Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields

This work analyses the interaction of red blood cells (RBCs) with shock-induced and bubble-induced flows in shock wave lithotripsy (SWL), and calculates, in vitro, the lytic effects of these two flows. A well known experimentally observed fact about RBC membranes is that the lipid bilayer disrupts w...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 46; no. 2; pp. 413 - 437
Main Authors Lokhandwalla, Murtuza, Sturtevant, Bradford
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.02.2001
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work analyses the interaction of red blood cells (RBCs) with shock-induced and bubble-induced flows in shock wave lithotripsy (SWL), and calculates, in vitro, the lytic effects of these two flows. A well known experimentally observed fact about RBC membranes is that the lipid bilayer disrupts when subjected to an areal strain (deltaA/A)c of 3%, and a corresponding, critical, isotropic tension, Tc, of 10 mN m(-1) (1 mN m(-1) = 1 dyne cm(-1)). RBCs suspended in a fluid medium tend to deform in accordance with the deformation of the surrounding fluid medium. The fluid flow-field is lytically effective if the membrane deformation exceeds the above threshold value. From kinematic analysis, motion of an elementary fluid particle can always be decomposed into a uniform translation, an extensional flow (e.g. -->uinfinity(x, y, z) = (k(t)x, -k(t)y, 0)) along three mutually perpendicular axes, and a rigid rotation of these axes. However, only an extensional flow causes deformation of a fluid particle, and consequently deforms the RBC membrane. In SWL, a fluid flow-field, induced by a non-uniform shock wave, as well as radial expansion/implosion of a bubble, has been hypothesized to cause lysis of cells. Both the above flow-fields constitute an unsteady, extensional flow, which exerts inertial as well as viscous forces on the RBC membrane. The transient inertial force (expressed as a tension, or force/length), is given by Tiner approximately rhor(c)3k/tau, where tau is a timescale of the transient flow and r(c) is a characteristic cell size. When the membrane is deformed due to inertial effects, membrane strain is given by deltaA/A approximately ktau. The transient viscous force is given by Tvisc approximately rho(nu/tau)1/2r(c)2k, where rho and nu are the fluid density and kinematic viscosity. For the non-uniform shock, the extensional flow exerts an inertial force, Tiner approximately 64 mN m(-1), for a duration of 3 ns, sufficient to induce pores in the RBC membrane. For a radial flow-field, induced by bubble expansion/implosion, the inertial forces are of a magnitude 100 mN m(-1), which last for a duration of 1 micros, sufficient to cause rupture. Bubble-induced radial flow is predicted to be lytically more effective than shock-induced flow in typical in vitro experimental conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/46/2/310