Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds

The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS169 Q61H-yielding crystals suitable for soaking wit...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 7; pp. 2545 - 2550
Main Authors Cruz-Migoni, Abimael, Canning, Peter, Quevedo, Camilo E., Bataille, Carole J. R., Bery, Nicolas, Miller, Ami, Russell, Angela J., Phillips, Simon E. V., Carr, Stephen B., Rabbitts, Terence H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS169 Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein–protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein–protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein–protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
AbstractList The RAS family of oncogenic proteins is important as therapy targets because of the frequency of activating mutations in almost all major cancers. An important approach is development of small molecules with drug-like properties that can inhibit RAS-effector protein interactions inside cells. We present a strategy for identification of such compounds, and their development as RAS-effector interaction inhibitors, utilizing a structure-based design approach and cell-based assays. By combining moieties from two distinct sets of RAS-binding molecules, we generated cross-over compounds that showed improved efficacy in vitro and in cell-based assays. The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS 169 Q61H -yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein–protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein–protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein–protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS169 Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein–protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein–protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein–protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS 169 Q61H -yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein–protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein–protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein–protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein–protein interactions. We have refined crystallization conditions for KRAS169Q61H-yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein–protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein–protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein–protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
The gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for inhibitors of protein-protein interactions. We have refined crystallization conditions for KRAS -yielding crystals suitable for soaking with compounds and exploited this to assess new RAS-binding compounds selected by screening a protein-protein interaction-focused compound library using surface plasmon resonance. Two compounds, referred to as PPIN-1 and PPIN-2, with related structures from 30 initial RAS binders showed binding to a pocket where compounds had been previously developed, including RAS effector protein-protein interaction inhibitors selected using an intracellular antibody fragment (called Abd compounds). Unlike the Abd series of RAS binders, PPIN-1 and PPIN-2 compounds were not competed by the inhibitory anti-RAS intracellular antibody fragment and did not show any RAS-effector inhibition properties. By fusing the common, anchoring part from the two new compounds with the inhibitory substituents of the Abd series, we have created a set of compounds that inhibit RAS-effector interactions with increased potency. These fused compounds add to the growing catalog of RAS protein-protein inhibitors and show that building a chemical series by crossing over two chemical series is a strategy to create RAS-binding small molecules.
Author Miller, Ami
Phillips, Simon E. V.
Carr, Stephen B.
Bataille, Carole J. R.
Bery, Nicolas
Canning, Peter
Russell, Angela J.
Cruz-Migoni, Abimael
Quevedo, Camilo E.
Rabbitts, Terence H.
Author_xml – sequence: 1
  givenname: Abimael
  surname: Cruz-Migoni
  fullname: Cruz-Migoni, Abimael
– sequence: 2
  givenname: Peter
  surname: Canning
  fullname: Canning, Peter
– sequence: 3
  givenname: Camilo E.
  surname: Quevedo
  fullname: Quevedo, Camilo E.
– sequence: 4
  givenname: Carole J. R.
  surname: Bataille
  fullname: Bataille, Carole J. R.
– sequence: 5
  givenname: Nicolas
  surname: Bery
  fullname: Bery, Nicolas
– sequence: 6
  givenname: Ami
  surname: Miller
  fullname: Miller, Ami
– sequence: 7
  givenname: Angela J.
  surname: Russell
  fullname: Russell, Angela J.
– sequence: 8
  givenname: Simon E. V.
  surname: Phillips
  fullname: Phillips, Simon E. V.
– sequence: 9
  givenname: Stephen B.
  surname: Carr
  fullname: Carr, Stephen B.
– sequence: 10
  givenname: Terence H.
  surname: Rabbitts
  fullname: Rabbitts, Terence H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30683716$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtv1DAURi1URKeFNStQJDZs0l47GT82SFXFS6qERGFtOfZN61FiD3YyFfx6HGYYHivbuud-8qdzRk5CDEjIcwoXFERzuQ0mX1BJacOBUv6IrCgoWvNWwQlZATBRy5a1p-Qs5w0AqLWEJ-S0AS4bQfmK_Lid0mynOWHdmYyucrjDIW5HDFMV-yrgQ_X56rbGvkc7xVT5cO87X2656lMcK1PZOHY-mMnHsGwYO_kdVia4wh4eS0JhnA93C76Nc3D5KXncmyHjs8N5Tr6-e_vl-kN98-n9x-urm9quQU21U53rDEDXCDAohRUGnXTr1nZOMcPAstZSLqySSknLseMMcG17DtYoaZpz8mafu527EZ0tzZIZ9Db50aTvOhqv_50Ef6_v4k7zRoiW8xLw-hCQ4rcZ86RHny0OgwkY56wZFaplTMKCvvoP3cQ5hVLvF8UFQNsW6nJP2RRzTtgfP0NBL1714lX_8Vo2Xv7d4cj_FlmAF3tgk4ub45xxLplqaPMT2U-tKg
CitedBy_id crossref_primary_10_1002_cmdc_202200392
crossref_primary_10_1002_ange_202008361
crossref_primary_10_3390_cimb45030137
crossref_primary_10_1021_acs_jcim_3c00097
crossref_primary_10_1016_j_bpj_2022_04_026
crossref_primary_10_1016_j_cobme_2023_100455
crossref_primary_10_1016_j_jmb_2019_07_025
crossref_primary_10_1038_s41467_021_26526_y
crossref_primary_10_1039_C9SC04726C
crossref_primary_10_1021_acs_jmedchem_0c00511
crossref_primary_10_1042_BCJ20190839
crossref_primary_10_1080_21541248_2019_1655883
crossref_primary_10_1111_bph_15420
crossref_primary_10_3390_molecules28072886
crossref_primary_10_1016_j_jim_2021_113051
crossref_primary_10_1371_journal_pone_0253760
crossref_primary_10_1002_chem_201902810
crossref_primary_10_3389_fcell_2020_00240
crossref_primary_10_3390_molecules29102317
crossref_primary_10_1038_s41467_020_17022_w
crossref_primary_10_1007_s11030_023_10777_6
crossref_primary_10_1016_j_isci_2024_109576
crossref_primary_10_1039_C9CC05122H
crossref_primary_10_3390_pr9010071
crossref_primary_10_1016_j_bpj_2022_07_005
crossref_primary_10_1021_acs_jcim_3c01212
crossref_primary_10_1016_j_csbj_2019_12_004
crossref_primary_10_1038_s41368_022_00168_2
crossref_primary_10_7240_jeps_528662
crossref_primary_10_1038_s41392_023_01441_4
crossref_primary_10_1080_07391102_2023_2213355
crossref_primary_10_1016_j_tips_2024_03_005
crossref_primary_10_1021_acs_jpclett_0c00858
crossref_primary_10_3390_ijms222212142
crossref_primary_10_3390_antib12010024
crossref_primary_10_1016_j_compbiolchem_2023_107835
crossref_primary_10_3390_cancers13112541
crossref_primary_10_1016_j_path_2022_09_007
crossref_primary_10_1186_s12885_022_10236_9
crossref_primary_10_7554_eLife_76595
crossref_primary_10_1007_s00204_023_03471_x
crossref_primary_10_1002_bies_202300088
crossref_primary_10_1016_j_ctrv_2020_101978
crossref_primary_10_1042_BST20201059
crossref_primary_10_1002_cmdc_202100167
crossref_primary_10_1515_hsz_2019_0330
crossref_primary_10_3390_ijms21010141
crossref_primary_10_1021_acs_jcim_2c01479
crossref_primary_10_1107_S2053230X20009012
crossref_primary_10_3389_fonc_2021_780655
crossref_primary_10_1016_j_chembiol_2020_12_012
crossref_primary_10_3390_cryst10090725
crossref_primary_10_1002_cbic_202300827
crossref_primary_10_1016_j_jmb_2022_167527
crossref_primary_10_2174_1568026620666200903163044
crossref_primary_10_1016_j_compbiomed_2021_104597
crossref_primary_10_1016_j_jmb_2021_166838
crossref_primary_10_1038_s41573_020_0068_6
crossref_primary_10_1002_anie_202008361
crossref_primary_10_1021_acsbiomedchemau_2c00045
crossref_primary_10_1073_pnas_1904529116
crossref_primary_10_3389_fonc_2021_768022
crossref_primary_10_1007_s40259_020_00419_w
crossref_primary_10_1038_s41467_021_24316_0
crossref_primary_10_1007_s10555_020_09914_6
crossref_primary_10_1158_2767_9764_CRC_23_0222
crossref_primary_10_1021_acs_jpcb_1c01184
crossref_primary_10_1016_j_bpj_2019_12_039
crossref_primary_10_1038_s41598_021_81262_z
crossref_primary_10_1080_07391102_2024_2331627
crossref_primary_10_1002_med_21863
crossref_primary_10_1007_s10858_020_00338_6
crossref_primary_10_3389_pore_2021_631095
crossref_primary_10_3390_cancers16101808
crossref_primary_10_1021_acs_jmedchem_0c01312
crossref_primary_10_3390_ijms24087373
crossref_primary_10_1158_0008_5472_CAN_22_0804
crossref_primary_10_1371_journal_pone_0219436
crossref_primary_10_1021_acs_jpcb_0c02642
crossref_primary_10_1021_acs_jcim_0c01470
crossref_primary_10_1146_annurev_med_080819_033145
crossref_primary_10_3390_ijms23073706
crossref_primary_10_1002_chem_202400304
crossref_primary_10_1038_s41598_023_28756_0
crossref_primary_10_1016_j_redox_2019_101282
crossref_primary_10_1038_s41467_019_10419_2
crossref_primary_10_2174_1381612828666220506144046
crossref_primary_10_3390_cancers15143579
crossref_primary_10_1016_j_annonc_2023_04_514
Cites_doi 10.1016/0092-8674(92)90076-O
10.1073/pnas.1116510109
10.1038/520278a
10.1002/anie.201201358
10.1021/acs.jmedchem.5b01871
10.1371/journal.pone.0025711
10.1126/science.aad6204
10.1038/nature12796
10.7554/eLife.37122
10.1107/S0907444998012645
10.1074/jbc.272.22.14459
10.1016/j.jmb.2007.11.085
10.1038/s41467-018-05707-2
10.1016/j.cell.2016.03.045
10.1158/1541-7786.MCR-15-0203
10.1002/j.1460-2075.1989.tb03478.x
10.1021/acs.jmedchem.7b01120
10.1073/pnas.1521251113
10.1038/nchembio.1560
10.1038/nrd.2016.139
10.1016/S0968-0004(96)10064-5
10.1016/j.bmcl.2017.03.084
10.7554/eLife.31098
10.1007/978-1-61779-968-6_10
10.1021/jm501660t
10.1038/nrd.2016.29
10.1158/2159-8290.CD-15-1105
10.1038/nrc.2017.93
10.1016/j.cell.2017.02.006
10.1158/0008-5472.CAN-11-2612
10.1016/j.cell.2017.06.009
10.1038/nrd4389
10.1038/srep03643
10.1038/nrd.2016.268
10.1016/j.cell.2007.05.018
10.1152/physrev.00003.2012
10.1073/pnas.1315798111
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Feb 12, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Feb 12, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1811360116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

CrossRef
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2550
ExternalDocumentID 10_1073_pnas_1811360116
30683716
26682931
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 099246/Z/12/Z
– fundername: Wellcome Trust
  grantid: 100842/Z/12/Z
– fundername: Medical Research Council
  grantid: MR/J000612/1
– fundername: wellcome trust
  grantid: 099246/Z/12/Z)
– fundername: Medical Reseacrh Council
  grantid: MR/J000612/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-d9bdba00b370ae87c7aed8d54cbd92a20c24c167c98998c6eb620e5cf60ca98a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:03:19 EDT 2024
Fri Oct 25 00:12:20 EDT 2024
Thu Oct 10 15:50:12 EDT 2024
Fri Dec 06 02:51:07 EST 2024
Sat Sep 28 08:30:07 EDT 2024
Tue Dec 10 23:54:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords cancer
antibody
RAS
drugs
intracellular antibody
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d9bdba00b370ae87c7aed8d54cbd92a20c24c167c98998c6eb620e5cf60ca98a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
2Present address: Assay Development, LifeArc, Open Innovation Campus, SG1 2FX Stevenage, United Kingdom.
1A.C.-M., P.C., and C.E.Q. contributed equally to this work.
Edited by James A. Wells, University of California, San Francisco, CA, and approved December 17, 2018 (received for review July 6, 2018)
Author contributions: C.E.Q. and T.H.R. designed research; A.C.-M., P.C., C.J.R.B., N.B., and A.M. performed research; A.C.-M., P.C., C.E.Q., C.J.R.B., N.B., A.M., A.J.R., S.E.V.P., S.B.C., and T.H.R. analyzed data; and A.C.-M., P.C., C.E.Q., C.J.R.B., N.B., A.M., S.E.V.P., S.B.C., and T.H.R. wrote the paper.
ORCID 0000-0002-2643-3897
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377466/
PMID 30683716
PQID 2179670044
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6377466
proquest_miscellaneous_2179422806
proquest_journals_2179670044
crossref_primary_10_1073_pnas_1811360116
pubmed_primary_30683716
jstor_primary_26682931
PublicationCentury 2000
PublicationDate 2019-02-12
PublicationDateYYYYMMDD 2019-02-12
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Academy of Sciences
References Grant BJ (e_1_3_4_29_2) 2011; 6
Quevedo CE (e_1_3_4_28_2) 2018; 9
Cruickshank DWJ (e_1_3_4_35_2) 1999; 55
Spiegel J (e_1_3_4_11_2) 2014; 10
Johnstone S (e_1_3_4_32_2) 2017; 27
Lawson ADG (e_1_3_4_33_2) 2018; 61
Wittinghofer A (e_1_3_4_5_2) 1996; 21
Maurer T (e_1_3_4_21_2) 2012; 109
Prior IA (e_1_3_4_2_2) 2012; 72
Ledford H (e_1_3_4_18_2) 2015; 520
Welsch ME (e_1_3_4_27_2) 2017; 168
Hunter JC (e_1_3_4_8_2) 2015; 13
e_1_3_4_41_2
e_1_3_4_40_2
Whyte DB (e_1_3_4_12_2) 1997; 272
Winter JJ (e_1_3_4_24_2) 2015; 58
Ostrem JM (e_1_3_4_17_2) 2016; 15
Bery N (e_1_3_4_31_2) 2018; 7
e_1_3_4_45_2
Martinko AJ (e_1_3_4_38_2) 2018; 7
e_1_3_4_44_2
Lito P (e_1_3_4_20_2) 2016; 351
e_1_3_4_43_2
Cherfils J (e_1_3_4_7_2) 2013; 93
e_1_3_4_42_2
Sewell H (e_1_3_4_30_2) 2014; 4
e_1_3_4_47_2
Ostrem JM (e_1_3_4_22_2) 2013; 503
e_1_3_4_46_2
Gutierrez L (e_1_3_4_4_2) 1989; 8
Patricelli MP (e_1_3_4_26_2) 2016; 6
Town J (e_1_3_4_37_2) 2016; 113
Tanaka T (e_1_3_4_14_2) 2012; 911
Andersson V (e_1_3_4_34_2) 2016; 59
Cochet O (e_1_3_4_15_2) 1998; 58
Wood KW (e_1_3_4_9_2) 1992; 68
Burns MC (e_1_3_4_19_2) 2014; 111
Tanaka T (e_1_3_4_13_2) 2008; 376
Dewhirst MW (e_1_3_4_16_2) 2017; 17
Beck A (e_1_3_4_36_2) 2017; 16
Simanshu DK (e_1_3_4_3_2) 2017; 170
Bos JL (e_1_3_4_6_2) 2007; 129
Sun Q (e_1_3_4_23_2) 2012; 51
Athuluri-Divakar SK (e_1_3_4_25_2) 2016; 165
Scott DE (e_1_3_4_10_2) 2016; 15
Cox AD (e_1_3_4_1_2) 2014; 13
e_1_3_4_39_2
References_xml – volume: 68
  start-page: 1041
  year: 1992
  ident: e_1_3_4_9_2
  article-title: Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90076-O
  contributor:
    fullname: Wood KW
– volume: 109
  start-page: 5299
  year: 2012
  ident: e_1_3_4_21_2
  article-title: Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1116510109
  contributor:
    fullname: Maurer T
– volume: 520
  start-page: 278
  year: 2015
  ident: e_1_3_4_18_2
  article-title: Cancer: The Ras renaissance
  publication-title: Nature
  doi: 10.1038/520278a
  contributor:
    fullname: Ledford H
– volume: 51
  start-page: 6140
  year: 2012
  ident: e_1_3_4_23_2
  article-title: Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201201358
  contributor:
    fullname: Sun Q
– volume: 59
  start-page: 6658
  year: 2016
  ident: e_1_3_4_34_2
  article-title: Macrocyclic prodrugs of a selective nonpeptidic direct thrombin inhibitor display high permeability, efficient bioconversion but low bioavailability
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b01871
  contributor:
    fullname: Andersson V
– volume: 6
  start-page: e25711
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Novel allosteric sites on Ras for lead generation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0025711
  contributor:
    fullname: Grant BJ
– volume: 351
  start-page: 604
  year: 2016
  ident: e_1_3_4_20_2
  article-title: Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism
  publication-title: Science
  doi: 10.1126/science.aad6204
  contributor:
    fullname: Lito P
– volume: 503
  start-page: 548
  year: 2013
  ident: e_1_3_4_22_2
  article-title: K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
  publication-title: Nature
  doi: 10.1038/nature12796
  contributor:
    fullname: Ostrem JM
– volume: 7
  start-page: e37122
  year: 2018
  ident: e_1_3_4_31_2
  article-title: BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions
  publication-title: eLife
  doi: 10.7554/eLife.37122
  contributor:
    fullname: Bery N
– volume: 55
  start-page: 583
  year: 1999
  ident: e_1_3_4_35_2
  article-title: Remarks about protein structure precision
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444998012645
  contributor:
    fullname: Cruickshank DWJ
– ident: e_1_3_4_42_2
– volume: 272
  start-page: 14459
  year: 1997
  ident: e_1_3_4_12_2
  article-title: K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.22.14459
  contributor:
    fullname: Whyte DB
– volume: 376
  start-page: 749
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Functional intracellular antibody fragments do not require invariant intra-domain disulfide bonds
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.11.085
  contributor:
    fullname: Tanaka T
– volume: 9
  start-page: 3169
  year: 2018
  ident: e_1_3_4_28_2
  article-title: Small molecule inhibitors of RAS-effector protein interactions derived using an intracellular antibody fragment
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05707-2
  contributor:
    fullname: Quevedo CE
– volume: 165
  start-page: 643
  year: 2016
  ident: e_1_3_4_25_2
  article-title: A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.045
  contributor:
    fullname: Athuluri-Divakar SK
– ident: e_1_3_4_45_2
– volume: 13
  start-page: 1325
  year: 2015
  ident: e_1_3_4_8_2
  article-title: Biochemical and structural analysis of common cancer-associated KRAS mutations
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-15-0203
  contributor:
    fullname: Hunter JC
– volume: 8
  start-page: 1093
  year: 1989
  ident: e_1_3_4_4_2
  article-title: Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1989.tb03478.x
  contributor:
    fullname: Gutierrez L
– volume: 58
  start-page: 1170
  year: 1998
  ident: e_1_3_4_15_2
  article-title: Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression
  publication-title: Cancer Res
  contributor:
    fullname: Cochet O
– ident: e_1_3_4_44_2
– ident: e_1_3_4_47_2
– ident: e_1_3_4_41_2
– volume: 61
  start-page: 4283
  year: 2018
  ident: e_1_3_4_33_2
  article-title: Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.7b01120
  contributor:
    fullname: Lawson ADG
– ident: e_1_3_4_39_2
– volume: 113
  start-page: 3603
  year: 2016
  ident: e_1_3_4_37_2
  article-title: Exploring the surfaceome of Ewing sarcoma identifies a new and unique therapeutic target
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1521251113
  contributor:
    fullname: Town J
– volume: 10
  start-page: 613
  year: 2014
  ident: e_1_3_4_11_2
  article-title: Small-molecule modulation of Ras signaling
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.1560
  contributor:
    fullname: Spiegel J
– volume: 15
  start-page: 771
  year: 2016
  ident: e_1_3_4_17_2
  article-title: Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.139
  contributor:
    fullname: Ostrem JM
– volume: 21
  start-page: 488
  year: 1996
  ident: e_1_3_4_5_2
  article-title: How Ras-related proteins talk to their effectors
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(96)10064-5
  contributor:
    fullname: Wittinghofer A
– volume: 27
  start-page: 2239
  year: 2017
  ident: e_1_3_4_32_2
  article-title: Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2017.03.084
  contributor:
    fullname: Johnstone S
– volume: 7
  start-page: e31098
  year: 2018
  ident: e_1_3_4_38_2
  article-title: Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins
  publication-title: eLife
  doi: 10.7554/eLife.31098
  contributor:
    fullname: Martinko AJ
– volume: 911
  start-page: 151
  year: 2012
  ident: e_1_3_4_14_2
  article-title: Intracellular antibody capture (IAC) methods for single domain antibodies
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-968-6_10
  contributor:
    fullname: Tanaka T
– volume: 58
  start-page: 2265
  year: 2015
  ident: e_1_3_4_24_2
  article-title: Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation
  publication-title: J Med Chem
  doi: 10.1021/jm501660t
  contributor:
    fullname: Winter JJ
– volume: 15
  start-page: 533
  year: 2016
  ident: e_1_3_4_10_2
  article-title: Small molecules, big targets: Drug discovery faces the protein-protein interaction challenge
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.29
  contributor:
    fullname: Scott DE
– volume: 6
  start-page: 316
  year: 2016
  ident: e_1_3_4_26_2
  article-title: Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-1105
  contributor:
    fullname: Patricelli MP
– volume: 17
  start-page: 738
  year: 2017
  ident: e_1_3_4_16_2
  article-title: Transport of drugs from blood vessels to tumour tissue
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2017.93
  contributor:
    fullname: Dewhirst MW
– ident: e_1_3_4_40_2
– volume: 168
  start-page: 878
  year: 2017
  ident: e_1_3_4_27_2
  article-title: Multivalent small-molecule Pan-RAS inhibitors
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.006
  contributor:
    fullname: Welsch ME
– volume: 72
  start-page: 2457
  year: 2012
  ident: e_1_3_4_2_2
  article-title: A comprehensive survey of Ras mutations in cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-2612
  contributor:
    fullname: Prior IA
– ident: e_1_3_4_43_2
– volume: 170
  start-page: 17
  year: 2017
  ident: e_1_3_4_3_2
  article-title: RAS proteins and their regulators in human disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.009
  contributor:
    fullname: Simanshu DK
– volume: 13
  start-page: 828
  year: 2014
  ident: e_1_3_4_1_2
  article-title: Drugging the undruggable RAS: Mission possible?
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4389
  contributor:
    fullname: Cox AD
– volume: 4
  start-page: 3643
  year: 2014
  ident: e_1_3_4_30_2
  article-title: Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex
  publication-title: Sci Rep
  doi: 10.1038/srep03643
  contributor:
    fullname: Sewell H
– volume: 16
  start-page: 315
  year: 2017
  ident: e_1_3_4_36_2
  article-title: Strategies and challenges for the next generation of antibody-drug conjugates
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.268
  contributor:
    fullname: Beck A
– ident: e_1_3_4_46_2
– volume: 129
  start-page: 865
  year: 2007
  ident: e_1_3_4_6_2
  article-title: GEFs and GAPs: Critical elements in the control of small G proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.018
  contributor:
    fullname: Bos JL
– volume: 93
  start-page: 269
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Regulation of small GTPases by GEFs, GAPs, and GDIs
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00003.2012
  contributor:
    fullname: Cherfils J
– volume: 111
  start-page: 3401
  year: 2014
  ident: e_1_3_4_19_2
  article-title: Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1315798111
  contributor:
    fullname: Burns MC
SSID ssj0009580
Score 2.618177
Snippet The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for...
The gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for...
The RAS gene family is frequently mutated in human cancers, and the quest for compounds that bind to mutant RAS remains a major goal, as it also does for...
The RAS family of oncogenic proteins is important as therapy targets because of the frequency of activating mutations in almost all major cancers. An important...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2545
SubjectTerms Anchoring
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Binders
Binding
Biological Sciences
Crystallization
Crystallography, X-Ray
Crystals
Drug Development
Inhibitors
Intracellular
Molecular Structure
Oncogene Protein p21(ras) - antagonists & inhibitors
Oncogene Protein p21(ras) - metabolism
Organic chemistry
Protein Binding
Protein interaction
Proteins
Ras protein
Surface Plasmon Resonance
Title Structure-based development of new RAS-effector inhibitors from a combination of active and inactive RAS-binding compounds
URI https://www.jstor.org/stable/26682931
https://www.ncbi.nlm.nih.gov/pubmed/30683716
https://www.proquest.com/docview/2179670044
https://search.proquest.com/docview/2179422806
https://pubmed.ncbi.nlm.nih.gov/PMC6377466
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEB_aHqQXsWp1tZYIHuoh7-3bZJPNsRRLESpiLfS25OvRBZv36Gsv_vXOZD_aiiePSyYh7G-S-Q2ZD4BPrkG1UcZyxLvhUorATW0c91bbsgxRCEPZyOff1Nml_HpVX21BPebC5KB977pZ-nUzS911jq1c3_j5GCc2_35-ogSSFqXm27CN5nd00adKu02fd1Lh9SsrOdbz0WK-TnYzQ5O2EIreH3bhGe4TPTRqdv7IKvWBif-inH9HTj4yRacv4PnAIdlxv9c92IrpJewNp3TDjoZS0p9fwe-LXB72_jZyMleBhYcYIbZaMuTU7MfxBe-jOla3rEvXneuoAw-jxBNmGWokOs8ZP5ph8_3IbAooO3zQCq7L6TEkvqZOTZvXcHn65efJGR-6LXCPpOGOB-OCQ3yc0KWNjfbaxtCEWnoXTGWr0lfSL5T2hlw0r6JTVRlrv1Slt6axYh920irFt8BiEKYRCn-yx4vYLaxW1kqxRO4Qkb6pAo7Gv92u-6IabX4M16IljNoHjArYz2hMckgoGqQoiwIORnja4dhtWvSvDOUdSVnAx2kYDwy9gtgUV_e9DNU9K3HtNz2a0-KjOhSgn-A8CVAx7qcjqKO5KPegk-_-e-Z72EUyZnhuNnMAO6gf8QMSnjt3SOamPsxq_gdp7AFn
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxQxFH9BTJSLERUcRa2JBzx0d2baaadHQiSrssQIJNwm_dowiXQ3LFz8633tfADGk8dJX5tmfq99v5e-D4BPpka1EUpTxLumnDNHVaUMtVrqPHeeMRWzkecnYnbOv11UFxtQDbkwKWjfmnYSfl1NQnuZYitXV3Y6xIlNf8wPBUPSIsT0ETyumFTF4KSPtXbrLvOkxAuYl3yo6CPZdBX0eoJGrWAivkBswRPcKfposd35PbvUhSb-i3T-HTt5zxgdPYdnPYskB91ut2HDhxew3Z_TNdnvi0l_fgm_T1OB2NtrT6PBcsTdRQmR5YIgqyY_D05pF9exvCZtuGxNG3vwkJh6QjRBnUT3OSEYZ-h0QxIdHMr2H3EF06YEmSi-ir2a1q_g_OjL2eGM9v0WqEXacEOdMs4gQobJXPtaWqm9q13FrXGq1GVuS24LIa2KTpoV3ogy95VdiNxqVWu2A5thGfxrIN4xVTOBP9niVWwKLYXWnC2QPXgkcCKD_eFvN6uurEaTnsMlayJGzR1GGewkNEY5pBQ1kpQig70BnqY_eOsGPSwVM484z-DjOIxHJr6D6OCXt51MrHyW49q7HZrj4oM6ZCAf4DwKxHLcD0dQS1NZ7l4r3_z3zA_wdHY2P26Ov558fwtbSM0UTa1n9mATdcW_Q_pzY94nZf8DBa8D1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkBCXqtDSpqWtK_VAD95kY8eJj4h2BW1BqBSJW-TXikjFG7Fw4dczdh4sVU89Rh5bVr6x5xt5HgCfdYVqI6SiiHdFOWeWykJqalSpssw6xmTIRj45FUcX_PtlcbnS6isG7RvdTPyf64lvrmJsZXtt0iFOLD07ORQMSYsQaWvn6TPYKBgq2eCoj_V2qy77JMdLmOd8qOpTsrT1ajlBwzZlIrxCbMEm7hb9tNDyfMU2deGJ_yKef8dPrhik2Qt43jNJctDteBvWnN-B7f6sLsl-X1D6y0u4P49FYu9uHA1GyxL7GClEFnOCzJr8OjinXWzH4oY0_qrRTejDQ0L6CVEE9RJd6IhimKHiLUmUtyjbf4QVdBOTZIJ4G_o1LV_Bxezb78Mj2vdcoAapwy21UluNKGlWZspVpSmVs5UtuNFW5irPTM7NVJRGBkfNCKdFnrnCzEVmlKwU24V1v_DuDRBnmayYwJ9s8DrWU1UKpTibI4NwSOJEAvvD367brrRGHZ_ES1YHjOpHjBLYjWiMckgrKiQq0wT2Bnjq_vAta_SyZMg-4jyBT-MwHpvwFqK8W9x1MqH6WYZrv-7QHBcf1CGB8gnOo0Aoyf10BDU1lubuNfPtf8_8CJtnX2f1z-PTH-9gC9mZpLH7zB6so6q498iAbvWHqOsPvwUE6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-based+development+of+new+RAS-effector+inhibitors+from+a+combination+of+active+and+inactive+RAS-binding+compounds&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cruz-Migoni%2C+Abimael&rft.au=Canning%2C+Peter&rft.au=Quevedo%2C+Camilo+E&rft.au=R+Bataille%2C+Carole+J&rft.date=2019-02-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=7&rft.spage=2545&rft_id=info:doi/10.1073%2Fpnas.1811360116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon