Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics
Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for col...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 16; pp. 7951 - 7956 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjectswith normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. |
---|---|
AbstractList | Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjectswith normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. The three spectral types of cone photoreceptors underlie color perception and are largely responsible for inherited and acquired color vision anomalies. In vivo mapping of the trichromatic cone mosaic by imaging provides the most direct and quantitative means to assess the role of photoreceptors in color vision, but remains challenging because cone reflections only weakly differentiate cone types. Here, we show a noninvasive light microscopy modality that reveals the cell’s spectral type, using the optical phase change that arises within the cell when stimulated with light. Our procedure is orders of magnitude faster and more accurate than prior approaches and makes in vivo cone classification promising for a much wider range of color vision applications. Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: ( i ) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, ( ii ) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and ( iii ) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: ( ) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, ( ) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and ( ) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function.Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and proportion of these spectral types in the retina set fundamental limits on color perception, and abnormal or missing types are responsible for color vision loss. Imaging provides the most direct and quantitative means to study these photoreceptor properties at the cellular scale in the living human retina, but remains challenging. Current methods rely on retinal densitometry to distinguish cone types, a prohibitively slow process. Here, we show that photostimulation-induced optical phase changes occur in cone cells and carry substantial information about spectral type, enabling cones to be differentiated with unprecedented accuracy and efficiency. Moreover, these phase dynamics arise from physiological activity occurring on dramatically different timescales (from milliseconds to seconds) inside the cone outer segment, thus exposing the phototransduction cascade and subsequent downstream effects. We captured these dynamics in cones of subjects with normal color vision and a deuteranope, and at different macular locations by: (i) marrying adaptive optics to phase-sensitive optical coherence tomography to avoid optical blurring of the eye, (ii) acquiring images at high speed that samples phase dynamics at up to 3 KHz, and (iii) localizing phase changes to the cone outer segment, where photoactivation occurs. Our method should have broad appeal for color vision applications in which the underlying neural processing of photoreceptors is sought and for investigations of retinal diseases that affect cone function. |
Author | Lassoued, Ayoub Crowell, James A. Kurokawa, Kazuhiro Miller, Donald T. Zhang, Furu |
Author_xml | – sequence: 1 givenname: Furu surname: Zhang fullname: Zhang, Furu – sequence: 2 givenname: Kazuhiro surname: Kurokawa fullname: Kurokawa, Kazuhiro – sequence: 3 givenname: Ayoub surname: Lassoued fullname: Lassoued, Ayoub – sequence: 4 givenname: James A. surname: Crowell fullname: Crowell, James A. – sequence: 5 givenname: Donald T. surname: Miller fullname: Miller, Donald T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30944223$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLcLZ04gS1x6STtjO05yQapWUJAqcYGz5Th216vEDnFSaf97vN2yQA-c5jC_9-bjXZCzEIMl5C3CFULFr8eg0xXWKLkERPmCrBAaLKRo4IysAFhV1IKJc3KR0g4AmrKGV-ScQyMEY3xF3CYb0nEb5zhZY8dcqOl1St55o2cfA_WBzltLe__gwz3dLoMO1O4tdVMcjso0-2HpH-nCh24xtssNnSzt9kEP3qTX5KXTfbJvnuqa_Pj86fvmS3H37fbr5uauMCU0c9G1yMBK1xldli2ayqHgruFCSMOkaVlpalYb1xhXC9Qc27rjgI1oULcWBF-Tj0ffcWkH2xkb5kn3apz8oKe9itqrfzvBb9V9fFBSVKVAzAaXTwZT_LnYNKvBJ2P7Xgcbl6QYA455n_zxNfnwDN3FZQr5vEwxrGrOywP1_u-NTqv8jiAD10fATDGlyboTgqAOIatDyOpPyFlRPlMYPz9-P5_k-__o3h11u5RjPo1hsgLOJfJfIUS3pA |
CitedBy_id | crossref_primary_10_1073_pnas_2202485119 crossref_primary_10_1364_BOE_473608 crossref_primary_10_1364_OL_398868 crossref_primary_10_1073_pnas_2119737118 crossref_primary_10_1021_acsnano_4c01663 crossref_primary_10_1167_iovs_63_11_23 crossref_primary_10_1016_j_cobeha_2019_05_005 crossref_primary_10_1364_BOE_444567 crossref_primary_10_1073_pnas_2107444118 crossref_primary_10_1016_j_exer_2025_110349 crossref_primary_10_1016_j_sbi_2021_03_016 crossref_primary_10_1126_sciadv_abc1124 crossref_primary_10_3390_bioengineering10030313 crossref_primary_10_1016_j_exer_2019_05_023 crossref_primary_10_1016_j_visres_2024_108509 crossref_primary_10_1021_acsbiomaterials_3c00175 crossref_primary_10_1016_j_addma_2021_102464 crossref_primary_10_3390_electronics10121443 crossref_primary_10_1364_BOE_393906 crossref_primary_10_31857_S0235009223010055 crossref_primary_10_1167_iovs_62_2_8 crossref_primary_10_1167_iovs_63_13_22 crossref_primary_10_1364_BOE_399334 crossref_primary_10_1364_OE_395523 crossref_primary_10_1167_tvst_10_11_17 crossref_primary_10_1177_1535370220978898 crossref_primary_10_1016_j_bionps_2020_100018 crossref_primary_10_1364_BOE_403509 crossref_primary_10_1364_BOE_423733 crossref_primary_10_3390_e25050766 crossref_primary_10_1364_BOE_473475 crossref_primary_10_3390_diagnostics15010028 crossref_primary_10_1364_BOE_439900 crossref_primary_10_1364_BOE_455783 crossref_primary_10_3389_fopht_2024_1340692 crossref_primary_10_1038_s41467_024_49014_5 crossref_primary_10_1007_s11427_021_2163_1 crossref_primary_10_1016_j_electacta_2020_137340 crossref_primary_10_1016_j_jlumin_2023_120269 crossref_primary_10_1177_25158414211002400 crossref_primary_10_1167_iovs_64_10_17 crossref_primary_10_3788_CJL221304 crossref_primary_10_1364_BOE_467634 crossref_primary_10_3390_life11101104 crossref_primary_10_3390_life11121337 crossref_primary_10_1364_BOE_475705 crossref_primary_10_1088_1361_6463_adb3b4 crossref_primary_10_1177_1535370219896284 crossref_primary_10_1167_iovs_63_1_29 crossref_primary_10_1364_BOE_462594 crossref_primary_10_1364_OL_492178 crossref_primary_10_1002_gch2_202000048 crossref_primary_10_1002_adfm_202105596 crossref_primary_10_1146_annurev_vision_102122_100022 crossref_primary_10_1364_BOE_538481 crossref_primary_10_1167_iovs_62_13_20 crossref_primary_10_1364_BOE_454560 crossref_primary_10_1364_BOE_472274 crossref_primary_10_1038_s41598_024_58059_x crossref_primary_10_1097_YCO_0000000000000624 crossref_primary_10_1038_s41598_019_47979_8 crossref_primary_10_1167_iovs_61_3_9 crossref_primary_10_1038_s41598_021_89599_1 crossref_primary_10_3389_fcell_2023_1197744 crossref_primary_10_1002_smll_202203357 crossref_primary_10_1364_OPTICA_460835 crossref_primary_10_1364_BOE_533249 crossref_primary_10_1364_BOE_505395 crossref_primary_10_1364_BOE_471990 crossref_primary_10_1364_BOE_436337 crossref_primary_10_14271_DMS_21475_DE crossref_primary_10_1002_jbio_202100252 crossref_primary_10_1088_1361_6463_ad8deb crossref_primary_10_1146_annurev_vision_030320_041255 crossref_primary_10_1016_j_bpj_2020_09_005 crossref_primary_10_1364_BOE_404336 crossref_primary_10_1364_OE_409193 crossref_primary_10_1016_j_survophthal_2023_09_006 crossref_primary_10_1364_BOE_10_004142 crossref_primary_10_3390_ijms25042226 crossref_primary_10_1016_j_preteyeres_2020_100920 crossref_primary_10_1364_BOE_485371 crossref_primary_10_1177_15353702211013799 crossref_primary_10_1111_opo_13307 crossref_primary_10_1101_cshperspect_a041285 crossref_primary_10_3389_fmed_2022_864824 crossref_primary_10_1177_1535370220935406 crossref_primary_10_1364_OL_44_005671 crossref_primary_10_1088_1361_6463_ad89cc crossref_primary_10_1136_bjophthalmol_2021_319228 crossref_primary_10_1364_BOE_472174 crossref_primary_10_1016_j_addlet_2023_100129 crossref_primary_10_1167_tvst_10_12_27 crossref_primary_10_1167_tvst_13_8_41 crossref_primary_10_3390_photonics9050288 crossref_primary_10_1167_tvst_13_10_5 crossref_primary_10_1002_jbio_202000462 crossref_primary_10_1016_j_preteyeres_2023_101170 crossref_primary_10_1167_iovs_65_10_45 crossref_primary_10_1063_5_0052258 |
Cites_doi | 10.1016/S0042-6989(00)00021-3 10.1016/0042-6989(71)90003-4 10.1364/BOE.8.001803 10.1364/BOE.5.004186 10.1167/tvst.5.5.2 10.1364/JOSAA.17.000517 10.1007/BF00175988 10.1364/JOSAA.10.000052 10.1016/0042-6989(64)90034-3 10.1038/17383 10.1016/S0042-6989(97)00466-5 10.1364/BOE.4.003007 10.1167/2.8.1 10.4161/cl.29390 10.1523/JNEUROSCI.2414-05.2005 10.1364/JOSAA.13.000641 10.1113/JP272556 10.1364/OE.15.016141 10.1038/srep46346 10.1073/pnas.0401440101 10.1002/cne.903120411 10.1016/S0042-6989(01)00043-8 10.1167/iovs.11-7199 10.1007/BF01487206 10.1073/pnas.1606428113 10.1016/0042-6989(68)90040-0 10.1371/journal.pone.0144891 10.1016/0042-6989(89)90174-0 10.1364/JOSAA.17.000499 10.1016/0042-6989(89)90178-8 10.1371/journal.pone.0079251 10.1364/BOE.3.000104 10.1016/0042-6989(91)90207-L 10.1364/JOSAA.14.002884 10.1113/jphysiol.1990.sp018193 10.1364/JOSAA.10.001413 10.1167/iovs.11-8796 10.1073/pnas.1620572114 |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences Apr 16, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Apr 16, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1816360116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7956 |
ExternalDocumentID | PMC6475411 30944223 10_1073_pnas_1816360116 26703361 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R01 EY018339 – fundername: NEI NIH HHS grantid: P30 EY001730 – fundername: NEI NIH HHS grantid: P30 EY019008 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: R01-EY018339 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: P30-EY019008 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-db120e6fdca55b1c7f143f93446c26cb25c828cf9cf841a31b8d3019491abe043 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:57:40 EDT 2025 Fri Jul 11 11:01:01 EDT 2025 Sat Aug 23 12:34:17 EDT 2025 Thu Apr 03 07:00:59 EDT 2025 Tue Jul 01 03:40:02 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Thu May 29 13:25:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | adaptive optics cone classification optical coherence tomography retina color vision |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-db120e6fdca55b1c7f143f93446c26cb25c828cf9cf841a31b8d3019491abe043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: F.Z. and D.T.M. designed research; F.Z., K.K., and A.L. performed research; F.Z., K.K., and J.A.C. contributed new reagents/analytic tools; F.Z., K.K., A.L., J.A.C., and D.T.M. analyzed data; F.Z., J.A.C., and D.T.M. wrote the paper; and D.T.M. supervised the project. Edited by Austin Roorda, University of California, Berkeley, CA, and accepted by Editorial Board Member Jeremy Nathans March 11, 2019 (received for review September 21, 2018) |
ORCID | 0000-0002-1597-8824 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6475411 |
PMID | 30944223 |
PQID | 2221783356 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6475411 proquest_miscellaneous_2203134416 proquest_journals_2221783356 pubmed_primary_30944223 crossref_primary_10_1073_pnas_1816360116 crossref_citationtrail_10_1073_pnas_1816360116 jstor_primary_26703361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-16 |
PublicationDateYYYYMMDD | 2019-04-16 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Kremers J (e_1_3_3_15_2) 1999; 40 Rodieck RW (e_1_3_3_1_2) 1998 e_1_3_3_17_2 Sharpe LT (e_1_3_3_3_2) 1999 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 Greenstein VC (e_1_3_3_2_2) 1989; 30 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 MacQueen J (e_1_3_3_37_2) 1967 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_31_2 doi: 10.1016/S0042-6989(00)00021-3 – ident: e_1_3_3_7_2 doi: 10.1016/0042-6989(71)90003-4 – ident: e_1_3_3_30_2 doi: 10.1364/BOE.8.001803 – ident: e_1_3_3_29_2 doi: 10.1364/BOE.5.004186 – ident: e_1_3_3_41_2 doi: 10.1167/tvst.5.5.2 – ident: e_1_3_3_11_2 doi: 10.1364/JOSAA.17.000517 – ident: e_1_3_3_42_2 doi: 10.1007/BF00175988 – ident: e_1_3_3_23_2 doi: 10.1364/JOSAA.10.000052 – ident: e_1_3_3_6_2 doi: 10.1016/0042-6989(64)90034-3 – ident: e_1_3_3_19_2 doi: 10.1038/17383 – ident: e_1_3_3_14_2 doi: 10.1016/S0042-6989(97)00466-5 – ident: e_1_3_3_28_2 doi: 10.1364/BOE.4.003007 – volume-title: The First Steps in Seeing year: 1998 ident: e_1_3_3_1_2 – ident: e_1_3_3_17_2 doi: 10.1167/2.8.1 – ident: e_1_3_3_33_2 doi: 10.4161/cl.29390 – ident: e_1_3_3_21_2 doi: 10.1523/JNEUROSCI.2414-05.2005 – start-page: 3 volume-title: Color Vision: From Genes to Perception year: 1999 ident: e_1_3_3_3_2 – ident: e_1_3_3_13_2 doi: 10.1364/JOSAA.13.000641 – ident: e_1_3_3_34_2 doi: 10.1113/JP272556 – ident: e_1_3_3_26_2 doi: 10.1364/OE.15.016141 – ident: e_1_3_3_4_2 doi: 10.1038/srep46346 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.0401440101 – ident: e_1_3_3_38_2 doi: 10.1002/cne.903120411 – ident: e_1_3_3_20_2 doi: 10.1016/S0042-6989(01)00043-8 – ident: e_1_3_3_39_2 doi: 10.1167/iovs.11-7199 – ident: e_1_3_3_5_2 doi: 10.1007/BF01487206 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1606428113 – ident: e_1_3_3_43_2 doi: 10.1016/0042-6989(68)90040-0 – ident: e_1_3_3_44_2 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pone.0144891 – ident: e_1_3_3_9_2 doi: 10.1016/0042-6989(89)90174-0 – start-page: 281 volume-title: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability year: 1967 ident: e_1_3_3_37_2 – volume: 40 start-page: 920 year: 1999 ident: e_1_3_3_15_2 article-title: Cone signal contributions to electroretinograms in dichromats and trichromats publication-title: Invest Ophthalmol Vis Sci – ident: e_1_3_3_16_2 doi: 10.1364/JOSAA.17.000499 – ident: e_1_3_3_8_2 doi: 10.1016/0042-6989(89)90178-8 – ident: e_1_3_3_25_2 doi: 10.1371/journal.pone.0079251 – ident: e_1_3_3_27_2 doi: 10.1364/BOE.3.000104 – ident: e_1_3_3_10_2 doi: 10.1016/0042-6989(91)90207-L – ident: e_1_3_3_18_2 doi: 10.1364/JOSAA.14.002884 – ident: e_1_3_3_35_2 doi: 10.1113/jphysiol.1990.sp018193 – ident: e_1_3_3_12_2 doi: 10.1364/JOSAA.10.001413 – ident: e_1_3_3_24_2 doi: 10.1167/iovs.11-8796 – volume: 30 start-page: 1732 year: 1989 ident: e_1_3_3_2_2 article-title: S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma publication-title: Invest Ophthalmol Vis Sci – ident: e_1_3_3_36_2 doi: 10.1073/pnas.1620572114 |
SSID | ssj0009580 |
Score | 2.5926397 |
Snippet | Human color vision is achieved by mixing neural signals from cone photoreceptors sensitive to different wavelengths of light. The spatial arrangement and... The three spectral types of cone photoreceptors underlie color perception and are largely responsible for inherited and acquired color vision anomalies. In... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7951 |
SubjectTerms | Adaptive optics Adult Biological Sciences Blurring Color Color blindness Color vision Color Vision - physiology Cone classifiers Cones Densitometers Densitometry Downstream effects Dynamics Eye Humans Image acquisition Image Processing, Computer-Assisted Information processing Male Middle Aged Optical Coherence Tomography Optics Phase transitions Photic Stimulation - methods Photoactivation Photoreception Photoreceptors Phototransduction Physical Sciences Retina Retina - diagnostic imaging Retina - physiology Retinal Cone Photoreceptor Cells - classification Retinal Cone Photoreceptor Cells - physiology Tomography, Optical Coherence Wavelengths Young Adult |
Title | Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics |
URI | https://www.jstor.org/stable/26703361 https://www.ncbi.nlm.nih.gov/pubmed/30944223 https://www.proquest.com/docview/2221783356 https://www.proquest.com/docview/2203134416 https://pubmed.ncbi.nlm.nih.gov/PMC6475411 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBgUBjISh6EqJU6cr2M1MU0cqh02abcocWy1YiRV22ja_jb-OJ4_k1StNLhUbWJbdd4vfr9nvw-EvoqKkyhJCs-vqtQDBg6vVARETjCwDSoR-IIpL995fHlDf95Gt6PRn57XUrstp-xxb1zJ_0gVroFcZZTsP0jWDQoX4DvIFz5BwvD5JBmfN0ARV4sG7GYu3VOa9YRJNizdf4q-F-PdUu0b6IJ8_IHrqBLVE17x36aElwf2eSv9AVYL0G2TSher3_T565XTdxvrXTC324mzLjjFrBibiTe5mneljt3u9EW7bnuHSM2v4t6Epj22i-W6cW5CMJmm1fuxs4emLd2Rybqx7tzKz3cym_b3L4g6itHhlS6eAPQk1ZHUU66XYWAxXkx1IVG3Tne9WhuhaZbdJDNZa7n9Ge9VD7CeyZrGdbGZArORqdLsoINE3DsK0rktqgP7JMzlAHk3wDP0PAAjJVBqoZ_yOdUBUGZ-NrFUEn7f-QcDTqTdYvcZPLt-uz0idP0KvTQWDJ5pOB6jEa9fo2MrcXxmEpl_e4OExCce4BMP8YmXNQYMYY1PrPCJAZ9Y4hMfwidW-MQWn2_RzcWP6_NLz9T18BjQ061XlSTweSwqVkRRSVgigLSLLKQ0ZkHMyiBiaZAykTGRUlKEpEwr0EMZzUhRcp-GJ-iohgm8R9jngaBCFKBHBPVZVvIARhMRqZKIsigdo6l9sjkzSe9l7ZW7_IAsx-jMdVjpfC-Hm54oUbl2QQzqM4zJGJ1a2eVmtdjkwMNJIiMcod8XdxvWcnlAV9S8aWUbmUkVDBRo806L2g0e-hmlwOXHKBmAwDWQeeKHd-rlQuWLjyk8DEI-PH1qH9GL7lU9RUfbdcs_Afnelp8Vxv8CFPneDA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cone+photoreceptor+classification+in+the+living+human+eye+from+photostimulation-induced+phase+dynamics&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhang%2C+Furu&rft.au=Kurokawa%2C+Kazuhiro&rft.au=Lassoued%2C+Ayoub&rft.au=Crowell%2C+James+A.&rft.date=2019-04-16&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=16&rft.spage=7951&rft.epage=7956&rft_id=info:doi/10.1073%2Fpnas.1816360116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1816360116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |