High-amplitude cofluctuations in cortical activity drive functional connectivity
Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connect...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 45; pp. 28393 - 28401 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network’s modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research. |
---|---|
AbstractList | Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research. Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research. Despite widespread applications, the origins of functional connectivity remain elusive. Here we analyze human functional neuroimaging data. We decompose resting-state functional connectivity across time to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. We show that functional connectivity is driven by a small number of high-amplitude frames. We show that these frames are underpinned by a specific mode of brain activity; that the topography of this mode gets modulated during in-scanner tasks; and that high-amplitude frames encode personalized, subject-specific information. In summary, our parameter-free method provides an exact mathematical link between functional connectivity and frame-wise cofluctuations, creating opportunities for studying both static and time-varying functional brain networks. Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network’s modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research. |
Author | Esfahlani, Farnaz Zamani Byrge, Lisa Sporns, Olaf Faskowitz, Joshua Betzel, Richard F. Jo, Youngheun Kennedy, Daniel P. |
Author_xml | – sequence: 1 givenname: Farnaz Zamani surname: Esfahlani fullname: Esfahlani, Farnaz Zamani – sequence: 2 givenname: Youngheun surname: Jo fullname: Jo, Youngheun – sequence: 3 givenname: Joshua surname: Faskowitz fullname: Faskowitz, Joshua – sequence: 4 givenname: Lisa surname: Byrge fullname: Byrge, Lisa – sequence: 5 givenname: Daniel P. surname: Kennedy fullname: Kennedy, Daniel P. – sequence: 6 givenname: Olaf surname: Sporns fullname: Sporns, Olaf – sequence: 7 givenname: Richard F. surname: Betzel fullname: Betzel, Richard F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33093200$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1PHDEQxa2IKBwkdSrQSjRpFsYfa68bpAhBiIQUCqgtn9cLPu3Zh-09if8-Xu44AkUqS57fm3kz7wDt-eAtQt8xnGIQ9GzldTolAE1DMcbiE5phkLjmTMIemgEQUbeMsH10kNICAGTTwhe0TylIWmQzdHvtHh5rvVwNLo-drUzoh9HkUWcXfKqcLz8xO6OHSpvs1i4_V110a1v1ozcTVComeG-31a_oc6-HZL9t30N0f3V5d3Fd3_z59fvi501tGpC57rSxPfAGE86sBGAgLPSEcN61VNJe4lZ2lEFHGDDRGj7XDIwwbE47YTGjh-h803c1zpe2M9bnqAe1im6p47MK2qn3Fe8e1UNYK8F5CwyXBj-2DWJ4Gm3KaumSscOgvQ1jUoQ1DJNicZp18gFdhDGWzSeKk-IPs4k6_tfRzsrrsQtwtgFMDClF2-8QDGqKU01xqrc4i6L5oDAuv0RTVnLDf3RHG90i5RB3YwiXouCS_gUQva6f |
CitedBy_id | crossref_primary_10_1016_j_celrep_2024_114723 crossref_primary_10_1038_s41467_024_52721_8 crossref_primary_10_1016_j_isci_2023_108734 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_1073_pnas_2109380118 crossref_primary_10_1038_s41467_022_33578_1 crossref_primary_10_1162_netn_a_00321 crossref_primary_10_1038_s41380_024_02708_0 crossref_primary_10_1038_s41562_024_02036_x crossref_primary_10_1162_imag_a_00366 crossref_primary_10_1162_imag_a_00364 crossref_primary_10_1093_cercor_bhac214 crossref_primary_10_1073_pnas_2300888120 crossref_primary_10_1016_j_neuroimage_2023_119890 crossref_primary_10_7554_eLife_78520 crossref_primary_10_1016_j_neuroimage_2023_120246 crossref_primary_10_1038_s41467_021_22027_0 crossref_primary_10_1093_scan_nsac020 crossref_primary_10_1016_j_intell_2022_101665 crossref_primary_10_1038_s41398_024_03212_3 crossref_primary_10_1038_s42003_022_03950_4 crossref_primary_10_1038_s41593_023_01414_4 crossref_primary_10_1162_netn_a_00392 crossref_primary_10_1016_j_nicl_2021_102682 crossref_primary_10_1038_s42003_022_03466_x crossref_primary_10_1016_j_bpsc_2024_07_021 crossref_primary_10_1162_netn_a_00270 crossref_primary_10_7554_eLife_88173_4 crossref_primary_10_1002_hbm_25656 crossref_primary_10_3389_fphys_2022_835761 crossref_primary_10_1016_j_neunet_2024_106786 crossref_primary_10_1016_j_neuroimage_2022_119591 crossref_primary_10_1371_journal_pbio_3002808 crossref_primary_10_1038_s44220_023_00151_8 crossref_primary_10_3389_fnimg_2023_1216494 crossref_primary_10_1038_s41467_022_29775_7 crossref_primary_10_1038_s41467_022_32381_2 crossref_primary_10_1016_j_neuroimage_2022_118971 crossref_primary_10_1016_j_neuroimage_2022_119026 crossref_primary_10_1162_netn_a_00307 crossref_primary_10_1162_netn_a_00301 crossref_primary_10_1162_netn_a_00425 crossref_primary_10_1016_j_nicl_2022_103139 crossref_primary_10_1016_j_ibneur_2024_11_014 crossref_primary_10_1162_netn_a_00383 crossref_primary_10_3389_fnins_2021_700171 crossref_primary_10_7554_eLife_85980 crossref_primary_10_1111_sms_14517 crossref_primary_10_1002_hbm_26778 crossref_primary_10_1016_j_jadr_2023_100674 crossref_primary_10_1007_s12028_021_01281_6 crossref_primary_10_1088_1741_2552_ad33b1 crossref_primary_10_1093_cercor_bhad169 crossref_primary_10_7554_eLife_88173 crossref_primary_10_1016_j_neuroimage_2022_119013 crossref_primary_10_1016_j_neuroimage_2023_120266 crossref_primary_10_1016_j_nicl_2024_103694 crossref_primary_10_1016_j_neuroimage_2023_120260 crossref_primary_10_1002_brx2_35 crossref_primary_10_1162_netn_a_00251 crossref_primary_10_1523_JNEUROSCI_1543_23_2024 crossref_primary_10_1038_s41598_023_42533_z crossref_primary_10_1002_hbm_25799 crossref_primary_10_1016_j_cub_2021_12_015 crossref_primary_10_1523_ENEURO_0283_21_2021 crossref_primary_10_3389_fnins_2022_855582 crossref_primary_10_1212_WNL_0000000000209952 crossref_primary_10_1016_j_tics_2023_08_009 crossref_primary_10_1038_s41583_024_00883_1 crossref_primary_10_1038_s41598_024_83542_w crossref_primary_10_1016_j_neubiorev_2024_105988 crossref_primary_10_1038_s41398_024_02797_z crossref_primary_10_1038_s42003_023_04843_w crossref_primary_10_7554_eLife_77462 crossref_primary_10_1016_j_neuroimage_2022_118904 crossref_primary_10_7554_eLife_85487 crossref_primary_10_1016_j_neuroimage_2021_118510 crossref_primary_10_1093_cercor_bhad228 crossref_primary_10_1002_hbm_25986 crossref_primary_10_1093_braincomms_fcae425 crossref_primary_10_1162_imag_a_00443 crossref_primary_10_1016_j_celrep_2023_112585 crossref_primary_10_1177_10597123211072613 crossref_primary_10_1016_j_jneuroling_2023_101180 crossref_primary_10_1088_2632_072X_adbaa9 crossref_primary_10_1016_j_ijpsycho_2022_06_006 crossref_primary_10_1016_j_tics_2022_11_015 crossref_primary_10_1038_s41386_024_01941_z crossref_primary_10_1016_j_isci_2024_111497 crossref_primary_10_1523_JNEUROSCI_1701_23_2024 crossref_primary_10_3389_fpsyg_2022_1008407 crossref_primary_10_1016_j_tics_2021_05_008 crossref_primary_10_1038_s41467_024_54472_y crossref_primary_10_1038_s41562_024_02017_0 crossref_primary_10_1162_netn_a_00354 crossref_primary_10_1523_JNEUROSCI_0938_22_2022 crossref_primary_10_1038_s42003_023_04648_x crossref_primary_10_1093_braincomms_fcad348 crossref_primary_10_1016_j_biopsych_2022_03_019 crossref_primary_10_1038_s41567_022_01852_0 crossref_primary_10_1214_24_AOS2360 crossref_primary_10_1038_s41593_022_01118_1 crossref_primary_10_1007_s11682_023_00822_1 crossref_primary_10_1038_s42003_023_05262_7 crossref_primary_10_1126_sciadv_abq3851 crossref_primary_10_1093_cercor_bhab220 crossref_primary_10_1007_s00429_023_02697_w crossref_primary_10_1016_j_neuron_2022_11_009 crossref_primary_10_1126_sciadv_abj0751 crossref_primary_10_1016_j_neuroimage_2023_119865 crossref_primary_10_1016_j_tins_2024_05_007 crossref_primary_10_1016_j_neuroimage_2022_118928 crossref_primary_10_1016_j_nicl_2023_103343 crossref_primary_10_1038_s42003_024_05766_w crossref_primary_10_1162_netn_a_00182 crossref_primary_10_1002_hbm_25405 crossref_primary_10_1002_hbm_25404 crossref_primary_10_1162_imag_a_00026 crossref_primary_10_1002_hbm_25649 crossref_primary_10_1002_hbm_26610 crossref_primary_10_1371_journal_pcbi_1012099 crossref_primary_10_1103_PhysRevE_111_014410 crossref_primary_10_1038_s42003_023_05073_w crossref_primary_10_1016_j_bpsc_2024_11_006 crossref_primary_10_1016_j_nicl_2022_103055 crossref_primary_10_1016_j_neuroimage_2021_118466 crossref_primary_10_1016_j_neuroimage_2024_120639 crossref_primary_10_1038_s42005_023_01192_2 crossref_primary_10_1002_hbm_26606 crossref_primary_10_1016_j_bnd_2024_10_004 |
Cites_doi | 10.1073/pnas.1216856110 10.1002/hbm.21513 10.1098/rstb.2015.0546 10.1016/j.neuroimage.2015.07.064 10.1016/j.neuroimage.2011.10.018 10.1162/netn_a_00116 10.1016/j.neuroimage.2013.05.079 10.1016/j.neuroimage.2020.116687 10.1016/j.cub.2019.06.017 10.1162/netn_a_00068 10.1016/j.neuron.2018.03.035 10.1016/j.neuroimage.2014.06.044 10.1002/hbm.22753 10.1073/pnas.1418031112 10.1016/j.cub.2017.06.076 10.1371/journal.pone.0124577 10.1073/pnas.0905267106 10.1038/nmeth.2482 10.1016/j.tics.2020.01.008 10.3389/fnins.2016.00381 10.1038/s41598-017-05425-7 10.1016/j.nicl.2014.07.003 10.1038/s42003-020-0961-x 10.1016/j.tics.2019.05.004 10.1038/nrn2961 10.1073/pnas.1502829112 10.1152/jn.00338.2011 10.1016/j.neuron.2016.07.039 10.1016/j.neuron.2014.05.014 10.1016/j.neuroimage.2007.02.041 10.1016/j.neuroimage.2014.09.007 10.3389/fphys.2012.00015 10.1016/j.neuroimage.2018.12.054 10.1016/j.neuroimage.2015.11.055 10.1126/science.1089662 10.1101/496414 10.1038/nmeth.1635 10.1126/science.1089506 10.1073/pnas.1400181111 10.1093/cercor/bhs352 10.1073/pnas.1503960112 10.1016/j.neuron.2017.07.011 10.1101/799924 10.1016/j.neuroimage.2018.06.020 10.1016/j.neuroimage.2015.12.001 10.1016/j.neuroimage.2010.08.063 10.1038/srep39156 10.1038/ncomms8751 10.1073/pnas.98.2.676 10.1101/2020.05.05.067777 10.1016/j.neuroimage.2013.05.041 10.1093/cercor/bhx179 10.1016/j.neuroimage.2019.116390 10.1016/j.mri.2007.03.007 10.1007/s10334-010-0197-8 10.1016/j.neuron.2015.06.037 10.1103/PhysRevE.69.026113 10.1016/j.neuroimage.2016.12.061 10.1101/530436 10.1101/2019.12.21.885772 10.1038/nn.3470 10.1016/j.neuroimage.2013.08.048 10.1038/nrn3901 10.1002/hbm.21452 10.1038/s41598-018-25089-1 10.1002/hbm.24943 10.1016/j.neuroimage.2013.11.047 10.1073/pnas.0807010105 10.3389/fnhum.2015.00398 10.1073/pnas.1220826110 10.1038/s41551-019-0404-5 10.1073/pnas.1401752111 10.1016/j.neuroimage.2014.07.067 10.1038/nn.4135 10.1016/j.neuroimage.2017.07.027 10.1016/j.neuroimage.2017.09.012 10.1016/j.neuroimage.2010.01.002 10.1016/j.neuroimage.2011.03.069 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Nov 10, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Nov 10, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2005531117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 28401 |
ExternalDocumentID | PMC7668041 33093200 10_1073_pnas_2005531117 26970739 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH110630 – fundername: NIMH NIH HHS grantid: R00 MH094409 – fundername: NICHD NIH HHS grantid: T32 HD007475 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-dacef0651264e900407e0f2266d8393f9189d340d240478c6ba40c7c4b3d7e143 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:02:18 EDT 2025 Fri Jul 11 07:57:08 EDT 2025 Mon Jun 30 09:49:11 EDT 2025 Mon Jul 21 05:51:42 EDT 2025 Tue Jul 01 03:40:34 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Thu May 29 09:14:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | naturalistic stimuli time-varying connectivity dynamics functional connectivity |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-dacef0651264e900407e0f2266d8393f9189d340d240478c6ba40c7c4b3d7e143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: F.Z.E., Y.J., and R.F.B. designed research; F.Z.E., Y.J., and R.F.B. performed research; F.Z.E., Y.J., J.F., L.B., D.P.K., and O.S. contributed new reagents/analytic tools; F.Z.E., Y.J., and R.F.B. analyzed data; and F.Z.E., Y.J., J.F., L.B., D.P.K., O.S., and R.F.B. wrote the paper. Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved September 11, 2020 (received for review March 24, 2020) 1F.Z.E. and Y.J. contributed equally to this work. |
ORCID | 0000-0003-1814-7206 0000-0001-8554-1401 0000-0003-1428-6348 0000-0002-5915-0893 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7668041 |
PMID | 33093200 |
PQID | 2462478144 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668041 proquest_miscellaneous_2454120654 proquest_journals_2462478144 pubmed_primary_33093200 crossref_primary_10_1073_pnas_2005531117 crossref_citationtrail_10_1073_pnas_2005531117 jstor_primary_26970739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-10 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Gaudes C. C. (e_1_3_4_19_2) 2013; 34 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1216856110 – ident: e_1_3_4_18_2 doi: 10.1002/hbm.21513 – ident: e_1_3_4_71_2 doi: 10.1098/rstb.2015.0546 – ident: e_1_3_4_76_2 doi: 10.1016/j.neuroimage.2015.07.064 – ident: e_1_3_4_73_2 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_3_4_59_2 doi: 10.1162/netn_a_00116 – ident: e_1_3_4_7_2 doi: 10.1016/j.neuroimage.2013.05.079 – ident: e_1_3_4_26_2 – ident: e_1_3_4_28_2 doi: 10.1016/j.neuroimage.2020.116687 – ident: e_1_3_4_37_2 doi: 10.1016/j.cub.2019.06.017 – ident: e_1_3_4_49_2 doi: 10.1162/netn_a_00068 – ident: e_1_3_4_47_2 doi: 10.1016/j.neuron.2018.03.035 – ident: e_1_3_4_10_2 doi: 10.1016/j.neuroimage.2014.06.044 – ident: e_1_3_4_64_2 doi: 10.1002/hbm.22753 – ident: e_1_3_4_11_2 doi: 10.1073/pnas.1418031112 – ident: e_1_3_4_69_2 doi: 10.1016/j.cub.2017.06.076 – ident: e_1_3_4_20_2 doi: 10.1371/journal.pone.0124577 – ident: e_1_3_4_36_2 – ident: e_1_3_4_53_2 doi: 10.1073/pnas.0905267106 – ident: e_1_3_4_1_2 doi: 10.1038/nmeth.2482 – ident: e_1_3_4_60_2 doi: 10.1016/j.tics.2020.01.008 – ident: e_1_3_4_35_2 doi: 10.3389/fnins.2016.00381 – ident: e_1_3_4_58_2 doi: 10.1038/s41598-017-05425-7 – ident: e_1_3_4_12_2 doi: 10.1016/j.nicl.2014.07.003 – ident: e_1_3_4_39_2 doi: 10.1038/s42003-020-0961-x – ident: e_1_3_4_43_2 doi: 10.1016/j.tics.2019.05.004 – ident: e_1_3_4_41_2 doi: 10.1038/nrn2961 – ident: e_1_3_4_3_2 doi: 10.1073/pnas.1502829112 – ident: e_1_3_4_52_2 doi: 10.1152/jn.00338.2011 – ident: e_1_3_4_66_2 doi: 10.1016/j.neuron.2016.07.039 – ident: e_1_3_4_5_2 doi: 10.1016/j.neuron.2014.05.014 – ident: e_1_3_4_63_2 doi: 10.1016/j.neuroimage.2007.02.041 – ident: e_1_3_4_77_2 doi: 10.1016/j.neuroimage.2014.09.007 – ident: e_1_3_4_17_2 doi: 10.3389/fphys.2012.00015 – ident: e_1_3_4_79_2 doi: 10.1016/j.neuroimage.2018.12.054 – ident: e_1_3_4_14_2 doi: 10.1016/j.neuroimage.2015.11.055 – ident: e_1_3_4_61_2 doi: 10.1126/science.1089662 – ident: e_1_3_4_70_2 doi: 10.1101/496414 – ident: e_1_3_4_29_2 – ident: e_1_3_4_55_2 doi: 10.1038/nmeth.1635 – ident: e_1_3_4_44_2 doi: 10.1126/science.1089506 – ident: e_1_3_4_9_2 doi: 10.1073/pnas.1400181111 – ident: e_1_3_4_8_2 doi: 10.1093/cercor/bhs352 – ident: e_1_3_4_72_2 doi: 10.1073/pnas.1503960112 – ident: e_1_3_4_27_2 doi: 10.1016/j.neuron.2017.07.011 – ident: e_1_3_4_22_2 doi: 10.1101/799924 – ident: e_1_3_4_31_2 doi: 10.1016/j.neuroimage.2018.06.020 – ident: e_1_3_4_56_2 doi: 10.1016/j.neuroimage.2015.12.001 – ident: e_1_3_4_24_2 doi: 10.1016/j.neuroimage.2010.08.063 – ident: e_1_3_4_42_2 doi: 10.1038/srep39156 – ident: e_1_3_4_16_2 doi: 10.1038/ncomms8751 – ident: e_1_3_4_62_2 doi: 10.1073/pnas.98.2.676 – ident: e_1_3_4_23_2 doi: 10.1101/2020.05.05.067777 – ident: e_1_3_4_25_2 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_3_4_81_2 doi: 10.1093/cercor/bhx179 – ident: e_1_3_4_38_2 doi: 10.1016/j.neuroimage.2019.116390 – ident: e_1_3_4_2_2 doi: 10.1016/j.mri.2007.03.007 – ident: e_1_3_4_30_2 – ident: e_1_3_4_13_2 doi: 10.1007/s10334-010-0197-8 – ident: e_1_3_4_51_2 doi: 10.1016/j.neuron.2015.06.037 – ident: e_1_3_4_82_2 doi: 10.1103/PhysRevE.69.026113 – ident: e_1_3_4_21_2 doi: 10.1016/j.neuroimage.2016.12.061 – ident: e_1_3_4_50_2 doi: 10.1101/530436 – ident: e_1_3_4_40_2 doi: 10.1101/2019.12.21.885772 – ident: e_1_3_4_45_2 doi: 10.1038/nn.3470 – ident: e_1_3_4_74_2 doi: 10.1016/j.neuroimage.2013.08.048 – ident: e_1_3_4_6_2 doi: 10.1038/nrn3901 – volume: 34 start-page: 501 year: 2013 ident: e_1_3_4_19_2 article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21452 – ident: e_1_3_4_48_2 doi: 10.1038/s41598-018-25089-1 – ident: e_1_3_4_80_2 doi: 10.1002/hbm.24943 – ident: e_1_3_4_32_2 doi: 10.1016/j.neuroimage.2013.11.047 – ident: e_1_3_4_68_2 doi: 10.1073/pnas.0807010105 – ident: e_1_3_4_57_2 doi: 10.3389/fnhum.2015.00398 – ident: e_1_3_4_54_2 doi: 10.1073/pnas.1220826110 – ident: e_1_3_4_65_2 doi: 10.1038/s41551-019-0404-5 – ident: e_1_3_4_67_2 doi: 10.1073/pnas.1401752111 – ident: e_1_3_4_4_2 doi: 10.1016/j.neuroimage.2014.07.067 – ident: e_1_3_4_46_2 doi: 10.1038/nn.4135 – ident: e_1_3_4_75_2 doi: 10.1016/j.neuroimage.2017.07.027 – ident: e_1_3_4_78_2 doi: 10.1016/j.neuroimage.2017.09.012 – ident: e_1_3_4_34_2 doi: 10.1016/j.neuroimage.2010.01.002 – ident: e_1_3_4_33_2 doi: 10.1016/j.neuroimage.2011.03.069 |
SSID | ssj0009580 |
Score | 2.6519022 |
Snippet | Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and... Despite widespread applications, the origins of functional connectivity remain elusive. Here we analyze human functional neuroimaging data. We decompose... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28393 |
SubjectTerms | Activity patterns Amplitudes Biological Sciences Biomarkers Brain Brain - diagnostic imaging Brain - physiology Brain architecture Brain Mapping - methods Cognition Fluctuations Frames Humans Magnetic Resonance Imaging - methods Modular structures Nerve Net - physiology Nervous system Neural networks Neural Pathways Oxygen - blood Physical Sciences Rest - physiology Time dependence |
Title | High-amplitude cofluctuations in cortical activity drive functional connectivity |
URI | https://www.jstor.org/stable/26970739 https://www.ncbi.nlm.nih.gov/pubmed/33093200 https://www.proquest.com/docview/2462478144 https://www.proquest.com/docview/2454120654 https://pubmed.ncbi.nlm.nih.gov/PMC7668041 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWGAhsKAgcVgUpbSJYyfHFWq1QqX00EoVl8hxHLWiSlHTCO3-embsfK6KtHCJKttxUs9k_GzPvCHkYyJp4vOQuWkySl0aeNSNAg90OYkyFsmIS00p9G3Oblb06zpYDwa3Ha-l8pgM5d3JuJL_kSqUgVwxSvYfJNt0CgXwG-QLV5AwXB8kY3TScAX6hCNDpSP32a7EgJDGPxyWlmavGsMXdJaI9KB5vmE2qzYBJXq6VLVdpLpoZrai9iOY1xuH120YSmUbCsd1FvM2qfEPgbwazqTIxGZn0kY5UwH_6K512dHWH43NRpWNik5F8XP_e6uzzOLxxKZsdwxuDyYP_GxbiO5uBSxNtcdcx8ACPnEZNSlCh-pEWW2VTUhnpX406BpZAHX-SfMP9gpzFudCE7EHYF_qbnpE2_Pv8XQ1m8XLyXr5iDz2YIXhaZve5WsODZFF9Wo1KxT3P9_rvgdojE_rqdXKfafbDopZPiNPq-WHfW106ZwMVP6cnNdCtK8qFvJPL8iir1x2X7nsbW7XymXXymVr5bJb5bK7yvWSrKaT5Zcbt0q_4UpAkUc3FVJlgFDHgJlVhNaeq1EGcJ2lKIAsGodR6tNRCqCQ8lCyRNCR5Pjxp1wBDr8gZ_k-V6-J7WVIAu9JFTJFRQgQKFQATEVGYYLx07FFhvUYxrLipscUKbtY-0hwP8ZBj9tBt8hVc8MvQ8vy96YXWihNO49FHM-nLXJZSymuPmq4jzIPo68ptciHphpMLp6jiVztS2wT0LGHUdkWeWWE2nTuo2cBPNwivCfupgHSufdr8u1G07pzxpAM7M0DnvuWPGk_rktydjyU6h2A42PyXqvxH6_vvUw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-amplitude+cofluctuations+in+cortical+activity+drive+functional+connectivity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zamani+Esfahlani%2C+Farnaz&rft.au=Jo%2C+Youngheun&rft.au=Faskowitz%2C+Joshua&rft.au=Byrge%2C+Lisa&rft.date=2020-11-10&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=45&rft.spage=28393&rft_id=info:doi/10.1073%2Fpnas.2005531117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |