An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation

The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Rece...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 7; p. 3387
Main Authors Boccignone, Giuseppe, D’Amelio, Alessandro, Ghezzi, Omar, Grossi, Giuliano, Lanzarotti, Raffaella
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.
AbstractList The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.
The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.
Audience Academic
Author Grossi, Giuliano
Boccignone, Giuseppe
D’Amelio, Alessandro
Ghezzi, Omar
Lanzarotti, Raffaella
AuthorAffiliation PHuSe Laboratory—Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy
AuthorAffiliation_xml – name: PHuSe Laboratory—Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy
Author_xml – sequence: 1
  givenname: Giuseppe
  orcidid: 0000-0002-5572-0924
  surname: Boccignone
  fullname: Boccignone, Giuseppe
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-8210-4457
  surname: D’Amelio
  fullname: D’Amelio, Alessandro
– sequence: 3
  givenname: Omar
  surname: Ghezzi
  fullname: Ghezzi, Omar
– sequence: 4
  givenname: Giuliano
  orcidid: 0000-0001-9274-4047
  surname: Grossi
  fullname: Grossi, Giuliano
– sequence: 5
  givenname: Raffaella
  orcidid: 0000-0002-8534-4413
  surname: Lanzarotti
  fullname: Lanzarotti, Raffaella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37050444$$D View this record in MEDLINE/PubMed
BookMark eNplkl1P2zAUhq2JaUC3i_2BKdJutouAYzuxfTV1VWFI7EOIe-vUcVpXSdzZLlL__Q4tIGDyhaM3z3mcE59TcjSG0RHysaJnnGt6nhinknMl35CTSjBRKsbo0bPnY3Ka0ppSxpF6R465pDUVQpyQbjoW8zvot5B9GIvQFb_CWM7CmMHm4s8q5LDpXV7t0hCWETarXfkdkmuLnxiGNhVdiMWNG0J2uKWNj5BD3BU3gME8ZT_sxe_J2w765D487BNyezG_nf0or39fXs2m16Wtqc6lBQlQyZbV3GnGW1o5x1srpeVVBwtNdbVQQt3nyHWAjGoq5WrONBctn5Crg7YNsDabiKfHnQngzT4IcWkgZm97Z7hlHUiuWt1YUUsGwGpNG7mwGniDa0K-HVyb7WJwrXVjjtC_kL58M_qVWYY7U1Gqla4EGr48GGL4u3Upm8En6_oeRhe2yTBFaYOtNhzRz6_QddjGEX-VYVJrKVBYI3V2oJaAHfixC3iwxdW6wVucic5jPpWi0UKxWmHBp-c9PH384_0jcH4AbAwpRdcZ6_P-xtDse-zF3E-YeZowrPj6quJR-j_7D15oz48
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3321659
crossref_primary_10_3389_fbioe_2024_1420100
crossref_primary_10_1016_j_bspc_2024_106650
crossref_primary_10_1016_j_measen_2024_101647
crossref_primary_10_1109_ACCESS_2024_3484992
crossref_primary_10_1007_s13369_023_08533_x
crossref_primary_10_3390_biomedinformatics4010031
crossref_primary_10_1016_j_bspc_2024_107445
crossref_primary_10_1016_j_bspc_2024_107158
crossref_primary_10_1016_j_neucom_2024_127282
crossref_primary_10_3390_photonics10111231
Cites_doi 10.3109/03091902.2011.638965
10.1109/EMBC.2019.8856387
10.1007/978-3-031-06430-2_16
10.1038/s41598-020-72193-2
10.7717/peerj-cs.929
10.21105/joss.02977
10.1098/rspa.1998.0193
10.1109/TBME.2016.2613124
10.1088/0967-3334/28/3/R01
10.1007/978-1-4757-2514-8
10.1109/JSEN.2021.3072607
10.1109/CVPR.2016.374
10.1016/j.ijnurstu.2009.10.001
10.1007/978-3-030-01216-8_22
10.1109/ACCESS.2020.3008687
10.1109/CVPRW50498.2020.00160
10.1007/s10439-013-0944-x
10.1109/ISMICT48699.2020.9152720
10.1109/EMBC.2012.6346628
10.1088/0967-3334/36/11/2317
10.1186/s12938-016-0300-0
10.1109/MMSP53017.2021.9733524
10.3390/s21103456
10.1109/JBHI.2016.2553578
10.3181/00379727-37-9630
10.1109/ICPR48806.2021.9412186
10.1109/TBME.2013.2266196
10.3390/s21186296
10.1109/MSP.2013.2267931
10.1056/NEJM197908303010901
10.3390/s21113719
10.1016/j.compbiomed.2016.11.010
10.3389/fphys.2018.00948
10.1145/3558518
10.1007/s12652-019-01339-6
10.1109/JBHI.2015.2429746
10.1109/ACCESS.2020.3040936
10.1023/B:JINT.0000038945.55712.65
10.1109/TBME.2011.2163157
10.1088/1361-6579/ab3be0
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23073387
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3c2fa738d96c4572aa259067bc9a3636
PMC10098914
A746948258
37050444
10_3390_s23073387
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-ca7aa17d253e923d01ee3dc77c31fab9091b848d01eaa1fa9238618e532934d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:23:09 EDT 2025
Thu Aug 21 18:38:06 EDT 2025
Mon Jul 21 09:21:03 EDT 2025
Fri Jul 25 20:16:03 EDT 2025
Tue Jul 01 05:45:14 EDT 2025
Wed Feb 19 02:04:36 EST 2025
Thu Apr 24 22:55:20 EDT 2025
Tue Jul 01 01:19:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords remote respiratory rate estimation
empirical mode decomposition
pyVHR
contactless respiration monitoring
remote photoplethysmography
incremental merge segmentation
vital signs from video
singular spectrum analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-ca7aa17d253e923d01ee3dc77c31fab9091b848d01eaa1fa9238618e532934d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8210-4457
0000-0002-8534-4413
0000-0001-9274-4047
0000-0002-5572-0924
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23073387
PMID 37050444
PQID 2799748915
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3c2fa738d96c4572aa259067bc9a3636
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098914
proquest_miscellaneous_2800625363
proquest_journals_2799748915
gale_infotracacademiconefile_A746948258
pubmed_primary_37050444
crossref_citationtrail_10_3390_s23073387
crossref_primary_10_3390_s23073387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230323
PublicationDateYYYYMMDD 2023-03-23
PublicationDate_xml – month: 3
  year: 2023
  text: 20230323
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Buda (ref_13) 1979; 301
Nam (ref_16) 2014; 42
Cattani (ref_1) 2017; 80
Nam (ref_15) 2015; 36
Demsar (ref_36) 2006; 7
McDuff (ref_7) 2023; 55
ref_14
Ali (ref_3) 2021; 21
ref_33
ref_10
Hernando (ref_12) 2019; 40
Alexandrov (ref_34) 2008; 7
Liu (ref_40) 2020; 33
Quinn (ref_32) 2021; 6
ref_18
ref_39
ref_38
ref_37
Wei (ref_19) 2017; 16
Boccignone (ref_24) 2022; 8
Borges (ref_28) 2004; 40
Fiedler (ref_31) 2020; 8
Meredith (ref_11) 2012; 36
Bland (ref_35) 2010; 47
Jeanne (ref_27) 2013; 60
Dehkordi (ref_30) 2018; 9
Alafeef (ref_8) 2020; 11
Stallone (ref_44) 2020; 10
ref_23
Pimentel (ref_5) 2016; 64
ref_20
ref_42
ref_41
Karlen (ref_21) 2015; 19
Hernando (ref_2) 2016; 20
Boccignone (ref_26) 2020; 8
ref_29
ref_9
Huang (ref_22) 1998; 454
Allen (ref_25) 2007; 28
Hertzman (ref_4) 1937; 37
Mandic (ref_43) 2013; 30
ref_6
Scully (ref_17) 2011; 59
References_xml – volume: 36
  start-page: 1
  year: 2012
  ident: ref_11
  article-title: Photoplethysmographic derivation of respiratory rate: A review of relevant physiology
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2011.638965
– ident: ref_20
  doi: 10.1109/EMBC.2019.8856387
– ident: ref_10
  doi: 10.1007/978-3-031-06430-2_16
– volume: 10
  start-page: 15161
  year: 2020
  ident: ref_44
  article-title: New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72193-2
– volume: 8
  start-page: e929
  year: 2022
  ident: ref_24
  article-title: pyVHR: A Python framework for remote photoplethysmography
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.929
– volume: 6
  start-page: 2977
  year: 2021
  ident: ref_32
  article-title: EMD: Empirical mode decomposition and Hilbert-Huang spectral analyses in Python
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02977
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_22
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 64
  start-page: 1914
  year: 2016
  ident: ref_5
  article-title: Toward a robust estimation of respiratory rate from pulse oximeters
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613124
– volume: 28
  start-page: R1
  year: 2007
  ident: ref_25
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– ident: ref_33
  doi: 10.1007/978-1-4757-2514-8
– volume: 21
  start-page: 14569
  year: 2021
  ident: ref_3
  article-title: Contact and remote breathing rate monitoring techniques: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3072607
– ident: ref_23
  doi: 10.1109/CVPR.2016.374
– volume: 47
  start-page: 931
  year: 2010
  ident: ref_35
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Int. J. Nurs. Stud.
  doi: 10.1016/j.ijnurstu.2009.10.001
– ident: ref_39
  doi: 10.1007/978-3-030-01216-8_22
– volume: 8
  start-page: 130036
  year: 2020
  ident: ref_31
  article-title: Fusion-based approach for respiratory rate recognition from facial video images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008687
– ident: ref_14
  doi: 10.1109/CVPRW50498.2020.00160
– volume: 42
  start-page: 885
  year: 2014
  ident: ref_16
  article-title: Respiratory rate estimation from the built-in cameras of smartphones and tablets
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0944-x
– volume: 7
  start-page: 1
  year: 2008
  ident: ref_34
  article-title: A Method of Trend Extraction Using Singular Spectrum Analysis
  publication-title: RevStat
– ident: ref_18
  doi: 10.1109/ISMICT48699.2020.9152720
– ident: ref_6
  doi: 10.1109/EMBC.2012.6346628
– volume: 36
  start-page: 2317
  year: 2015
  ident: ref_15
  article-title: Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/36/11/2317
– volume: 16
  start-page: 17
  year: 2017
  ident: ref_19
  article-title: Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-016-0300-0
– ident: ref_41
  doi: 10.1109/MMSP53017.2021.9733524
– volume: 33
  start-page: 19400
  year: 2020
  ident: ref_40
  article-title: Multi-task temporal shift attention networks for on-device contactless vitals measurement
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_29
– ident: ref_42
  doi: 10.3390/s21103456
– volume: 20
  start-page: 1016
  year: 2016
  ident: ref_2
  article-title: Inclusion of respiratory frequency information in heart rate variability analysis for stress assessment
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2553578
– volume: 37
  start-page: 529
  year: 1937
  ident: ref_4
  article-title: Photoelectric Plethysmography of the Fingers and Toes in Man
  publication-title: Proc. Soc. Exp. Biol. Med.
  doi: 10.3181/00379727-37-9630
– ident: ref_9
  doi: 10.1109/ICPR48806.2021.9412186
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_36
  article-title: Statistical Comparisons of Classifiers over Multiple Data Sets
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 2878
  year: 2013
  ident: ref_27
  article-title: Robust pulse rate from chrominance-based rPPG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2266196
– ident: ref_37
  doi: 10.3390/s21186296
– volume: 30
  start-page: 74
  year: 2013
  ident: ref_43
  article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2267931
– volume: 301
  start-page: 453
  year: 1979
  ident: ref_13
  article-title: Effect of intrathoracic pressure on left ventricular performance
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197908303010901
– ident: ref_38
  doi: 10.3390/s21113719
– volume: 80
  start-page: 158
  year: 2017
  ident: ref_1
  article-title: Monitoring infants by automatic video processing: A unified approach to motion analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.11.010
– volume: 9
  start-page: 948
  year: 2018
  ident: ref_30
  article-title: Extracting instantaneous respiratory rate from multiple photoplethysmogram respiratory-induced variations
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00948
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_7
  article-title: Camera measurement of physiological vital signs
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3558518
– volume: 11
  start-page: 693
  year: 2020
  ident: ref_8
  article-title: Smartphone-based respiratory rate estimation using photoplethysmographic imaging and discrete wavelet transform
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01339-6
– volume: 19
  start-page: 1331
  year: 2015
  ident: ref_21
  article-title: Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2429746
– volume: 8
  start-page: 216083
  year: 2020
  ident: ref_26
  article-title: An open framework for remote-PPG methods and their assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3040936
– volume: 40
  start-page: 267
  year: 2004
  ident: ref_28
  article-title: Line Extraction in 2D Range Images for Mobile Robotics
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1023/B:JINT.0000038945.55712.65
– volume: 59
  start-page: 303
  year: 2011
  ident: ref_17
  article-title: Physiological parameter monitoring from optical recordings with a mobile phone
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2163157
– volume: 40
  start-page: 095007
  year: 2019
  ident: ref_12
  article-title: Finger and forehead PPG signal comparison for respiratory rate estimation
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab3be0
SSID ssj0023338
Score 2.4471152
Snippet The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3387
SubjectTerms Algorithms
Blood
Cameras
Datasets
Deep learning
empirical mode decomposition
Heart rate
Heart Rate - physiology
Humans
incremental merge segmentation
Morphology
Photoplethysmography - methods
Pulse oximetry
pyVHR
remote photoplethysmography
remote respiratory rate estimation
Respiration
Respiratory Rate - physiology
Sensors
Signal processing
Signal Processing, Computer-Assisted
singular spectrum analysis
Smartphones
Spectrum analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTumhNEmbunmglkJzMbEs25KOm7IhBBJCSCE3IetBCq0dus7_z4ztNWta6CUXG-QBS5oZzXxo9Angqy-1ck6FVERPAMWjSymX4yNklmcxZI7ODl_fVJc_iquH8mHjqi-qCRvogYeJOxMuj1YK5XXlilLm1mLCjkts7bQVlejJtjHmrcHUCLUEIq-BR0ggqD9bUbkzNslZ9OlJ-v9eijdi0bxOciPwXLyDt2PGyBZDT3dhKzR78GaDR3Af4qJhy4m2m7WR3bRNSsRT1nXs9rHtqEycVPJ7ZKhOzzF6eXbd3x-9Ypi5sruAWgv4mvbe2R0momyJi8BwvvE93F8s779fpuMFCqnDPKBLnZXWcunzUgRM5HzGQxDeSekEj7bWOG-1KhS1o1y0KKMqrkIpMAkovPgA203bhI_AENTlGiO7U9IWCKFqX0dlVbAxClvVPIHT9bwaN5KL0x0XvwyCDFKBmVSQwJdJ9Glg1PiX0DkpZxIgEuy-AU3DjKZh_mcaCXwj1RpyVeyMs-OJAxwSkV6ZhSwqXSBEVgkcrbVvRh9emVxqTdw8vEzg8_QZvY-2VGwT2meUUXQItcS_JXAwGMvUZyGzktj4ElAzM5oNav6l-fnYM3xzonnVvPj0GtNwCDs5egQVzuXiCLa7P8_hGDOprj7pneYFQqUdLA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABlfIKlMogJLhEjeMkdk7VFm1VIbVCVZH2Zjl-0EqQlG76_5lJvOlGIC6J5IwUJ-PxzGePvwH46MpaWat8KoIjgOLQpJTN8eIzw7PgM0tnh8_Oq9PvxddVuYoLbuuYVrmZE4eJ2nWW1sgPc1nXxJTCy6Ob3ylVjaLd1VhC4yE8IuoySumSq3vAJRB_jWxCAqH94ZqSnrFJznzQQNX_94S85ZHm2ZJb7udkF57GuJEtRkU_gwe-3YMnW2yCzyEsWracyLtZF9h516ZEP2Vsz75ddT0li5NifkWe6vQYfZhjZ0MV6TXD-JVdeNSdx9u0A88uMBxlS5wKxlOOL-DyZHn55TSNZRRSi9FAn1ojjeHS5aXwGM65jHsvnJXSCh5MU2PE0KhCUTvKBYMyquLKlwJDgcKJl7DTdq1_DQyhXV6jf7dKmgKBVOOaoIzyJgRhqoYn8HnzX7WNFONU6eKnRqhBKtCTChL4MInejLwa_xI6JuVMAkSFPTR0tz90tCwtbB6MFMrVlS1KmRuDiA59cGNrIypRJfCJVKvJYLEz1sRzB_hJRH2lF7Ko6gKBskpgf6N9HS15re_HXQLvp8dog7SxYlrf3aGMoqOoJb4tgVfjYJn6LGRWEidfAmo2jGYfNX_SXl8NPN-cyF5rXrz5f7_ewuMcxzolxuViH3b62zv_DiOlvjkYzOEPWqgVbw
  priority: 102
  providerName: ProQuest
Title An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation
URI https://www.ncbi.nlm.nih.gov/pubmed/37050444
https://www.proquest.com/docview/2799748915
https://www.proquest.com/docview/2800625363
https://pubmed.ncbi.nlm.nih.gov/PMC10098914
https://doaj.org/article/3c2fa738d96c4572aa259067bc9a3636
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC72AbIexLfRdWhF0Es0SSfpzkFkRmZchBmWYRfmFjr9cIU10Zks6L-3Ki8muCcvHUhXSNJVlaov3f0VwBuTZFJraX3uDAEUgy4ldYSNDVQYOBto2ju8XKVnl_HXTbI5gL7GZjeAu1uhHdWTutxev__9688ndPiPhDgRsn_Y0WJmhFriEI4xIAnyz2U8TCZEHPtaUqGx-Anc4SJIiDFtFJUa8v5_P9F7MWq8fnIvIC3uw70uk2TTVvUP4MCWD-HuHr_gI3DTks0HOm9WObaqSp8IqZSu2flVVdPycVLVj4652p9hVDNs2dSV3jHMaNnaojYtHoY5ebbGBJXN8ePQ7nt8DBeL-cXnM78rrOBrzA9qXyuhVChMlHCLCZ4JQmu50UJoHjpVZJhDFDKWdB7lnEIZmYbSJhyTg9jwJ3BUVqV9BgzBXpRhxNdSqBihVWEKJ5W0yjmu0iL04F0_rrnuSMep9sV1juCDtJEP2vDg9SD6s2XauE1oRsoZBIgcuzlRbb_lna_lXEdOCS5Nluo4EZFSiPEwKhc6UzzlqQdvSbU5GRU-jFbdTgR8JSLDyqciTrMYobP04LTXft6bZh6JLCPOnjDx4NXQjV5JUy2qtNUNykjanJrg3Tx42hrL8My9zXkgR2Y0eqlxT_n9qmH-Don-NQvj5_9_6Qs4idAlaBldxE_hqN7e2JeYV9XFBA7FRmArF18mcDybr87Xk-YfxaTxp7_0kSiN
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq7bW96wNCKaRKaROhKki5rda7a4oEdmlcIX4U_5EZvxoLxK2XRFqPkrXn7Z35BuClTTJpjHQ-LywlKBZVSpoIP1ygw6BwgaHe4fkinX2OP66S1Rb87nthqKyyt4mNobaVoXfku5HIMkJKCZN3pz98mhpFp6v9CI1WLA7dr5-Ysq3fHnxA_r6Kov3p8v3M76YK-AadY-0bLbQOhY0S7jC6sUHoHLdGCMPDQucZOtBcxpLWka7QSCPTULqEo2eMLcefvQJX0e8GpFBidZHfcUz3WvAizrNgd0011rgkRi6vmQzwt_3fcIDj4swNb7d_C252YSqbtHJ1G7ZceQdubIAX3oViUrLpgBXOqoItqtIntCttavbppKqpNp3k4HsHi-3vocu0bN4MrV4zDJfZsUNRcfg1HPizY4x-2RQtT9tUeQ-Wl_F878N2WZXuITDMJKMMwwkjhY4xb8ttXkgtnS4KrtM89OBN_1yV6RDNabDGN4WZDbFADSzw4MVAetrCePyLaI-YMxAQ8nazUJ19UZ0iK26iQgsubZaaOBGR1phAosvPTaZ5ylMPXhNrFdkH3IzRXZsD3hIhbamJiNMsxrxcerDTc191hmOtLsTcg-fDZVR5OsfRpavOkUZS52uC_-bBg1ZYhj1zESQEAeiBHInR6KbGV8qvJw2seEjYslkYP_r_vp7BtdlyfqSODhaHj-F6hHJPNXkR34Ht-uzcPcEgrc6fNqrBQF2yKv4Bvw9Rig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IJ7FUGBBILhYsb22d31AKKWJWkqjqipSbqv1PigS2KVxhfhp_DtmbMdNBOLWSyKtR8na8_bOfAPwymaFNEa6kHtLCYpFlZImwQ8X6TjyLjLUO3w4y_c-px_n2XwDfi97YaiscmkTW0Nta0PvyEeJKApCSomzke_LIo52p-_PfoQ0QYpOWpfjNDoROXC_fmL6tni3v4u8fp0k08nJh72wnzAQGnSUTWi00DoWNsm4w0jHRrFz3BohDI-9Lgt0pqVMJa0jnddII_NYuoyjl0wtx5-9BtcFz2JSMTG_zPU4pn4dkBHnRTRaUL01Lok199dOCfjbF6w4w_VCzRXPN70Dt_uQlY07GbsLG666B7dWgAzvgx9XbDLghrPas1ldhYR8pU3Djk7rhurUSSa-9xDZ4Q66T8sO2wHWC4ahMzt2KDYOv4bDf3aMkTCboBXqGiwfwMlVPN-HsFnVlXsEDLPKpMDQwkihU8zhSlt6qaXT3nOdl3EAb5fPVZke3ZyGbHxTmOUQC9TAggBeDqRnHaTHv4h2iDkDAaFwtwv1-RfVK7XiJvFacGmL3KSZSLTGZBLdf2kKzXOeB_CGWKvIVuBmjO5bHvCWCHVLjUWaFynm6DKA7SX3VW9EFupS5AN4MVxG9aczHV25-gJpJHXBZvhvAWx1wjLsmYsoIzjAAOSaGK3d1PqV6utpCzEeE85sEaeP_7-v53ADlVB92p8dPIGbCYo9leclfBs2m_ML9xTjtaZ81moGA3XFmvgHT2BVwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evaluation+of+Non-Contact+Photoplethysmography-Based+Methods+for+Remote+Respiratory+Rate+Estimation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Boccignone%2C+Giuseppe&rft.au=D%E2%80%99Amelio%2C+Alessandro&rft.au=Ghezzi%2C+Omar&rft.au=Grossi%2C+Giuliano&rft.date=2023-03-23&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073387&rft_id=info%3Apmid%2F37050444&rft.externalDocID=PMC10098914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon