossref_primary_10_1038_s41586_021_03995_1 crossref_primary_10_1186_s40001_025_02369_x crossref_primary_10_1007_s00277_024_05640_z crossref_primary_10_3390_biomedicines12122740 crossref_primary_10_1016_j_cyto_2021_155684 crossref_primary_10_1016_j_intimp_2022_109040 crossref_primary_10_5115_acb_22_098 crossref_primary_10_1073_pnas_2203437119 crossref_primary_10_1186_s13054_024_04883_6 crossref_primary_10_1155_2022_7137900 crossref_primary_10_1182_bloodadvances_2022007454 crossref_primary_10_1248_bpbreports_6_2_47 crossref_primary_10_3389_fimmu_2023_1144229 crossref_primary_10_1165_rcmb_2020_0544OC crossref_primary_10_1111_odi_14575 crossref_primary_10_30802_AALAS_CM_21_000011 crossref_primary_10_1016_j_talanta_2023_124284 crossref_primary_10_1177_1076029621999099 crossref_primary_10_3389_fimmu_2023_1134556 crossref_primary_10_3390_ijms241512376 crossref_primary_10_1002_ptr_7107 crossref_primary_10_1007_s12026_023_09412_1 |
Cites_doi | 10.1016/S0140-6736(20)30183-5 10.1146/annurev-pathol-011110-130327 10.1016/S0140-6736(20)30628-0 10.1038/s41598-018-32275-8 10.1016/S0140-6736(14)60687-5 10.1056/NEJMoa1215134 10.1073/pnas.2005615117 10.1055/s-0038-1646614 10.1016/S1074-7613(00)80334-9 10.1182/blood-2008-05-155846 10.1002/cpt.782 10.1056/NEJMoa2002032 10.1161/01.ATV.0000051384.43104.FC 10.1056/NEJMoa1202290 10.1097/SHK.0000000000001152 10.1001/jamainternmed.2020.0994 10.1016/S0140-6736(20)30937-5 10.1056/NEJMoa2015432 10.1016/S0140-6736(20)30566-3 10.1038/nrd4368 10.1097/01.ccm.0000435669.60811.24 10.1161/ATVBAHA.112.251181 10.1016/j.immuni.2019.03.026 10.1038/s41591-018-0036-4 10.1186/s12964-018-0268-4 10.1182/blood-2013-02-485623 10.1084/jem.169.1.333 10.1186/cc8872 10.1126/science.abb8925 10.1038/nri.2017.36 10.1186/s40364-018-0116-0 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Sep 8, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Sep 8, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2010229117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 22356 |
ExternalDocumentID | PMC7486751 32826331 10_1073_pnas_2010229117 26969141 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-dc07d039d388d61e5e3c56acf61b379d7f0b70543b779709fb608bffc26aad6a3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:32:33 EDT 2025 Fri Jul 11 03:25:07 EDT 2025 Mon Jun 30 08:39:15 EDT 2025 Mon Jul 21 06:02:46 EDT 2025 Thu Apr 24 22:51:46 EDT 2025 Tue Jul 01 03:40:29 EDT 2025 Thu May 29 09:12:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | COVID-19 tocilizumab cytokine release syndrome endothelial cell IL-6 |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-dc07d039d388d61e5e3c56acf61b379d7f0b70543b779709fb608bffc26aad6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: S.K. and T.K. designed research; S.K., H.I., C.O., and Y.K. performed research; T.T., S.H., H. Matsumoto, H. Matsuura, T.M., K.S., H.O., and Y.M. contributed new reagents/analytic tools; S.K., T.T., and T.K. analyzed data; and S.K. and T.K. wrote the paper. Contributed by Tadamitsu Kishimoto, June 16, 2020 (sent for review May 22, 2020; reviewed by Yihai Cao and Stefan Rose-John) Reviewers: Y.C., Karolinska Institute; and S.R.-J., Biochemisches Institut, Christian Albrechts Universität. |
ORCID | 0000-0001-9091-8285 0000-0002-8618-0385 0000-0001-5771-570X 0000-0002-0590-2893 0000-0001-5086-1405 0000-0002-0910-3124 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7486751 |
PMID | 32826331 |
PQID | 2444671435 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7486751 proquest_miscellaneous_2436391695 proquest_journals_2444671435 pubmed_primary_32826331 crossref_citationtrail_10_1073_pnas_2010229117 crossref_primary_10_1073_pnas_2010229117 jstor_primary_26969141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-08 |
PublicationDateYYYYMMDD | 2020-09-08 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 Esmon C. T. (e_1_3_4_23_2) 1999; 84 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 33972411 - Proc Natl Acad Sci U S A. 2021 May 25;118(21) |
References_xml | – ident: e_1_3_4_13_2 doi: 10.1016/S0140-6736(20)30183-5 – ident: e_1_3_4_20_2 doi: 10.1146/annurev-pathol-011110-130327 – ident: e_1_3_4_26_2 doi: 10.1016/S0140-6736(20)30628-0 – ident: e_1_3_4_17_2 doi: 10.1038/s41598-018-32275-8 – ident: e_1_3_4_1_2 doi: 10.1016/S0140-6736(14)60687-5 – ident: e_1_3_4_10_2 doi: 10.1056/NEJMoa1215134 – ident: e_1_3_4_11_2 doi: 10.1073/pnas.2005615117 – ident: e_1_3_4_19_2 doi: 10.1055/s-0038-1646614 – ident: e_1_3_4_24_2 doi: 10.1016/S1074-7613(00)80334-9 – ident: e_1_3_4_25_2 doi: 10.1182/blood-2008-05-155846 – ident: e_1_3_4_9_2 doi: 10.1002/cpt.782 – ident: e_1_3_4_12_2 doi: 10.1056/NEJMoa2002032 – ident: e_1_3_4_14_2 doi: 10.1161/01.ATV.0000051384.43104.FC – ident: e_1_3_4_7_2 doi: 10.1056/NEJMoa1202290 – ident: e_1_3_4_18_2 doi: 10.1097/SHK.0000000000001152 – ident: e_1_3_4_29_2 doi: 10.1001/jamainternmed.2020.0994 – ident: e_1_3_4_31_2 doi: 10.1016/S0140-6736(20)30937-5 – ident: e_1_3_4_32_2 doi: 10.1056/NEJMoa2015432 – ident: e_1_3_4_30_2 doi: 10.1016/S0140-6736(20)30566-3 – ident: e_1_3_4_6_2 doi: 10.1038/nrd4368 – ident: e_1_3_4_16_2 doi: 10.1097/01.ccm.0000435669.60811.24 – ident: e_1_3_4_22_2 doi: 10.1161/ATVBAHA.112.251181 – ident: e_1_3_4_8_2 doi: 10.1016/j.immuni.2019.03.026 – ident: e_1_3_4_4_2 doi: 10.1038/s41591-018-0036-4 – ident: e_1_3_4_28_2 doi: 10.1186/s12964-018-0268-4 – ident: e_1_3_4_27_2 doi: 10.1182/blood-2013-02-485623 – ident: e_1_3_4_21_2 doi: 10.1084/jem.169.1.333 – ident: e_1_3_4_15_2 doi: 10.1186/cc8872 – volume: 84 start-page: 254 year: 1999 ident: e_1_3_4_23_2 article-title: Inflammation, sepsis, and coagulation publication-title: Haematologica – ident: e_1_3_4_2_2 doi: 10.1126/science.abb8925 – ident: e_1_3_4_3_2 doi: 10.1038/nri.2017.36 – ident: e_1_3_4_5_2 doi: 10.1186/s40364-018-0116-0 – reference: 33972411 - Proc Natl Acad Sci U S A. 2021 May 25;118(21): |
SSID | ssj0009580 |
Score | 2.6757011 |
Snippet | Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric... Cytokine release syndrome (CRS) is a life-threatening complication induced by hyperinflammatory responses. However, no specific immunotherapies are available... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22351 |
SubjectTerms | Adult Aged Antibodies, Monoclonal, Humanized - therapeutic use Antigens Bacteria Bacterial diseases Bacterial infections Betacoronavirus Biological Sciences Burns - metabolism Burns - pathology Cell activation Cell therapy Cells, Cultured Chimeric antigen receptors Circuits Coagulation Coronavirus Infections - drug therapy Coronavirus Infections - metabolism Coronavirus Infections - pathology Coronaviruses COVID-19 Cytokine Release Syndrome - drug therapy Cytokine Release Syndrome - metabolism Cytokine Release Syndrome - pathology Cytokines Cytokines - blood Cytokines - metabolism Endothelial cells Endothelial Cells - drug effects Endothelial Cells - metabolism Female Humans Immunotherapy Inflammation Inhibitors Interleukin 10 Interleukin 6 Interleukin 8 Interleukin-6 - blood Interleukin-6 - metabolism Lymphocytes Lymphocytes T Male Middle Aged Molecular modelling Monoclonal antibodies Monocyte chemoattractant protein 1 Monocytes Pandemics Pathogenesis Patients Plasminogen Activator Inhibitor 1 - blood Plasminogen Activator Inhibitor 1 - metabolism Plasminogen activator inhibitors Pneumonia, Viral - drug therapy Pneumonia, Viral - metabolism Pneumonia, Viral - pathology Receptors, Interleukin-6 - antagonists & inhibitors Receptors, Interleukin-6 - metabolism Respiratory distress syndrome Respiratory Distress Syndrome - metabolism Respiratory Distress Syndrome - pathology SARS-CoV-2 Sepsis Sepsis - metabolism Sepsis - pathology Signal Transduction Signaling Viral diseases |
Title | IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome |
URI | https://www.jstor.org/stable/26969141 https://www.ncbi.nlm.nih.gov/pubmed/32826331 https://www.proquest.com/docview/2444671435 https://www.proquest.com/docview/2436391695 https://pubmed.ncbi.nlm.nih.gov/PMC7486751 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkNBeEAMGhYGMxMPQlJHEqRM_TghUvqo9bNLeKjt21KytU60NEvC38L9ytuM0LZ0EvERV_FE198v57vq7O4Rek1jwyLglGRcqSGioAlEQuEhKRUwoITYX5uuIDi-TT1eDq17vV4e1VK_Eaf5jZ17J_0gV7oFcTZbsP0i23RRuwGeQL1xBwnD9Kxl__BJQ0-RBLwPDw-Azl6Aia0OzWoBdPC91BattxYxvxr2G0Ukp4C2-CSKXWtJSUZWWJhtrZkLoJpxvibL591U1NYao6a0CB97OCgfn7SG49JSDkY8xnq0zVho1sjwJTs5H6_7Hn33Eur4u16xgrvnU2rUX1XLiuGIWwbqqbQh2CL9hXrYhYu0ivpNyyqdVN5IB-DD_yzjlq5z2BeMloInrH9qqZ5fb2eCQbGjbmLhqtX-cA6C4TPNizZeWvRfHrNmmg4rF3MKCgNNJfdrYZultP3QH3Y3BC7G80WG3pnMW-mpRKXm79W376J5fv2HzONrrLodmm5fbMXQuHqD7jYeCzxzcDlBP6YfowAsPHzeFyt88Qj8N_vAW_nCDP9zBH27xhzv4wwZ_2OMPd_CHLf5gLvb4ww3-sMffY3T54f3Fu2HQNPMIcrBJV4HMw1SGhEmSZZJGaqBIPqA8L2gkSMpkWoQiBf-BiDRlacgKQcNMFEUeU84l5eQQ7elKq6cIMwn3MgmHh1AJo5InhNOC8UyJImEy66NT_7jHeVPp3jRcmY0t4yIlYyOq8VpUfXTcLli4Ii-3Tz208mvnxZRRFiVRHx15gY4bFQHrkgQMEeOS9NGrdhgUuHmMXKuqNnNAI4KTxmDOEyf_dnMPoD5KN5DRTjDF4TdHdDmxReJTU0pzED27dc_naH_9Eh6hvdVNrV6Agb0SLy3MfwOx_dX5 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IL-6+trans-signaling+induces+plasminogen+activator+inhibitor-1+from+vascular+endothelial+cells+in+cytokine+release+syndrome&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kang%2C+Sujin&rft.au=Tanaka%2C+Toshio&rft.au=Inoue%2C+Hitomi&rft.au=Ono%2C+Chikako&rft.date=2020-09-08&rft.eissn=1091-6490&rft.volume=117&rft.issue=36&rft.spage=22351&rft_id=info:doi/10.1073%2Fpnas.2010229117&rft_id=info%3Apmid%2F32826331&rft.externalDocID=32826331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |