High-amplitude cofluctuations in cortical activity drive functional connectivity

Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connect...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 45; pp. 28393 - 28401
Main Authors Esfahlani, Farnaz Zamani, Jo, Youngheun, Faskowitz, Joshua, Byrge, Lisa, Kennedy, Daniel P., Sporns, Olaf, Betzel, Richard F.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network’s modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.
AbstractList Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.
Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network's modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.
Despite widespread applications, the origins of functional connectivity remain elusive. Here we analyze human functional neuroimaging data. We decompose resting-state functional connectivity across time to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. We show that functional connectivity is driven by a small number of high-amplitude frames. We show that these frames are underpinned by a specific mode of brain activity; that the topography of this mode gets modulated during in-scanner tasks; and that high-amplitude frames encode personalized, subject-specific information. In summary, our parameter-free method provides an exact mathematical link between functional connectivity and frame-wise cofluctuations, creating opportunities for studying both static and time-varying functional brain networks. Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and cognition. The processes that give rise to correlated activity are, however, poorly understood. Here we decompose resting-state functional connectivity using a temporal unwrapping procedure to assess the contributions of moment-to-moment activity cofluctuations to the overall connectivity pattern. This approach temporally resolves functional connectivity at a timescale of single frames, which enables us to make direct comparisons of cofluctuations of network organization with fluctuations in the blood oxygen level-dependent (BOLD) time series. We show that surprisingly, only a small fraction of frames exhibiting the strongest cofluctuation amplitude are required to explain a significant fraction of variance in the overall pattern of connection weights as well as the network’s modular structure. These frames coincide with frames of high BOLD activity amplitude, corresponding to activity patterns that are remarkably consistent across individuals and identify fluctuations in default mode and control network activity as the primary driver of resting-state functional connectivity. Finally, we demonstrate that cofluctuation amplitude synchronizes across subjects during movie watching and that high-amplitude frames carry detailed information about individual subjects (whereas low-amplitude frames carry little). Our approach reveals fine-scale temporal structure of resting-state functional connectivity and discloses that frame-wise contributions vary across time. These observations illuminate the relation of brain activity to functional connectivity and open a number of directions for future research.
Author Esfahlani, Farnaz Zamani
Byrge, Lisa
Sporns, Olaf
Faskowitz, Joshua
Betzel, Richard F.
Jo, Youngheun
Kennedy, Daniel P.
Author_xml – sequence: 1
  givenname: Farnaz Zamani
  surname: Esfahlani
  fullname: Esfahlani, Farnaz Zamani
– sequence: 2
  givenname: Youngheun
  surname: Jo
  fullname: Jo, Youngheun
– sequence: 3
  givenname: Joshua
  surname: Faskowitz
  fullname: Faskowitz, Joshua
– sequence: 4
  givenname: Lisa
  surname: Byrge
  fullname: Byrge, Lisa
– sequence: 5
  givenname: Daniel P.
  surname: Kennedy
  fullname: Kennedy, Daniel P.
– sequence: 6
  givenname: Olaf
  surname: Sporns
  fullname: Sporns, Olaf
– sequence: 7
  givenname: Richard F.
  surname: Betzel
  fullname: Betzel, Richard F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33093200$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1PHDEQxa2IKBwkdSrQSjRpFsYfa68bpAhBiIQUCqgtn9cLPu3Zh-09if8-Xu44AkUqS57fm3kz7wDt-eAtQt8xnGIQ9GzldTolAE1DMcbiE5phkLjmTMIemgEQUbeMsH10kNICAGTTwhe0TylIWmQzdHvtHh5rvVwNLo-drUzoh9HkUWcXfKqcLz8xO6OHSpvs1i4_V110a1v1ozcTVComeG-31a_oc6-HZL9t30N0f3V5d3Fd3_z59fvi501tGpC57rSxPfAGE86sBGAgLPSEcN61VNJe4lZ2lEFHGDDRGj7XDIwwbE47YTGjh-h803c1zpe2M9bnqAe1im6p47MK2qn3Fe8e1UNYK8F5CwyXBj-2DWJ4Gm3KaumSscOgvQ1jUoQ1DJNicZp18gFdhDGWzSeKk-IPs4k6_tfRzsrrsQtwtgFMDClF2-8QDGqKU01xqrc4i6L5oDAuv0RTVnLDf3RHG90i5RB3YwiXouCS_gUQva6f
CitedBy_id crossref_primary_10_1016_j_celrep_2024_114723
crossref_primary_10_1038_s41467_024_52721_8
crossref_primary_10_1016_j_isci_2023_108734
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_1073_pnas_2109380118
crossref_primary_10_1038_s41467_022_33578_1
crossref_primary_10_1162_netn_a_00321
crossref_primary_10_1038_s41380_024_02708_0
crossref_primary_10_1038_s41562_024_02036_x
crossref_primary_10_1162_imag_a_00366
crossref_primary_10_1162_imag_a_00364
crossref_primary_10_1093_cercor_bhac214
crossref_primary_10_1073_pnas_2300888120
crossref_primary_10_1016_j_neuroimage_2023_119890
crossref_primary_10_7554_eLife_78520
crossref_primary_10_1016_j_neuroimage_2023_120246
crossref_primary_10_1038_s41467_021_22027_0
crossref_primary_10_1093_scan_nsac020
crossref_primary_10_1016_j_intell_2022_101665
crossref_primary_10_1038_s41398_024_03212_3
crossref_primary_10_1038_s42003_022_03950_4
crossref_primary_10_1038_s41593_023_01414_4
crossref_primary_10_1162_netn_a_00392
crossref_primary_10_1016_j_nicl_2021_102682
crossref_primary_10_1038_s42003_022_03466_x
crossref_primary_10_1016_j_bpsc_2024_07_021
crossref_primary_10_1162_netn_a_00270
crossref_primary_10_7554_eLife_88173_4
crossref_primary_10_1002_hbm_25656
crossref_primary_10_3389_fphys_2022_835761
crossref_primary_10_1016_j_neunet_2024_106786
crossref_primary_10_1016_j_neuroimage_2022_119591
crossref_primary_10_1371_journal_pbio_3002808
crossref_primary_10_1038_s44220_023_00151_8
crossref_primary_10_3389_fnimg_2023_1216494
crossref_primary_10_1038_s41467_022_29775_7
crossref_primary_10_1038_s41467_022_32381_2
crossref_primary_10_1016_j_neuroimage_2022_118971
crossref_primary_10_1016_j_neuroimage_2022_119026
crossref_primary_10_1162_netn_a_00307
crossref_primary_10_1162_netn_a_00301
crossref_primary_10_1162_netn_a_00425
crossref_primary_10_1016_j_nicl_2022_103139
crossref_primary_10_1016_j_ibneur_2024_11_014
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_3389_fnins_2021_700171
crossref_primary_10_7554_eLife_85980
crossref_primary_10_1111_sms_14517
crossref_primary_10_1002_hbm_26778
crossref_primary_10_1016_j_jadr_2023_100674
crossref_primary_10_1007_s12028_021_01281_6
crossref_primary_10_1088_1741_2552_ad33b1
crossref_primary_10_1093_cercor_bhad169
crossref_primary_10_7554_eLife_88173
crossref_primary_10_1016_j_neuroimage_2022_119013
crossref_primary_10_1016_j_neuroimage_2023_120266
crossref_primary_10_1016_j_nicl_2024_103694
crossref_primary_10_1016_j_neuroimage_2023_120260
crossref_primary_10_1002_brx2_35
crossref_primary_10_1162_netn_a_00251
crossref_primary_10_1523_JNEUROSCI_1543_23_2024
crossref_primary_10_1038_s41598_023_42533_z
crossref_primary_10_1002_hbm_25799
crossref_primary_10_1016_j_cub_2021_12_015
crossref_primary_10_1523_ENEURO_0283_21_2021
crossref_primary_10_3389_fnins_2022_855582
crossref_primary_10_1212_WNL_0000000000209952
crossref_primary_10_1016_j_tics_2023_08_009
crossref_primary_10_1038_s41583_024_00883_1
crossref_primary_10_1038_s41598_024_83542_w
crossref_primary_10_1016_j_neubiorev_2024_105988
crossref_primary_10_1038_s41398_024_02797_z
crossref_primary_10_1038_s42003_023_04843_w
crossref_primary_10_7554_eLife_77462
crossref_primary_10_1016_j_neuroimage_2022_118904
crossref_primary_10_7554_eLife_85487
crossref_primary_10_1016_j_neuroimage_2021_118510
crossref_primary_10_1093_cercor_bhad228
crossref_primary_10_1002_hbm_25986
crossref_primary_10_1093_braincomms_fcae425
crossref_primary_10_1162_imag_a_00443
crossref_primary_10_1016_j_celrep_2023_112585
crossref_primary_10_1177_10597123211072613
crossref_primary_10_1016_j_jneuroling_2023_101180
crossref_primary_10_1088_2632_072X_adbaa9
crossref_primary_10_1016_j_ijpsycho_2022_06_006
crossref_primary_10_1016_j_tics_2022_11_015
crossref_primary_10_1038_s41386_024_01941_z
crossref_primary_10_1016_j_isci_2024_111497
crossref_primary_10_1523_JNEUROSCI_1701_23_2024
crossref_primary_10_3389_fpsyg_2022_1008407
crossref_primary_10_1016_j_tics_2021_05_008
crossref_primary_10_1038_s41467_024_54472_y
crossref_primary_10_1038_s41562_024_02017_0
crossref_primary_10_1162_netn_a_00354
crossref_primary_10_1523_JNEUROSCI_0938_22_2022
crossref_primary_10_1038_s42003_023_04648_x
crossref_primary_10_1093_braincomms_fcad348
crossref_primary_10_1016_j_biopsych_2022_03_019
crossref_primary_10_1038_s41567_022_01852_0
crossref_primary_10_1214_24_AOS2360
crossref_primary_10_1038_s41593_022_01118_1
crossref_primary_10_1007_s11682_023_00822_1
crossref_primary_10_1038_s42003_023_05262_7
crossref_primary_10_1126_sciadv_abq3851
crossref_primary_10_1093_cercor_bhab220
crossref_primary_10_1007_s00429_023_02697_w
crossref_primary_10_1016_j_neuron_2022_11_009
crossref_primary_10_1126_sciadv_abj0751
crossref_primary_10_1016_j_neuroimage_2023_119865
crossref_primary_10_1016_j_tins_2024_05_007
crossref_primary_10_1016_j_neuroimage_2022_118928
crossref_primary_10_1016_j_nicl_2023_103343
crossref_primary_10_1038_s42003_024_05766_w
crossref_primary_10_1162_netn_a_00182
crossref_primary_10_1002_hbm_25405
crossref_primary_10_1002_hbm_25404
crossref_primary_10_1162_imag_a_00026
crossref_primary_10_1002_hbm_25649
crossref_primary_10_1002_hbm_26610
crossref_primary_10_1371_journal_pcbi_1012099
crossref_primary_10_1103_PhysRevE_111_014410
crossref_primary_10_1038_s42003_023_05073_w
crossref_primary_10_1016_j_bpsc_2024_11_006
crossref_primary_10_1016_j_nicl_2022_103055
crossref_primary_10_1016_j_neuroimage_2021_118466
crossref_primary_10_1016_j_neuroimage_2024_120639
crossref_primary_10_1038_s42005_023_01192_2
crossref_primary_10_1002_hbm_26606
crossref_primary_10_1016_j_bnd_2024_10_004
Cites_doi 10.1073/pnas.1216856110
10.1002/hbm.21513
10.1098/rstb.2015.0546
10.1016/j.neuroimage.2015.07.064
10.1016/j.neuroimage.2011.10.018
10.1162/netn_a_00116
10.1016/j.neuroimage.2013.05.079
10.1016/j.neuroimage.2020.116687
10.1016/j.cub.2019.06.017
10.1162/netn_a_00068
10.1016/j.neuron.2018.03.035
10.1016/j.neuroimage.2014.06.044
10.1002/hbm.22753
10.1073/pnas.1418031112
10.1016/j.cub.2017.06.076
10.1371/journal.pone.0124577
10.1073/pnas.0905267106
10.1038/nmeth.2482
10.1016/j.tics.2020.01.008
10.3389/fnins.2016.00381
10.1038/s41598-017-05425-7
10.1016/j.nicl.2014.07.003
10.1038/s42003-020-0961-x
10.1016/j.tics.2019.05.004
10.1038/nrn2961
10.1073/pnas.1502829112
10.1152/jn.00338.2011
10.1016/j.neuron.2016.07.039
10.1016/j.neuron.2014.05.014
10.1016/j.neuroimage.2007.02.041
10.1016/j.neuroimage.2014.09.007
10.3389/fphys.2012.00015
10.1016/j.neuroimage.2018.12.054
10.1016/j.neuroimage.2015.11.055
10.1126/science.1089662
10.1101/496414
10.1038/nmeth.1635
10.1126/science.1089506
10.1073/pnas.1400181111
10.1093/cercor/bhs352
10.1073/pnas.1503960112
10.1016/j.neuron.2017.07.011
10.1101/799924
10.1016/j.neuroimage.2018.06.020
10.1016/j.neuroimage.2015.12.001
10.1016/j.neuroimage.2010.08.063
10.1038/srep39156
10.1038/ncomms8751
10.1073/pnas.98.2.676
10.1101/2020.05.05.067777
10.1016/j.neuroimage.2013.05.041
10.1093/cercor/bhx179
10.1016/j.neuroimage.2019.116390
10.1016/j.mri.2007.03.007
10.1007/s10334-010-0197-8
10.1016/j.neuron.2015.06.037
10.1103/PhysRevE.69.026113
10.1016/j.neuroimage.2016.12.061
10.1101/530436
10.1101/2019.12.21.885772
10.1038/nn.3470
10.1016/j.neuroimage.2013.08.048
10.1038/nrn3901
10.1002/hbm.21452
10.1038/s41598-018-25089-1
10.1002/hbm.24943
10.1016/j.neuroimage.2013.11.047
10.1073/pnas.0807010105
10.3389/fnhum.2015.00398
10.1073/pnas.1220826110
10.1038/s41551-019-0404-5
10.1073/pnas.1401752111
10.1016/j.neuroimage.2014.07.067
10.1038/nn.4135
10.1016/j.neuroimage.2017.07.027
10.1016/j.neuroimage.2017.09.012
10.1016/j.neuroimage.2010.01.002
10.1016/j.neuroimage.2011.03.069
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 10, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 10, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2005531117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 28401
ExternalDocumentID PMC7668041
33093200
10_1073_pnas_2005531117
26970739
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH110630
– fundername: NIMH NIH HHS
  grantid: R00 MH094409
– fundername: NICHD NIH HHS
  grantid: T32 HD007475
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-dacef0651264e900407e0f2266d8393f9189d340d240478c6ba40c7c4b3d7e143
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:02:18 EDT 2025
Fri Jul 11 07:57:08 EDT 2025
Mon Jun 30 09:49:11 EDT 2025
Mon Jul 21 05:51:42 EDT 2025
Tue Jul 01 03:40:34 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Thu May 29 09:14:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords naturalistic stimuli
time-varying connectivity
dynamics
functional connectivity
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-dacef0651264e900407e0f2266d8393f9189d340d240478c6ba40c7c4b3d7e143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: F.Z.E., Y.J., and R.F.B. designed research; F.Z.E., Y.J., and R.F.B. performed research; F.Z.E., Y.J., J.F., L.B., D.P.K., and O.S. contributed new reagents/analytic tools; F.Z.E., Y.J., and R.F.B. analyzed data; and F.Z.E., Y.J., J.F., L.B., D.P.K., O.S., and R.F.B. wrote the paper.
Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved September 11, 2020 (received for review March 24, 2020)
1F.Z.E. and Y.J. contributed equally to this work.
ORCID 0000-0003-1814-7206
0000-0001-8554-1401
0000-0003-1428-6348
0000-0002-5915-0893
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7668041
PMID 33093200
PQID 2462478144
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7668041
proquest_miscellaneous_2454120654
proquest_journals_2462478144
pubmed_primary_33093200
crossref_primary_10_1073_pnas_2005531117
crossref_citationtrail_10_1073_pnas_2005531117
jstor_primary_26970739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-10
PublicationDateYYYYMMDD 2020-11-10
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
Gaudes C. C. (e_1_3_4_19_2) 2013; 34
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1216856110
– ident: e_1_3_4_18_2
  doi: 10.1002/hbm.21513
– ident: e_1_3_4_71_2
  doi: 10.1098/rstb.2015.0546
– ident: e_1_3_4_76_2
  doi: 10.1016/j.neuroimage.2015.07.064
– ident: e_1_3_4_73_2
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_3_4_59_2
  doi: 10.1162/netn_a_00116
– ident: e_1_3_4_7_2
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: e_1_3_4_26_2
– ident: e_1_3_4_28_2
  doi: 10.1016/j.neuroimage.2020.116687
– ident: e_1_3_4_37_2
  doi: 10.1016/j.cub.2019.06.017
– ident: e_1_3_4_49_2
  doi: 10.1162/netn_a_00068
– ident: e_1_3_4_47_2
  doi: 10.1016/j.neuron.2018.03.035
– ident: e_1_3_4_10_2
  doi: 10.1016/j.neuroimage.2014.06.044
– ident: e_1_3_4_64_2
  doi: 10.1002/hbm.22753
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.1418031112
– ident: e_1_3_4_69_2
  doi: 10.1016/j.cub.2017.06.076
– ident: e_1_3_4_20_2
  doi: 10.1371/journal.pone.0124577
– ident: e_1_3_4_36_2
– ident: e_1_3_4_53_2
  doi: 10.1073/pnas.0905267106
– ident: e_1_3_4_1_2
  doi: 10.1038/nmeth.2482
– ident: e_1_3_4_60_2
  doi: 10.1016/j.tics.2020.01.008
– ident: e_1_3_4_35_2
  doi: 10.3389/fnins.2016.00381
– ident: e_1_3_4_58_2
  doi: 10.1038/s41598-017-05425-7
– ident: e_1_3_4_12_2
  doi: 10.1016/j.nicl.2014.07.003
– ident: e_1_3_4_39_2
  doi: 10.1038/s42003-020-0961-x
– ident: e_1_3_4_43_2
  doi: 10.1016/j.tics.2019.05.004
– ident: e_1_3_4_41_2
  doi: 10.1038/nrn2961
– ident: e_1_3_4_3_2
  doi: 10.1073/pnas.1502829112
– ident: e_1_3_4_52_2
  doi: 10.1152/jn.00338.2011
– ident: e_1_3_4_66_2
  doi: 10.1016/j.neuron.2016.07.039
– ident: e_1_3_4_5_2
  doi: 10.1016/j.neuron.2014.05.014
– ident: e_1_3_4_63_2
  doi: 10.1016/j.neuroimage.2007.02.041
– ident: e_1_3_4_77_2
  doi: 10.1016/j.neuroimage.2014.09.007
– ident: e_1_3_4_17_2
  doi: 10.3389/fphys.2012.00015
– ident: e_1_3_4_79_2
  doi: 10.1016/j.neuroimage.2018.12.054
– ident: e_1_3_4_14_2
  doi: 10.1016/j.neuroimage.2015.11.055
– ident: e_1_3_4_61_2
  doi: 10.1126/science.1089662
– ident: e_1_3_4_70_2
  doi: 10.1101/496414
– ident: e_1_3_4_29_2
– ident: e_1_3_4_55_2
  doi: 10.1038/nmeth.1635
– ident: e_1_3_4_44_2
  doi: 10.1126/science.1089506
– ident: e_1_3_4_9_2
  doi: 10.1073/pnas.1400181111
– ident: e_1_3_4_8_2
  doi: 10.1093/cercor/bhs352
– ident: e_1_3_4_72_2
  doi: 10.1073/pnas.1503960112
– ident: e_1_3_4_27_2
  doi: 10.1016/j.neuron.2017.07.011
– ident: e_1_3_4_22_2
  doi: 10.1101/799924
– ident: e_1_3_4_31_2
  doi: 10.1016/j.neuroimage.2018.06.020
– ident: e_1_3_4_56_2
  doi: 10.1016/j.neuroimage.2015.12.001
– ident: e_1_3_4_24_2
  doi: 10.1016/j.neuroimage.2010.08.063
– ident: e_1_3_4_42_2
  doi: 10.1038/srep39156
– ident: e_1_3_4_16_2
  doi: 10.1038/ncomms8751
– ident: e_1_3_4_62_2
  doi: 10.1073/pnas.98.2.676
– ident: e_1_3_4_23_2
  doi: 10.1101/2020.05.05.067777
– ident: e_1_3_4_25_2
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_3_4_81_2
  doi: 10.1093/cercor/bhx179
– ident: e_1_3_4_38_2
  doi: 10.1016/j.neuroimage.2019.116390
– ident: e_1_3_4_2_2
  doi: 10.1016/j.mri.2007.03.007
– ident: e_1_3_4_30_2
– ident: e_1_3_4_13_2
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_3_4_51_2
  doi: 10.1016/j.neuron.2015.06.037
– ident: e_1_3_4_82_2
  doi: 10.1103/PhysRevE.69.026113
– ident: e_1_3_4_21_2
  doi: 10.1016/j.neuroimage.2016.12.061
– ident: e_1_3_4_50_2
  doi: 10.1101/530436
– ident: e_1_3_4_40_2
  doi: 10.1101/2019.12.21.885772
– ident: e_1_3_4_45_2
  doi: 10.1038/nn.3470
– ident: e_1_3_4_74_2
  doi: 10.1016/j.neuroimage.2013.08.048
– ident: e_1_3_4_6_2
  doi: 10.1038/nrn3901
– volume: 34
  start-page: 501
  year: 2013
  ident: e_1_3_4_19_2
  article-title: Paradigm free mapping with sparse regression automatically detects single-trial functional magnetic resonance imaging blood oxygenation level dependent responses
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21452
– ident: e_1_3_4_48_2
  doi: 10.1038/s41598-018-25089-1
– ident: e_1_3_4_80_2
  doi: 10.1002/hbm.24943
– ident: e_1_3_4_32_2
  doi: 10.1016/j.neuroimage.2013.11.047
– ident: e_1_3_4_68_2
  doi: 10.1073/pnas.0807010105
– ident: e_1_3_4_57_2
  doi: 10.3389/fnhum.2015.00398
– ident: e_1_3_4_54_2
  doi: 10.1073/pnas.1220826110
– ident: e_1_3_4_65_2
  doi: 10.1038/s41551-019-0404-5
– ident: e_1_3_4_67_2
  doi: 10.1073/pnas.1401752111
– ident: e_1_3_4_4_2
  doi: 10.1016/j.neuroimage.2014.07.067
– ident: e_1_3_4_46_2
  doi: 10.1038/nn.4135
– ident: e_1_3_4_75_2
  doi: 10.1016/j.neuroimage.2017.07.027
– ident: e_1_3_4_78_2
  doi: 10.1016/j.neuroimage.2017.09.012
– ident: e_1_3_4_34_2
  doi: 10.1016/j.neuroimage.2010.01.002
– ident: e_1_3_4_33_2
  doi: 10.1016/j.neuroimage.2011.03.069
SSID ssj0009580
Score 2.6519022
Snippet Resting-state functional connectivity is used throughout neuroscience to study brain organization and to generate biomarkers of development, disease, and...
Despite widespread applications, the origins of functional connectivity remain elusive. Here we analyze human functional neuroimaging data. We decompose...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28393
SubjectTerms Activity patterns
Amplitudes
Biological Sciences
Biomarkers
Brain
Brain - diagnostic imaging
Brain - physiology
Brain architecture
Brain Mapping - methods
Cognition
Fluctuations
Frames
Humans
Magnetic Resonance Imaging - methods
Modular structures
Nerve Net - physiology
Nervous system
Neural networks
Neural Pathways
Oxygen - blood
Physical Sciences
Rest - physiology
Time dependence
Title High-amplitude cofluctuations in cortical activity drive functional connectivity
URI https://www.jstor.org/stable/26970739
https://www.ncbi.nlm.nih.gov/pubmed/33093200
https://www.proquest.com/docview/2462478144
https://www.proquest.com/docview/2454120654
https://pubmed.ncbi.nlm.nih.gov/PMC7668041
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKcuGCWGAhsKAgcVgUpbSJYyfHFWq1QqX00EoVl8hxHLWiSlHTCO3-embsfK6KtHCJKttxUs9k_GzPvCHkYyJp4vOQuWkySl0aeNSNAg90OYkyFsmIS00p9G3Oblb06zpYDwa3Ha-l8pgM5d3JuJL_kSqUgVwxSvYfJNt0CgXwG-QLV5AwXB8kY3TScAX6hCNDpSP32a7EgJDGPxyWlmavGsMXdJaI9KB5vmE2qzYBJXq6VLVdpLpoZrai9iOY1xuH120YSmUbCsd1FvM2qfEPgbwazqTIxGZn0kY5UwH_6K512dHWH43NRpWNik5F8XP_e6uzzOLxxKZsdwxuDyYP_GxbiO5uBSxNtcdcx8ACPnEZNSlCh-pEWW2VTUhnpX406BpZAHX-SfMP9gpzFudCE7EHYF_qbnpE2_Pv8XQ1m8XLyXr5iDz2YIXhaZve5WsODZFF9Wo1KxT3P9_rvgdojE_rqdXKfafbDopZPiNPq-WHfW106ZwMVP6cnNdCtK8qFvJPL8iir1x2X7nsbW7XymXXymVr5bJb5bK7yvWSrKaT5Zcbt0q_4UpAkUc3FVJlgFDHgJlVhNaeq1EGcJ2lKIAsGodR6tNRCqCQ8lCyRNCR5Pjxp1wBDr8gZ_k-V6-J7WVIAu9JFTJFRQgQKFQATEVGYYLx07FFhvUYxrLipscUKbtY-0hwP8ZBj9tBt8hVc8MvQ8vy96YXWihNO49FHM-nLXJZSymuPmq4jzIPo68ptciHphpMLp6jiVztS2wT0LGHUdkWeWWE2nTuo2cBPNwivCfupgHSufdr8u1G07pzxpAM7M0DnvuWPGk_rktydjyU6h2A42PyXqvxH6_vvUw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-amplitude+cofluctuations+in+cortical+activity+drive+functional+connectivity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zamani+Esfahlani%2C+Farnaz&rft.au=Jo%2C+Youngheun&rft.au=Faskowitz%2C+Joshua&rft.au=Byrge%2C+Lisa&rft.date=2020-11-10&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=117&rft.issue=45&rft.spage=28393&rft_id=info:doi/10.1073%2Fpnas.2005531117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon