Mammalian Period represses and de-represses transcription by displacing CLOCK–BMAL1 from promoters in a Cryptochrome-dependent manner

The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cry...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 41; pp. E6072 - E6079
Main Authors Chiou, Yi-Ying, Yang, Yanyan, Rashid, Naim, Ye, Rui, Selby, Christopher P., Sancar, Aziz
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.10.2016
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK–BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA–protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.
AbstractList Significance The mammalian circadian clock is controlled by a transcription-translation feedback loop consisting of transcriptional activators circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1), which function as a complex at E/E'-box elements, and repressors Cryptochrome 1 (CRY1)/CRY2 and PER1/PER2. CRYs repress upon binding as CRY–CLOCK–BMAL1–E-box complexes. Period proteins (PERs) repress by removing the heterotrimeric complexes from the E-box. We report here that in the Cry1 promoter, the CRY1–CLOCK–BMAL1–E-box complex represses a transcriptional activator acting in cis, and removal of the heterotrimeric complex by PER2 de-represses the transcriptional activator. ChIP-seq and RNA-seq experiments identified other genes also de-repressed by PER2. These data clarify the role of PER2 and reveal the level of complexity in regulation of Cry1 and other circadian-controlled genes. The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK–BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA–protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.
The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)-brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK-BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA-protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.
The mammalian circadian clock is controlled by a transcription-translation feedback loop consisting of transcriptional activators circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1), which function as a complex at E/E'-box elements, and repressors Cryptochrome 1 (CRY1)/CRY2 and PER1/PER2. CRYs repress upon binding as CRY–CLOCK–BMAL1–E-box complexes. Period proteins (PERs) repress by removing the heterotrimeric complexes from the E-box. We report here that in the Cry1 promoter, the CRY1–CLOCK–BMAL1–E-box complex represses a transcriptional activator acting in cis, and removal of the heterotrimeric complex by PER2 de-represses the transcriptional activator. ChIP-seq and RNA-seq experiments identified other genes also de-repressed by PER2. These data clarify the role of PER2 and reveal the level of complexity in regulation of Cry1 and other circadian-controlled genes. The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian locomotor output cycles kaput (CLOCK)–brain and muscle Arnt-like protein-1 (BMAL1) heterodimer acts as the transcriptional activator, and Cryptochrome (CRY) and Period (PER) proteins function as repressors. PER represses by displacing CLOCK–BMAL1 from promoters in a CRY-dependent manner. Interestingly, genes with complex promoters may either be repressed or de-repressed by PER, depending on the particular promoter regulatory elements. Here, using mouse cell lines with defined knockout mutations in clock genes, RNA-seq, ChIP-seq, and reporter gene assays coupled with measurements of DNA–protein interactions in nuclear extracts, we elucidate the dual functions of PER as repressor and de-repressor in a context-dependent manner.
Author Chiou, Yi-Ying
Ye, Rui
Yang, Yanyan
Rashid, Naim
Selby, Christopher P.
Sancar, Aziz
Author_xml – sequence: 1
  givenname: Yi-Ying
  surname: Chiou
  fullname: Chiou, Yi-Ying
  organization: Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
– sequence: 2
  givenname: Yanyan
  surname: Yang
  fullname: Yang, Yanyan
  organization: Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
– sequence: 3
  givenname: Naim
  surname: Rashid
  fullname: Rashid, Naim
  organization: Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
– sequence: 4
  givenname: Rui
  surname: Ye
  fullname: Ye, Rui
  organization: Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
– sequence: 5
  givenname: Christopher P.
  surname: Selby
  fullname: Selby, Christopher P.
  organization: Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
– sequence: 6
  givenname: Aziz
  surname: Sancar
  fullname: Sancar, Aziz
  organization: Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27688755$$D View this record in MEDLINE/PubMed
BookMark eNpdkT1vFDEQhi0URC6BmgpkiYZmE3-u1w1SOIUPcVEooLa869nEp117sfeQrqPLD-Af8kvw6UIOaGakmWdezcx7go5CDIDQc0rOKFH8fAo2n9GaMk0VpfwRWlCiaVULTY7QghCmqkYwcYxOcl4TQrRsyBN0zFTdNErKBbq7suNoB28D_gzJR4cTTAlyhoxtcNhBdSjMyYbcJT_NPgbcbrHzeRps58MNXq6ul59-_fj59upiRXGf4oinEuIMKWMfsMXLtJ3m2N2WKlQOJggOwoxHGwKkp-hxb4cMz-7zKfr67vLL8kO1un7_cXmxqjpJ9Fw5zSmv68Yp5TqhKesta5V2baOFko6RXgjb9bylrXO15BqoBUqdKl9ptFb8FL3Z606bdgTXlQ2SHcyU_GjT1kTrzb-d4G_NTfxuJKkbTlgReH0vkOK3DeTZjD53MAw2QNxkQxsutGZM1AV99R-6jpsUynk7imkpldSFOt9TXYo5J-gflqHE7Ew2O5PNweQy8fLvGx74P64W4MUeWOc5pkO_FooRQfhvFQmxvg
CitedBy_id crossref_primary_10_1016_j_semcdb_2021_03_012
crossref_primary_10_1002_advs_201900667
crossref_primary_10_1093_intimm_dxab009
crossref_primary_10_1016_j_jbc_2024_107220
crossref_primary_10_18632_aging_103124
crossref_primary_10_1073_pnas_1804493115
crossref_primary_10_3390_ijms232113210
crossref_primary_10_1002_jcb_30539
crossref_primary_10_1371_journal_pgen_1007156
crossref_primary_10_1089_ars_2022_0014
crossref_primary_10_1016_j_jmb_2020_01_009
crossref_primary_10_1074_jbc_M117_806836
crossref_primary_10_1038_s41467_018_03503_6
crossref_primary_10_1002_jcp_30772
crossref_primary_10_3390_cells10123479
crossref_primary_10_1038_s41598_021_93933_y
crossref_primary_10_4155_ppa_2018_0029
crossref_primary_10_1038_s41580_019_0179_2
crossref_primary_10_1016_j_envpol_2019_113735
crossref_primary_10_1111_php_12669
crossref_primary_10_1371_journal_pone_0233386
crossref_primary_10_3389_fnins_2020_616802
crossref_primary_10_1210_en_2018_00691
crossref_primary_10_1016_j_molcel_2023_04_019
crossref_primary_10_3389_fphys_2020_612510
crossref_primary_10_1016_j_celrep_2022_110386
crossref_primary_10_1016_j_molimm_2023_03_004
crossref_primary_10_1073_pnas_2316731121
crossref_primary_10_1016_j_jmb_2019_11_026
crossref_primary_10_1073_pnas_2318274120
crossref_primary_10_1073_pnas_2122170119
crossref_primary_10_3390_ijms21072469
crossref_primary_10_3390_ijms21030901
crossref_primary_10_1016_j_jbc_2021_101068
crossref_primary_10_3390_clockssleep4010017
crossref_primary_10_1016_j_celrep_2022_110703
crossref_primary_10_1038_s42003_021_01816_9
crossref_primary_10_1038_nrg_2016_150
crossref_primary_10_3389_fonc_2022_759153
crossref_primary_10_3390_clockssleep3040045
crossref_primary_10_1371_journal_pcbi_1008987
crossref_primary_10_1016_j_jmb_2019_12_046
crossref_primary_10_1038_s41368_022_00207_y
crossref_primary_10_1007_s00335_024_10050_7
crossref_primary_10_1016_j_semcdb_2021_04_012
crossref_primary_10_1186_s43088_022_00290_4
crossref_primary_10_1016_j_molcel_2017_07_017
crossref_primary_10_3389_fimmu_2022_947067
crossref_primary_10_1016_j_cophys_2018_08_004
crossref_primary_10_1016_j_dnarep_2020_102993
crossref_primary_10_1016_j_jbc_2023_102929
crossref_primary_10_1039_D1FO00661D
crossref_primary_10_1016_j_isci_2023_107449
crossref_primary_10_15252_embj_2020106745
crossref_primary_10_1016_j_molcel_2021_01_006
crossref_primary_10_1016_j_chembiol_2023_08_014
crossref_primary_10_1073_pnas_2115711119
crossref_primary_10_1098_rsfs_2021_0084
crossref_primary_10_1038_s41540_024_00356_2
crossref_primary_10_3389_fphys_2021_761109
crossref_primary_10_3390_ijms20071597
crossref_primary_10_1016_j_jbc_2023_105251
crossref_primary_10_1016_j_physbeh_2023_114411
crossref_primary_10_3389_fphys_2018_01178
crossref_primary_10_1186_s12920_018_0467_2
crossref_primary_10_1016_j_coisb_2021_100391
crossref_primary_10_1073_pnas_2316858121
crossref_primary_10_47021_0320_3557_2021_15_25
crossref_primary_10_1038_s41467_022_31715_4
crossref_primary_10_1186_s12920_021_01075_x
crossref_primary_10_1038_srep39934
crossref_primary_10_1016_j_jbc_2024_105637
crossref_primary_10_1073_pnas_2021174118
crossref_primary_10_26508_lsa_201800078
crossref_primary_10_1073_pnas_1920653117
crossref_primary_10_1111_php_12864
crossref_primary_10_1016_j_cytogfr_2019_04_001
crossref_primary_10_3390_ijms25042063
crossref_primary_10_3390_toxins12030151
crossref_primary_10_1038_s41598_021_01178_6
crossref_primary_10_1111_gtc_12664
crossref_primary_10_15252_embj_2021108883
crossref_primary_10_3389_fimmu_2020_01235
crossref_primary_10_1083_jcb_202101057
crossref_primary_10_7554_eLife_50925
crossref_primary_10_1186_s13045_022_01238_y
crossref_primary_10_1111_acer_14972
crossref_primary_10_1016_j_phymed_2019_153161
crossref_primary_10_1016_j_jmb_2020_02_002
crossref_primary_10_1080_21541264_2019_1673636
crossref_primary_10_3389_fnetp_2021_732243
crossref_primary_10_1523_JNEUROSCI_1883_20_2021
crossref_primary_10_1146_annurev_cellbio_100818_125454
crossref_primary_10_1016_j_cell_2017_03_027
crossref_primary_10_1007_s00415_023_11851_7
crossref_primary_10_1073_pnas_2011225117
crossref_primary_10_1111_apha_13970
crossref_primary_10_1098_rsif_2020_0556
crossref_primary_10_1111_apha_14028
crossref_primary_10_7554_eLife_73976
crossref_primary_10_1080_07420528_2023_2237580
Cites_doi 10.1126/science.288.5468.1013
10.1016/S0092-8674(00)81014-4
10.1016/j.molmet.2013.05.002
10.1101/gad.249417.114
10.1016/j.celrep.2014.03.072
10.1074/jbc.M111.254680
10.1038/nature11048
10.1016/j.cell.2007.04.030
10.1016/S0092-8674(01)00610-9
10.1096/fj.05-5321fje
10.1016/j.cub.2008.04.012
10.1038/nature02724
10.1038/nmeth.3047
10.1146/annurev.pharmtox.47.120505.105208
10.1016/S0092-8674(01)00380-4
10.1016/j.cell.2010.12.019
10.1101/gad.564110
10.1074/jbc.M111466200
10.1038/22118
10.1126/science.1226339
10.1128/MCB.20.13.4888-4899.2000
10.1038/nmeth.1923
10.1186/gb-2008-9-9-r137
10.1016/S0092-8674(02)00825-5
10.1038/nprot.2014.083
10.1016/j.conb.2013.02.018
10.1016/j.tcb.2013.07.002
10.1038/nature01314
10.1186/s13059-014-0550-8
10.1093/bioinformatics/btq033
10.1038/nature00965
10.1101/gad.186858.112
10.7554/eLife.00011
10.7554/eLife.03674
10.1371/journal.pgen.1000023
10.1073/pnas.96.21.12114
10.1038/ng1504
10.1016/j.cell.2013.01.055
10.1126/science.1240636
10.1093/bioinformatics/btt656
10.1093/bioinformatics/btp352
10.1038/nsmb.3018
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 11, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 11, 2016
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1612917113
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Molecular mechanism of mammalian circadian clock
EISSN 1091-6490
EndPage E6079
ExternalDocumentID 4230044651
10_1073_pnas_1612917113
27688755
26472040
Genre Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118102
– fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NIEHS NIH HHS
  grantid: P30 ES010126
– fundername: NIGMS NIH HHS
  grantid: R01 GM031082
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM118102-01
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
79B
ADQXQ
NPM
ZA5
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-d9313668d77dc4912fa2b79db89475d20f44acf3b1bdd6539e1ae11d709189973
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:16:31 EDT 2024
Fri Aug 16 12:18:16 EDT 2024
Fri Sep 13 08:46:56 EDT 2024
Fri Aug 23 01:52:25 EDT 2024
Sun Jun 23 00:36:30 EDT 2024
Sun Sep 22 12:45:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords Period
circadian
activator
transcription
DNA binding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-d9313668d77dc4912fa2b79db89475d20f44acf3b1bdd6539e1ae11d709189973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Aziz Sancar, August 17, 2016 (sent for review July 15, 2016; reviewed by Carl Hirschie Johnson and Andrew C. Liu)
1Y.-Y.C., Y.Y., and N.R. contributed equally to this work.
Reviewers: C.H.J., Vanderbilt University; and A.C.L., University of Memphis.
Author contributions: Y.-Y.C., R.Y., and A.S. designed research; Y.-Y.C., Y.Y., and R.Y. performed research; Y.-Y.C., Y.Y., and N.R. analyzed data; and C.P.S. and A.S. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/113/41/E6072.full.pdf
PMID 27688755
PQID 1832955759
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5068302
proquest_miscellaneous_1834992246
proquest_journals_1832955759
crossref_primary_10_1073_pnas_1612917113
pubmed_primary_27688755
jstor_primary_26472040
PublicationCentury 2000
PublicationDate 2016-10-11
PublicationDateYYYYMMDD 2016-10-11
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 10848614 - Mol Cell Biol. 2000 Jul;20(13):4888-99
25228643 - Genes Dev. 2014 Sep 15;28(18):1989-98
22460952 - Nature. 2012 Mar 29;485(7396):123-7
23150795 - Elife. 2012 Nov 13;1:e00011
25516281 - Genome Biol. 2014;15(12):550
20159955 - Genes Dev. 2010 Feb 15;24(4):345-57
22936566 - Science. 2012 Oct 19;338(6105):349-54
17209800 - Annu Rev Pharmacol Toxicol. 2007;47:593-628
12150932 - Cell. 2002 Jul 26;110(2):251-60
11779462 - Cell. 2001 Dec 28;107(7):855-67
10518585 - Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12114-9
23452855 - Cell. 2013 Feb 28;152(5):1091-105
18454201 - PLoS Genet. 2008 Feb 29;4(2):e1000023
25127877 - Elife. 2014 Aug 15;3:e03674
15269772 - Nature. 2004 Jul 22;430(6998):467-71
12198538 - Nature. 2002 Aug 29;418(6901):935-41
10428031 - Cell. 1999 Jul 23;98(2):193-205
15665827 - Nat Genet. 2005 Feb;37(2):187-92
10807566 - Science. 2000 May 12;288(5468):1013-9
25075903 - Nat Methods. 2014 Aug;11(8):783-4
23916625 - Trends Cell Biol. 2014 Feb;24(2):90-9
23731779 - Curr Opin Neurobiol. 2013 Oct;23(5):724-31
12483227 - Nature. 2003 Jan 9;421(6919):177-82
24794436 - Cell Rep. 2014 May 22;7(4):1056-64
11875063 - J Biol Chem. 2002 May 10;277(19):17248-54
24227677 - Bioinformatics. 2014 Apr 1;30(7):923-30
18439826 - Curr Biol. 2008 May 6;18(9):678-83
24853928 - Nat Protoc. 2014;9(6):1428-50
18798982 - Genome Biol. 2008;9(9):R137
25961797 - Nat Struct Mol Biol. 2015 Jun;22(6):476-84
21613214 - J Biol Chem. 2011 Jul 22;286(29):25891-902
22388286 - Nat Methods. 2012 Mar 04;9(4):357-9
17462724 - Cell. 2007 Jun 1;129(5):1011-23
16507766 - FASEB J. 2006 Mar;20(3):530-2
19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9
20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2
11389837 - Cell. 2001 Jun 1;105(5):683-94
23970558 - Science. 2013 Sep 27;341(6153):1483-8
22474260 - Genes Dev. 2012 Apr 1;26(7):657-67
10408444 - Nature. 1999 Jul 8;400(6740):169-73
24049733 - Mol Metab. 2013 May 10;2(3):184-93
21236481 - Cell. 2011 Jan 21;144(2):268-81
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_6_2
  doi: 10.1126/science.288.5468.1013
– ident: e_1_3_2_7_2
  doi: 10.1016/S0092-8674(00)81014-4
– ident: e_1_3_2_21_2
  doi: 10.1016/j.molmet.2013.05.002
– ident: e_1_3_2_15_2
  doi: 10.1101/gad.249417.114
– ident: e_1_3_2_20_2
  doi: 10.1016/j.celrep.2014.03.072
– ident: e_1_3_2_32_2
  doi: 10.1074/jbc.M111.254680
– ident: e_1_3_2_11_2
  doi: 10.1038/nature11048
– ident: e_1_3_2_30_2
  doi: 10.1016/j.cell.2007.04.030
– ident: e_1_3_2_34_2
  doi: 10.1016/S0092-8674(01)00610-9
– ident: e_1_3_2_19_2
  doi: 10.1096/fj.05-5321fje
– ident: e_1_3_2_22_2
  doi: 10.1016/j.cub.2008.04.012
– ident: e_1_3_2_23_2
  doi: 10.1038/nature02724
– ident: e_1_3_2_35_2
  doi: 10.1038/nmeth.3047
– ident: e_1_3_2_3_2
  doi: 10.1146/annurev.pharmtox.47.120505.105208
– ident: e_1_3_2_8_2
  doi: 10.1016/S0092-8674(01)00380-4
– ident: e_1_3_2_14_2
  doi: 10.1016/j.cell.2010.12.019
– ident: e_1_3_2_25_2
  doi: 10.1101/gad.564110
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M111466200
– ident: e_1_3_2_9_2
  doi: 10.1038/22118
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1226339
– ident: e_1_3_2_36_2
– ident: e_1_3_2_28_2
  doi: 10.1128/MCB.20.13.4888-4899.2000
– ident: e_1_3_2_37_2
  doi: 10.1038/nmeth.1923
– ident: e_1_3_2_39_2
  doi: 10.1186/gb-2008-9-9-r137
– ident: e_1_3_2_13_2
  doi: 10.1016/S0092-8674(02)00825-5
– ident: e_1_3_2_41_2
  doi: 10.1038/nprot.2014.083
– ident: e_1_3_2_2_2
  doi: 10.1016/j.conb.2013.02.018
– ident: e_1_3_2_1_2
  doi: 10.1016/j.tcb.2013.07.002
– ident: e_1_3_2_16_2
  doi: 10.1038/nature01314
– ident: e_1_3_2_43_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_2_40_2
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_3_2_4_2
  doi: 10.1038/nature00965
– ident: e_1_3_2_10_2
  doi: 10.1101/gad.186858.112
– ident: e_1_3_2_27_2
  doi: 10.7554/eLife.00011
– ident: e_1_3_2_33_2
  doi: 10.7554/eLife.03674
– ident: e_1_3_2_12_2
  doi: 10.1371/journal.pgen.1000023
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.96.21.12114
– ident: e_1_3_2_24_2
  doi: 10.1038/ng1504
– ident: e_1_3_2_31_2
  doi: 10.1016/j.cell.2013.01.055
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1240636
– ident: e_1_3_2_42_2
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_3_2_38_2
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_3_2_17_2
  doi: 10.1038/nsmb.3018
SSID ssj0009580
Score 2.5628006
Snippet The mammalian circadian clock is based on a transcription-translation feedback loop (TTFL) consolidated by secondary loops. In the primary TTFL, the circadian...
Significance The mammalian circadian clock is controlled by a transcription-translation feedback loop consisting of transcriptional activators circadian...
The mammalian circadian clock is controlled by a transcription-translation feedback loop consisting of transcriptional activators circadian locomotor output...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E6072
SubjectTerms Biological Sciences
Genes
Mammals
PNAS Plus
Proteins
Ribonucleic acid
RNA
Transcription factors
Title Mammalian Period represses and de-represses transcription by displacing CLOCK–BMAL1 from promoters in a Cryptochrome-dependent manner
URI https://www.jstor.org/stable/26472040
https://www.ncbi.nlm.nih.gov/pubmed/27688755
https://www.proquest.com/docview/1832955759/abstract/
https://search.proquest.com/docview/1834992246
https://pubmed.ncbi.nlm.nih.gov/PMC5068302
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0Bp16qUkoboMiVeqCH7K4_EsdHGoFoYVsOReIW2XEiViLZaDccuPXWH8A_5Jd07CS73aqnXuMPRXnjmed4_AbgoxLKYNwow5IaiRuUiQ2NZgIBsUVspZMkcxeFp9_iixvx9Ta63YJouAvjk_ZzMxvV99Wont353MqmysdDntj4eppGk9jJVo23YVtyPmzRV0q7SXfvhKH7FUwMej6Sj5taL0dIcRjuUSh1JXQYsm1k7NFGVOoSE_9FOf_OnPwjFJ2_gpc9hySn3bvuwlZRv4bdfpUuyUkvJf1pD35NdVX5PxnkGk1tbsmiy3zFbrq2xBbh-kHrwtbgRIh5JHa2dClbGNxIevU9vXz--fR5enpFibuTQhqfyIfskcxqokm6eGzaeX7n5A_CobRuSyrtanu9gZvzsx_pRdiXXghzZBBtaBWnPI4TRMvmQiGYmhmprEmUkJFlk1IInZfcUGOtU7ctqC4otRLpB-7gJN-HnXpeF--ASC5s5ETqy9iKMuGaKU2tidDLakFVEsDJ8OmzplPYyPzJuOSZAyxbAxbAvodm1Y-5edENBXA0YJX1axDHobNSkStAGsCHVTOuHnckouti_uD7CKfMK-IA3nbQrifvbSMAuQH6qoNT5t5sQYP1Ct29gR7898hDeIHMLHZBktIj2GkXD8V7ZD-tOUbe_-Xy2Nv8b6SZBi4
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VcoALUKAQKGAkDuWQ7Npx4uRYIqqFbkoPLeotsuNEXUGy0W72UE7c-AD-kC9h7CS7bMUFrrETyfLzzHP8_AbgTcxjhXmjdEuqBG5QxtpVknGcEF2EWhhLMnNROD0NJxf842VwuQPBcBfGivZzNfPqr5VXz66strKp8tGgExudpUkwDo1t1egW3Mb1ysSwSV977UbdzROGAZgzPjj6CH_U1HLpIclhuEuh1BTRYci3kbMHW3mpkyb-jXTe1E7-kYyO78PnYRidBuWLt2qVl3-74fD4z-N8APd6ekqOuuY92Cnqh7DXB4AlOexdqt8-gh-prCr7k4ScIYrnmiw6US12k7UmunA3D1qTEYf4RNQ10bOlUYNh3iTJ9FNy8uv7z3fp0ZQSc92FNFYjiMSUzGoiSbK4btp5fmWcFdyham9LKmnKhj2Gi-P358nE7as6uDmSk9bVsU_9MIwQCDrnMeJEMiViraKYi0Czccm5zEtfUaW1Mc4tqCwo1QKZDW4Ohb8Pu_W8Lp4CET7XgfG_L0PNy8iXLJZUqwADuOQ0jhw4HOY0azrzjsweugs_M0jINkhwYN_O-bofM9_FCOfAwQCCrF_e-B7GwTgwtU0deL1uxoVpTltkXcxXtg83pr88dOBJh5nNx3vQOSC20LTuYEy_t1sQI9b8u8fEs_9-8xXcmZyn02z64fTkOdxFAhiaXEzpAey2i1XxAklWq17aJfUbWngnJQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAXoEAhpYCROJRDNmvHieNjCawK3S17oFLFJbLjRF3RZKPd7KGcuPED-If8Esb52O1WnHpNxpEiP888J89vAN5JLjXWjdzNqRa4QRkaVyvGcUJMFhphLcnsQeHJaXh8xr-cB-fXWn01ov1UzwblZTEoZxeNtrIqUq_XiXnTSRwMQ2tb5VUm9-7CPVyzTPYb9bXfbtSePmGYhDnjvauP8L2qVMsBEh2GOxVKbSMdhpwbeXuwVZtaeeL_iOdN_eS1gjR6BN_7V2l1KD8Gq1oP0p83XB5v9a6P4WFHU8lRG7ILd7LyCex2iWBJDju36vdP4fdEFUXzsYRMEc1zQxatuBbDVGmIydzNhdpWxj5PEX1FzGxpVWFYP0k8_hqf_P3158PkaEyJPfZCqkYriASVzEqiSLy4qup5emEdFty-e29NCmXbhz2Ds9Gnb_Gx23V3cFMkKbVrpE_9MIwQECblEvGimBbS6EhyERg2zDlXae5rqo2xBroZVRmlRiDDwU2i8Pdgp5yX2QsgwucmsD74eWh4HvmKSUWNDjCRK05l5MBhP69J1Zp4JM3Pd-EnFg3JBg0O7DXzvo5j9rmY6Rw46IGQdMscx2E-lIHtcerA2_VtXKD2r4sqs_mqieHW_JeHDjxvcbN5eAc8B8QWotYB1vx7-w7ipDEB73Cxf-uRb-D-9OMoGX8-PXkJD5AHhrYkU3oAO_Vilb1CrlXr182q-geIVSml
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+Period+represses+and+de-represses+transcription+by+displacing+CLOCK%E2%80%93BMAL1+from+promoters+in+a+Cryptochrome-dependent+manner&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chiou%2C+Yi-Ying&rft.au=Yang%2C+Yanyan&rft.au=Rashid%2C+Naim&rft.au=Ye%2C+Rui&rft.series=PNAS+Plus&rft.date=2016-10-11&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=41&rft.spage=E6072&rft.epage=E6079&rft_id=info:doi/10.1073%2Fpnas.1612917113&rft_id=info%3Apmid%2F27688755&rft.externalDBID=PMC5068302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon