Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics

Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for col...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 16; pp. 7951 - 7956
Main Authors Zhang, Furu, Kurokawa, Kazuhiro, Lassoued, Ayoub, Crowell, James A., Miller, Donald T.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjectswith normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
AbstractList Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjectswith normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
The three spectral types of cone photoreceptors underlie color perception and are largely responsible for inherited and acquired color vision anomalies. In vivo mapping of the trichromatic cone mosaic by imaging provides the most direct and quantitative means to assess the role of photoreceptors in color vision, but remains challenging because cone reflections only weakly differentiate cone types. Here, we show a noninvasive light microscopy modality that reveals the cell’s spectral type, using the optical phase change that arises within the cell when stimulated with light. Our procedure is orders of magnitude faster and more accurate than prior approaches and makes in vivo cone classification promising for a much wider range of color vision applications. Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: ( i ) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, ( ii ) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and ( iii ) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: ( ) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, ( ) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and ( ) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.
Author Lassoued, Ayoub
Crowell, James A.
Kurokawa, Kazuhiro
Miller, Donald T.
Zhang, Furu
Author_xml – sequence: 1
  givenname: Furu
  surname: Zhang
  fullname: Zhang, Furu
– sequence: 2
  givenname: Kazuhiro
  surname: Kurokawa
  fullname: Kurokawa, Kazuhiro
– sequence: 3
  givenname: Ayoub
  surname: Lassoued
  fullname: Lassoued, Ayoub
– sequence: 4
  givenname: James A.
  surname: Crowell
  fullname: Crowell, James A.
– sequence: 5
  givenname: Donald T.
  surname: Miller
  fullname: Miller, Donald T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30944223$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLcLZ04gS1x6STtjO05yQapWUJAqcYGz5Th216vEDnFSaf97vN2yQA-c5jC_9-bjXZCzEIMl5C3CFULFr8eg0xXWKLkERPmCrBAaLKRo4IysAFhV1IKJc3KR0g4AmrKGV-ScQyMEY3xF3CYb0nEb5zhZY8dcqOl1St55o2cfA_WBzltLe__gwz3dLoMO1O4tdVMcjso0-2HpH-nCh24xtssNnSzt9kEP3qTX5KXTfbJvnuqa_Pj86fvmS3H37fbr5uauMCU0c9G1yMBK1xldli2ayqHgruFCSMOkaVlpalYb1xhXC9Qc27rjgI1oULcWBF-Tj0ffcWkH2xkb5kn3apz8oKe9itqrfzvBb9V9fFBSVKVAzAaXTwZT_LnYNKvBJ2P7Xgcbl6QYA455n_zxNfnwDN3FZQr5vEwxrGrOywP1_u-NTqv8jiAD10fATDGlyboTgqAOIatDyOpPyFlRPlMYPz9-P5_k-__o3h11u5RjPo1hsgLOJfJfIUS3pA
CitedBy_id crossref_primary_10_1073_pnas_2202485119
crossref_primary_10_1364_BOE_473608
crossref_primary_10_1364_OL_398868
crossref_primary_10_1073_pnas_2119737118
crossref_primary_10_1021_acsnano_4c01663
crossref_primary_10_1167_iovs_63_11_23
crossref_primary_10_1016_j_cobeha_2019_05_005
crossref_primary_10_1364_BOE_444567
crossref_primary_10_1073_pnas_2107444118
crossref_primary_10_1016_j_exer_2025_110349
crossref_primary_10_1016_j_sbi_2021_03_016
crossref_primary_10_1126_sciadv_abc1124
crossref_primary_10_3390_bioengineering10030313
crossref_primary_10_1016_j_exer_2019_05_023
crossref_primary_10_1016_j_visres_2024_108509
crossref_primary_10_1021_acsbiomaterials_3c00175
crossref_primary_10_1016_j_addma_2021_102464
crossref_primary_10_3390_electronics10121443
crossref_primary_10_1364_BOE_393906
crossref_primary_10_31857_S0235009223010055
crossref_primary_10_1167_iovs_62_2_8
crossref_primary_10_1167_iovs_63_13_22
crossref_primary_10_1364_BOE_399334
crossref_primary_10_1364_OE_395523
crossref_primary_10_1167_tvst_10_11_17
crossref_primary_10_1177_1535370220978898
crossref_primary_10_1016_j_bionps_2020_100018
crossref_primary_10_1364_BOE_403509
crossref_primary_10_1364_BOE_423733
crossref_primary_10_3390_e25050766
crossref_primary_10_1364_BOE_473475
crossref_primary_10_3390_diagnostics15010028
crossref_primary_10_1364_BOE_439900
crossref_primary_10_1364_BOE_455783
crossref_primary_10_3389_fopht_2024_1340692
crossref_primary_10_1038_s41467_024_49014_5
crossref_primary_10_1007_s11427_021_2163_1
crossref_primary_10_1016_j_electacta_2020_137340
crossref_primary_10_1016_j_jlumin_2023_120269
crossref_primary_10_1177_25158414211002400
crossref_primary_10_1167_iovs_64_10_17
crossref_primary_10_3788_CJL221304
crossref_primary_10_1364_BOE_467634
crossref_primary_10_3390_life11101104
crossref_primary_10_3390_life11121337
crossref_primary_10_1364_BOE_475705
crossref_primary_10_1088_1361_6463_adb3b4
crossref_primary_10_1177_1535370219896284
crossref_primary_10_1167_iovs_63_1_29
crossref_primary_10_1364_BOE_462594
crossref_primary_10_1364_OL_492178
crossref_primary_10_1002_gch2_202000048
crossref_primary_10_1002_adfm_202105596
crossref_primary_10_1146_annurev_vision_102122_100022
crossref_primary_10_1364_BOE_538481
crossref_primary_10_1167_iovs_62_13_20
crossref_primary_10_1364_BOE_454560
crossref_primary_10_1364_BOE_472274
crossref_primary_10_1038_s41598_024_58059_x
crossref_primary_10_1097_YCO_0000000000000624
crossref_primary_10_1038_s41598_019_47979_8
crossref_primary_10_1167_iovs_61_3_9
crossref_primary_10_1038_s41598_021_89599_1
crossref_primary_10_3389_fcell_2023_1197744
crossref_primary_10_1002_smll_202203357
crossref_primary_10_1364_OPTICA_460835
crossref_primary_10_1364_BOE_533249
crossref_primary_10_1364_BOE_505395
crossref_primary_10_1364_BOE_471990
crossref_primary_10_1364_BOE_436337
crossref_primary_10_14271_DMS_21475_DE
crossref_primary_10_1002_jbio_202100252
crossref_primary_10_1088_1361_6463_ad8deb
crossref_primary_10_1146_annurev_vision_030320_041255
crossref_primary_10_1016_j_bpj_2020_09_005
crossref_primary_10_1364_BOE_404336
crossref_primary_10_1364_OE_409193
crossref_primary_10_1016_j_survophthal_2023_09_006
crossref_primary_10_1364_BOE_10_004142
crossref_primary_10_3390_ijms25042226
crossref_primary_10_1016_j_preteyeres_2020_100920
crossref_primary_10_1364_BOE_485371
crossref_primary_10_1177_15353702211013799
crossref_primary_10_1111_opo_13307
crossref_primary_10_1101_cshperspect_a041285
crossref_primary_10_3389_fmed_2022_864824
crossref_primary_10_1177_1535370220935406
crossref_primary_10_1364_OL_44_005671
crossref_primary_10_1088_1361_6463_ad89cc
crossref_primary_10_1136_bjophthalmol_2021_319228
crossref_primary_10_1364_BOE_472174
crossref_primary_10_1016_j_addlet_2023_100129
crossref_primary_10_1167_tvst_10_12_27
crossref_primary_10_1167_tvst_13_8_41
crossref_primary_10_3390_photonics9050288
crossref_primary_10_1167_tvst_13_10_5
crossref_primary_10_1002_jbio_202000462
crossref_primary_10_1016_j_preteyeres_2023_101170
crossref_primary_10_1167_iovs_65_10_45
crossref_primary_10_1063_5_0052258
Cites_doi 10.1016/S0042-6989(00)00021-3
10.1016/0042-6989(71)90003-4
10.1364/BOE.8.001803
10.1364/BOE.5.004186
10.1167/tvst.5.5.2
10.1364/JOSAA.17.000517
10.1007/BF00175988
10.1364/JOSAA.10.000052
10.1016/0042-6989(64)90034-3
10.1038/17383
10.1016/S0042-6989(97)00466-5
10.1364/BOE.4.003007
10.1167/2.8.1
10.4161/cl.29390
10.1523/JNEUROSCI.2414-05.2005
10.1364/JOSAA.13.000641
10.1113/JP272556
10.1364/OE.15.016141
10.1038/srep46346
10.1073/pnas.0401440101
10.1002/cne.903120411
10.1016/S0042-6989(01)00043-8
10.1167/iovs.11-7199
10.1007/BF01487206
10.1073/pnas.1606428113
10.1016/0042-6989(68)90040-0
10.1371/journal.pone.0144891
10.1016/0042-6989(89)90174-0
10.1364/JOSAA.17.000499
10.1016/0042-6989(89)90178-8
10.1371/journal.pone.0079251
10.1364/BOE.3.000104
10.1016/0042-6989(91)90207-L
10.1364/JOSAA.14.002884
10.1113/jphysiol.1990.sp018193
10.1364/JOSAA.10.001413
10.1167/iovs.11-8796
10.1073/pnas.1620572114
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Apr 16, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Apr 16, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1816360116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7956
ExternalDocumentID PMC6475411
30944223
10_1073_pnas_1816360116
26703361
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY018339
– fundername: NEI NIH HHS
  grantid: P30 EY001730
– fundername: NEI NIH HHS
  grantid: P30 EY019008
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: R01-EY018339
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: P30-EY019008
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-db120e6fdca55b1c7f143f93446c26cb25c828cf9cf841a31b8d3019491abe043
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:57:40 EDT 2025
Fri Jul 11 11:01:01 EDT 2025
Sat Aug 23 12:34:17 EDT 2025
Thu Apr 03 07:00:59 EDT 2025
Tue Jul 01 03:40:02 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Thu May 29 13:25:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords adaptive optics
cone classification
optical coherence tomography
retina
color vision
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-db120e6fdca55b1c7f143f93446c26cb25c828cf9cf841a31b8d3019491abe043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: F.Z. and D.T.M. designed research; F.Z., K.K., and A.L. performed research; F.Z., K.K., and J.A.C. contributed new reagents/analytic tools; F.Z., K.K., A.L., J.A.C., and D.T.M. analyzed data; F.Z., J.A.C., and D.T.M. wrote the paper; and D.T.M. supervised the project.
Edited by Austin Roorda, University of California, Berkeley, CA, and accepted by Editorial Board Member Jeremy Nathans March 11, 2019 (received for review September 21, 2018)
ORCID 0000-0002-1597-8824
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6475411
PMID 30944223
PQID 2221783356
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475411
proquest_miscellaneous_2203134416
proquest_journals_2221783356
pubmed_primary_30944223
crossref_primary_10_1073_pnas_1816360116
crossref_citationtrail_10_1073_pnas_1816360116
jstor_primary_26703361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-16
PublicationDateYYYYMMDD 2019-04-16
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Kremers J (e_1_3_3_15_2) 1999; 40
Rodieck RW (e_1_3_3_1_2) 1998
e_1_3_3_17_2
Sharpe LT (e_1_3_3_3_2) 1999
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
Greenstein VC (e_1_3_3_2_2) 1989; 30
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
MacQueen J (e_1_3_3_37_2) 1967
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_31_2
  doi: 10.1016/S0042-6989(00)00021-3
– ident: e_1_3_3_7_2
  doi: 10.1016/0042-6989(71)90003-4
– ident: e_1_3_3_30_2
  doi: 10.1364/BOE.8.001803
– ident: e_1_3_3_29_2
  doi: 10.1364/BOE.5.004186
– ident: e_1_3_3_41_2
  doi: 10.1167/tvst.5.5.2
– ident: e_1_3_3_11_2
  doi: 10.1364/JOSAA.17.000517
– ident: e_1_3_3_42_2
  doi: 10.1007/BF00175988
– ident: e_1_3_3_23_2
  doi: 10.1364/JOSAA.10.000052
– ident: e_1_3_3_6_2
  doi: 10.1016/0042-6989(64)90034-3
– ident: e_1_3_3_19_2
  doi: 10.1038/17383
– ident: e_1_3_3_14_2
  doi: 10.1016/S0042-6989(97)00466-5
– ident: e_1_3_3_28_2
  doi: 10.1364/BOE.4.003007
– volume-title: The First Steps in Seeing
  year: 1998
  ident: e_1_3_3_1_2
– ident: e_1_3_3_17_2
  doi: 10.1167/2.8.1
– ident: e_1_3_3_33_2
  doi: 10.4161/cl.29390
– ident: e_1_3_3_21_2
  doi: 10.1523/JNEUROSCI.2414-05.2005
– start-page: 3
  volume-title: Color Vision: From Genes to Perception
  year: 1999
  ident: e_1_3_3_3_2
– ident: e_1_3_3_13_2
  doi: 10.1364/JOSAA.13.000641
– ident: e_1_3_3_34_2
  doi: 10.1113/JP272556
– ident: e_1_3_3_26_2
  doi: 10.1364/OE.15.016141
– ident: e_1_3_3_4_2
  doi: 10.1038/srep46346
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.0401440101
– ident: e_1_3_3_38_2
  doi: 10.1002/cne.903120411
– ident: e_1_3_3_20_2
  doi: 10.1016/S0042-6989(01)00043-8
– ident: e_1_3_3_39_2
  doi: 10.1167/iovs.11-7199
– ident: e_1_3_3_5_2
  doi: 10.1007/BF01487206
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1606428113
– ident: e_1_3_3_43_2
  doi: 10.1016/0042-6989(68)90040-0
– ident: e_1_3_3_44_2
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pone.0144891
– ident: e_1_3_3_9_2
  doi: 10.1016/0042-6989(89)90174-0
– start-page: 281
  volume-title: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability
  year: 1967
  ident: e_1_3_3_37_2
– volume: 40
  start-page: 920
  year: 1999
  ident: e_1_3_3_15_2
  article-title: Cone signal contributions to electroretinograms in dichromats and trichromats
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_16_2
  doi: 10.1364/JOSAA.17.000499
– ident: e_1_3_3_8_2
  doi: 10.1016/0042-6989(89)90178-8
– ident: e_1_3_3_25_2
  doi: 10.1371/journal.pone.0079251
– ident: e_1_3_3_27_2
  doi: 10.1364/BOE.3.000104
– ident: e_1_3_3_10_2
  doi: 10.1016/0042-6989(91)90207-L
– ident: e_1_3_3_18_2
  doi: 10.1364/JOSAA.14.002884
– ident: e_1_3_3_35_2
  doi: 10.1113/jphysiol.1990.sp018193
– ident: e_1_3_3_12_2
  doi: 10.1364/JOSAA.10.001413
– ident: e_1_3_3_24_2
  doi: 10.1167/iovs.11-8796
– volume: 30
  start-page: 1732
  year: 1989
  ident: e_1_3_3_2_2
  article-title: S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.1620572114
SSID ssj0009580
Score 2.5926397
Snippet Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and...
The three spectral types of cone photoreceptors underlie color perception and are largely responsible for inherited and acquired color vision anomalies. In...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7951
SubjectTerms Adaptive optics
Adult
Biological Sciences
Blurring
Color
Color blindness
Color vision
Color Vision - physiology
Cone classifiers
Cones
Densitometers
Densitometry
Downstream effects
Dynamics
Eye
Humans
Image acquisition
Image Processing, Computer-Assisted
Information processing
Male
Middle Aged
Optical Coherence Tomography
Optics
Phase transitions
Photic Stimulation - methods
Photoactivation
Photoreception
Photoreceptors
Phototransduction
Physical Sciences
Retina
Retina - diagnostic imaging
Retina - physiology
Retinal Cone Photoreceptor Cells - classification
Retinal Cone Photoreceptor Cells - physiology
Tomography, Optical Coherence
Wavelengths
Young Adult
Title Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics
URI https://www.jstor.org/stable/26703361
https://www.ncbi.nlm.nih.gov/pubmed/30944223
https://www.proquest.com/docview/2221783356
https://www.proquest.com/docview/2203134416
https://pubmed.ncbi.nlm.nih.gov/PMC6475411
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgUBjISh6EqJU6cr2M1MU0cqh02abcocWy1YiRV22ja_jb-OJ4_k1StNLhUbWJbdd4vfr9nvw-EvoqKkyhJCs-vqtQDBg6vVARETjCwDSoR-IIpL995fHlDf95Gt6PRn57XUrstp-xxb1zJ_0gVroFcZZTsP0jWDQoX4DvIFz5BwvD5JBmfN0ARV4sG7GYu3VOa9YRJNizdf4q-F-PdUu0b6IJ8_IHrqBLVE17x36aElwf2eSv9AVYL0G2TSher3_T565XTdxvrXTC324mzLjjFrBibiTe5mneljt3u9EW7bnuHSM2v4t6Epj22i-W6cW5CMJmm1fuxs4emLd2Rybqx7tzKz3cym_b3L4g6itHhlS6eAPQk1ZHUU66XYWAxXkx1IVG3Tne9WhuhaZbdJDNZa7n9Ge9VD7CeyZrGdbGZArORqdLsoINE3DsK0rktqgP7JMzlAHk3wDP0PAAjJVBqoZ_yOdUBUGZ-NrFUEn7f-QcDTqTdYvcZPLt-uz0idP0KvTQWDJ5pOB6jEa9fo2MrcXxmEpl_e4OExCce4BMP8YmXNQYMYY1PrPCJAZ9Y4hMfwidW-MQWn2_RzcWP6_NLz9T18BjQ061XlSTweSwqVkRRSVgigLSLLKQ0ZkHMyiBiaZAykTGRUlKEpEwr0EMZzUhRcp-GJ-iohgm8R9jngaBCFKBHBPVZVvIARhMRqZKIsigdo6l9sjkzSe9l7ZW7_IAsx-jMdVjpfC-Hm54oUbl2QQzqM4zJGJ1a2eVmtdjkwMNJIiMcod8XdxvWcnlAV9S8aWUbmUkVDBRo806L2g0e-hmlwOXHKBmAwDWQeeKHd-rlQuWLjyk8DEI-PH1qH9GL7lU9RUfbdcs_Afnelp8Vxv8CFPneDA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cone+photoreceptor+classification+in+the+living+human+eye+from+photostimulation-induced+phase+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Furu&rft.au=Kurokawa%2C+Kazuhiro&rft.au=Lassoued%2C+Ayoub&rft.au=Crowell%2C+James+A.&rft.date=2019-04-16&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=16&rft.spage=7951&rft.epage=7956&rft_id=info:doi/10.1073%2Fpnas.1816360116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1816360116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon