An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation
The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Rece...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 7; p. 3387 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation. |
---|---|
AbstractList | The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation. The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation.The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional devices, such as the respiration belt to be worn around the chest, are not always a feasible solution (e.g., telemedicine, device discomfort). Recently, novel approaches have been proposed aiming at estimating RR in a less invasive yet reliable way, requiring the acquisition and processing of contact or remote Photoplethysmography (contact reference and remote-PPG, respectively). The aim of this paper is to address the lack of systematic evaluation of proposed methods on publicly available datasets, which currently impedes a fair comparison among them. In particular, we evaluate two prominent families of PPG processing methods estimating Respiratory Induced Variations (RIVs): the first encompasses methods based on the direct extraction of morphological features concerning the RR; and the second group includes methods modeling respiratory artifacts adopting, in the most promising cases, single-channel blind source separation. Extensive experiments have been carried out on the public BP4D+ dataset, showing that the morphological estimation of RIVs is more reliable than those produced by a single-channel blind source separation method (both in contact and remote testing phases), as well as in comparison with a representative state-of-the-art Deep Learning-based approach for remote respiratory information estimation. |
Audience | Academic |
Author | Grossi, Giuliano Boccignone, Giuseppe D’Amelio, Alessandro Ghezzi, Omar Lanzarotti, Raffaella |
AuthorAffiliation | PHuSe Laboratory—Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy |
AuthorAffiliation_xml | – name: PHuSe Laboratory—Dipartimento di Informatica, Università degli Studi di Milano, Via Celoria 18, 20133 Milano, Italy |
Author_xml | – sequence: 1 givenname: Giuseppe orcidid: 0000-0002-5572-0924 surname: Boccignone fullname: Boccignone, Giuseppe – sequence: 2 givenname: Alessandro orcidid: 0000-0002-8210-4457 surname: D’Amelio fullname: D’Amelio, Alessandro – sequence: 3 givenname: Omar surname: Ghezzi fullname: Ghezzi, Omar – sequence: 4 givenname: Giuliano orcidid: 0000-0001-9274-4047 surname: Grossi fullname: Grossi, Giuliano – sequence: 5 givenname: Raffaella orcidid: 0000-0002-8534-4413 surname: Lanzarotti fullname: Lanzarotti, Raffaella |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37050444$$D View this record in MEDLINE/PubMed |
BookMark | eNplkl1P2zAUhq2JaUC3i_2BKdJutouAYzuxfTV1VWFI7EOIe-vUcVpXSdzZLlL__Q4tIGDyhaM3z3mcE59TcjSG0RHysaJnnGt6nhinknMl35CTSjBRKsbo0bPnY3Ka0ppSxpF6R465pDUVQpyQbjoW8zvot5B9GIvQFb_CWM7CmMHm4s8q5LDpXV7t0hCWETarXfkdkmuLnxiGNhVdiMWNG0J2uKWNj5BD3BU3gME8ZT_sxe_J2w765D487BNyezG_nf0or39fXs2m16Wtqc6lBQlQyZbV3GnGW1o5x1srpeVVBwtNdbVQQt3nyHWAjGoq5WrONBctn5Crg7YNsDabiKfHnQngzT4IcWkgZm97Z7hlHUiuWt1YUUsGwGpNG7mwGniDa0K-HVyb7WJwrXVjjtC_kL58M_qVWYY7U1Gqla4EGr48GGL4u3Upm8En6_oeRhe2yTBFaYOtNhzRz6_QddjGEX-VYVJrKVBYI3V2oJaAHfixC3iwxdW6wVucic5jPpWi0UKxWmHBp-c9PH384_0jcH4AbAwpRdcZ6_P-xtDse-zF3E-YeZowrPj6quJR-j_7D15oz48 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3321659 crossref_primary_10_3389_fbioe_2024_1420100 crossref_primary_10_1016_j_bspc_2024_106650 crossref_primary_10_1016_j_measen_2024_101647 crossref_primary_10_1109_ACCESS_2024_3484992 crossref_primary_10_1007_s13369_023_08533_x crossref_primary_10_3390_biomedinformatics4010031 crossref_primary_10_1016_j_bspc_2024_107445 crossref_primary_10_1016_j_bspc_2024_107158 crossref_primary_10_1016_j_neucom_2024_127282 crossref_primary_10_3390_photonics10111231 |
Cites_doi | 10.3109/03091902.2011.638965 10.1109/EMBC.2019.8856387 10.1007/978-3-031-06430-2_16 10.1038/s41598-020-72193-2 10.7717/peerj-cs.929 10.21105/joss.02977 10.1098/rspa.1998.0193 10.1109/TBME.2016.2613124 10.1088/0967-3334/28/3/R01 10.1007/978-1-4757-2514-8 10.1109/JSEN.2021.3072607 10.1109/CVPR.2016.374 10.1016/j.ijnurstu.2009.10.001 10.1007/978-3-030-01216-8_22 10.1109/ACCESS.2020.3008687 10.1109/CVPRW50498.2020.00160 10.1007/s10439-013-0944-x 10.1109/ISMICT48699.2020.9152720 10.1109/EMBC.2012.6346628 10.1088/0967-3334/36/11/2317 10.1186/s12938-016-0300-0 10.1109/MMSP53017.2021.9733524 10.3390/s21103456 10.1109/JBHI.2016.2553578 10.3181/00379727-37-9630 10.1109/ICPR48806.2021.9412186 10.1109/TBME.2013.2266196 10.3390/s21186296 10.1109/MSP.2013.2267931 10.1056/NEJM197908303010901 10.3390/s21113719 10.1016/j.compbiomed.2016.11.010 10.3389/fphys.2018.00948 10.1145/3558518 10.1007/s12652-019-01339-6 10.1109/JBHI.2015.2429746 10.1109/ACCESS.2020.3040936 10.1023/B:JINT.0000038945.55712.65 10.1109/TBME.2011.2163157 10.1088/1361-6579/ab3be0 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23073387 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Proquest Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3c2fa738d96c4572aa259067bc9a3636 PMC10098914 A746948258 37050444 10_3390_s23073387 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-ca7aa17d253e923d01ee3dc77c31fab9091b848d01eaa1fa9238618e532934d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:23:09 EDT 2025 Thu Aug 21 18:38:06 EDT 2025 Mon Jul 21 09:21:03 EDT 2025 Fri Jul 25 20:16:03 EDT 2025 Tue Jul 01 05:45:14 EDT 2025 Wed Feb 19 02:04:36 EST 2025 Thu Apr 24 22:55:20 EDT 2025 Tue Jul 01 01:19:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | remote respiratory rate estimation empirical mode decomposition pyVHR contactless respiration monitoring remote photoplethysmography incremental merge segmentation vital signs from video singular spectrum analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-ca7aa17d253e923d01ee3dc77c31fab9091b848d01eaa1fa9238618e532934d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8210-4457 0000-0002-8534-4413 0000-0001-9274-4047 0000-0002-5572-0924 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23073387 |
PMID | 37050444 |
PQID | 2799748915 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c2fa738d96c4572aa259067bc9a3636 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10098914 proquest_miscellaneous_2800625363 proquest_journals_2799748915 gale_infotracacademiconefile_A746948258 pubmed_primary_37050444 crossref_citationtrail_10_3390_s23073387 crossref_primary_10_3390_s23073387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230323 |
PublicationDateYYYYMMDD | 2023-03-23 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230323 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Buda (ref_13) 1979; 301 Nam (ref_16) 2014; 42 Cattani (ref_1) 2017; 80 Nam (ref_15) 2015; 36 Demsar (ref_36) 2006; 7 McDuff (ref_7) 2023; 55 ref_14 Ali (ref_3) 2021; 21 ref_33 ref_10 Hernando (ref_12) 2019; 40 Alexandrov (ref_34) 2008; 7 Liu (ref_40) 2020; 33 Quinn (ref_32) 2021; 6 ref_18 ref_39 ref_38 ref_37 Wei (ref_19) 2017; 16 Boccignone (ref_24) 2022; 8 Borges (ref_28) 2004; 40 Fiedler (ref_31) 2020; 8 Meredith (ref_11) 2012; 36 Bland (ref_35) 2010; 47 Jeanne (ref_27) 2013; 60 Dehkordi (ref_30) 2018; 9 Alafeef (ref_8) 2020; 11 Stallone (ref_44) 2020; 10 ref_23 Pimentel (ref_5) 2016; 64 ref_20 ref_42 ref_41 Karlen (ref_21) 2015; 19 Hernando (ref_2) 2016; 20 Boccignone (ref_26) 2020; 8 ref_29 ref_9 Huang (ref_22) 1998; 454 Allen (ref_25) 2007; 28 Hertzman (ref_4) 1937; 37 Mandic (ref_43) 2013; 30 ref_6 Scully (ref_17) 2011; 59 |
References_xml | – volume: 36 start-page: 1 year: 2012 ident: ref_11 article-title: Photoplethysmographic derivation of respiratory rate: A review of relevant physiology publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2011.638965 – ident: ref_20 doi: 10.1109/EMBC.2019.8856387 – ident: ref_10 doi: 10.1007/978-3-031-06430-2_16 – volume: 10 start-page: 15161 year: 2020 ident: ref_44 article-title: New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms publication-title: Sci. Rep. doi: 10.1038/s41598-020-72193-2 – volume: 8 start-page: e929 year: 2022 ident: ref_24 article-title: pyVHR: A Python framework for remote photoplethysmography publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.929 – volume: 6 start-page: 2977 year: 2021 ident: ref_32 article-title: EMD: Empirical mode decomposition and Hilbert-Huang spectral analyses in Python publication-title: J. Open Source Softw. doi: 10.21105/joss.02977 – volume: 454 start-page: 903 year: 1998 ident: ref_22 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 64 start-page: 1914 year: 2016 ident: ref_5 article-title: Toward a robust estimation of respiratory rate from pulse oximeters publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2613124 – volume: 28 start-page: R1 year: 2007 ident: ref_25 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. doi: 10.1088/0967-3334/28/3/R01 – ident: ref_33 doi: 10.1007/978-1-4757-2514-8 – volume: 21 start-page: 14569 year: 2021 ident: ref_3 article-title: Contact and remote breathing rate monitoring techniques: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3072607 – ident: ref_23 doi: 10.1109/CVPR.2016.374 – volume: 47 start-page: 931 year: 2010 ident: ref_35 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Int. J. Nurs. Stud. doi: 10.1016/j.ijnurstu.2009.10.001 – ident: ref_39 doi: 10.1007/978-3-030-01216-8_22 – volume: 8 start-page: 130036 year: 2020 ident: ref_31 article-title: Fusion-based approach for respiratory rate recognition from facial video images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008687 – ident: ref_14 doi: 10.1109/CVPRW50498.2020.00160 – volume: 42 start-page: 885 year: 2014 ident: ref_16 article-title: Respiratory rate estimation from the built-in cameras of smartphones and tablets publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0944-x – volume: 7 start-page: 1 year: 2008 ident: ref_34 article-title: A Method of Trend Extraction Using Singular Spectrum Analysis publication-title: RevStat – ident: ref_18 doi: 10.1109/ISMICT48699.2020.9152720 – ident: ref_6 doi: 10.1109/EMBC.2012.6346628 – volume: 36 start-page: 2317 year: 2015 ident: ref_15 article-title: Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/11/2317 – volume: 16 start-page: 17 year: 2017 ident: ref_19 article-title: Non-contact, synchronous dynamic measurement of respiratory rate and heart rate based on dual sensitive regions publication-title: Biomed. Eng. Online doi: 10.1186/s12938-016-0300-0 – ident: ref_41 doi: 10.1109/MMSP53017.2021.9733524 – volume: 33 start-page: 19400 year: 2020 ident: ref_40 article-title: Multi-task temporal shift attention networks for on-device contactless vitals measurement publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_29 – ident: ref_42 doi: 10.3390/s21103456 – volume: 20 start-page: 1016 year: 2016 ident: ref_2 article-title: Inclusion of respiratory frequency information in heart rate variability analysis for stress assessment publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2553578 – volume: 37 start-page: 529 year: 1937 ident: ref_4 article-title: Photoelectric Plethysmography of the Fingers and Toes in Man publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-37-9630 – ident: ref_9 doi: 10.1109/ICPR48806.2021.9412186 – volume: 7 start-page: 1 year: 2006 ident: ref_36 article-title: Statistical Comparisons of Classifiers over Multiple Data Sets publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 2878 year: 2013 ident: ref_27 article-title: Robust pulse rate from chrominance-based rPPG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2266196 – ident: ref_37 doi: 10.3390/s21186296 – volume: 30 start-page: 74 year: 2013 ident: ref_43 article-title: Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2267931 – volume: 301 start-page: 453 year: 1979 ident: ref_13 article-title: Effect of intrathoracic pressure on left ventricular performance publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197908303010901 – ident: ref_38 doi: 10.3390/s21113719 – volume: 80 start-page: 158 year: 2017 ident: ref_1 article-title: Monitoring infants by automatic video processing: A unified approach to motion analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.11.010 – volume: 9 start-page: 948 year: 2018 ident: ref_30 article-title: Extracting instantaneous respiratory rate from multiple photoplethysmogram respiratory-induced variations publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00948 – volume: 55 start-page: 1 year: 2023 ident: ref_7 article-title: Camera measurement of physiological vital signs publication-title: ACM Comput. Surv. doi: 10.1145/3558518 – volume: 11 start-page: 693 year: 2020 ident: ref_8 article-title: Smartphone-based respiratory rate estimation using photoplethysmographic imaging and discrete wavelet transform publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-01339-6 – volume: 19 start-page: 1331 year: 2015 ident: ref_21 article-title: Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2429746 – volume: 8 start-page: 216083 year: 2020 ident: ref_26 article-title: An open framework for remote-PPG methods and their assessment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3040936 – volume: 40 start-page: 267 year: 2004 ident: ref_28 article-title: Line Extraction in 2D Range Images for Mobile Robotics publication-title: J. Intell. Robot. Syst. doi: 10.1023/B:JINT.0000038945.55712.65 – volume: 59 start-page: 303 year: 2011 ident: ref_17 article-title: Physiological parameter monitoring from optical recordings with a mobile phone publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2163157 – volume: 40 start-page: 095007 year: 2019 ident: ref_12 article-title: Finger and forehead PPG signal comparison for respiratory rate estimation publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab3be0 |
SSID | ssj0023338 |
Score | 2.4471152 |
Snippet | The respiration rate (RR) is one of the physiological signals deserving monitoring for assessing human health and emotional states. However, traditional... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3387 |
SubjectTerms | Algorithms Blood Cameras Datasets Deep learning empirical mode decomposition Heart rate Heart Rate - physiology Humans incremental merge segmentation Morphology Photoplethysmography - methods Pulse oximetry pyVHR remote photoplethysmography remote respiratory rate estimation Respiration Respiratory Rate - physiology Sensors Signal processing Signal Processing, Computer-Assisted singular spectrum analysis Smartphones Spectrum analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTumhNEmbunmglkJzMbEs25KOm7IhBBJCSCE3IetBCq0dus7_z4ztNWta6CUXG-QBS5oZzXxo9Angqy-1ck6FVERPAMWjSymX4yNklmcxZI7ODl_fVJc_iquH8mHjqi-qCRvogYeJOxMuj1YK5XXlilLm1mLCjkts7bQVlejJtjHmrcHUCLUEIq-BR0ggqD9bUbkzNslZ9OlJ-v9eijdi0bxOciPwXLyDt2PGyBZDT3dhKzR78GaDR3Af4qJhy4m2m7WR3bRNSsRT1nXs9rHtqEycVPJ7ZKhOzzF6eXbd3x-9Ypi5sruAWgv4mvbe2R0momyJi8BwvvE93F8s779fpuMFCqnDPKBLnZXWcunzUgRM5HzGQxDeSekEj7bWOG-1KhS1o1y0KKMqrkIpMAkovPgA203bhI_AENTlGiO7U9IWCKFqX0dlVbAxClvVPIHT9bwaN5KL0x0XvwyCDFKBmVSQwJdJ9Glg1PiX0DkpZxIgEuy-AU3DjKZh_mcaCXwj1RpyVeyMs-OJAxwSkV6ZhSwqXSBEVgkcrbVvRh9emVxqTdw8vEzg8_QZvY-2VGwT2meUUXQItcS_JXAwGMvUZyGzktj4ElAzM5oNav6l-fnYM3xzonnVvPj0GtNwCDs5egQVzuXiCLa7P8_hGDOprj7pneYFQqUdLA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABlfIKlMogJLhEjeMkdk7VFm1VIbVCVZH2Zjl-0EqQlG76_5lJvOlGIC6J5IwUJ-PxzGePvwH46MpaWat8KoIjgOLQpJTN8eIzw7PgM0tnh8_Oq9PvxddVuYoLbuuYVrmZE4eJ2nWW1sgPc1nXxJTCy6Ob3ylVjaLd1VhC4yE8IuoySumSq3vAJRB_jWxCAqH94ZqSnrFJznzQQNX_94S85ZHm2ZJb7udkF57GuJEtRkU_gwe-3YMnW2yCzyEsWracyLtZF9h516ZEP2Vsz75ddT0li5NifkWe6vQYfZhjZ0MV6TXD-JVdeNSdx9u0A88uMBxlS5wKxlOOL-DyZHn55TSNZRRSi9FAn1ojjeHS5aXwGM65jHsvnJXSCh5MU2PE0KhCUTvKBYMyquLKlwJDgcKJl7DTdq1_DQyhXV6jf7dKmgKBVOOaoIzyJgRhqoYn8HnzX7WNFONU6eKnRqhBKtCTChL4MInejLwa_xI6JuVMAkSFPTR0tz90tCwtbB6MFMrVlS1KmRuDiA59cGNrIypRJfCJVKvJYLEz1sRzB_hJRH2lF7Ko6gKBskpgf6N9HS15re_HXQLvp8dog7SxYlrf3aGMoqOoJb4tgVfjYJn6LGRWEidfAmo2jGYfNX_SXl8NPN-cyF5rXrz5f7_ewuMcxzolxuViH3b62zv_DiOlvjkYzOEPWqgVbw priority: 102 providerName: ProQuest |
Title | An Evaluation of Non-Contact Photoplethysmography-Based Methods for Remote Respiratory Rate Estimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37050444 https://www.proquest.com/docview/2799748915 https://www.proquest.com/docview/2800625363 https://pubmed.ncbi.nlm.nih.gov/PMC10098914 https://doaj.org/article/3c2fa738d96c4572aa259067bc9a3636 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC72AbIexLfRdWhF0Es0SSfpzkFkRmZchBmWYRfmFjr9cIU10Zks6L-3Ki8muCcvHUhXSNJVlaov3f0VwBuTZFJraX3uDAEUgy4ldYSNDVQYOBto2ju8XKVnl_HXTbI5gL7GZjeAu1uhHdWTutxev__9688ndPiPhDgRsn_Y0WJmhFriEI4xIAnyz2U8TCZEHPtaUqGx-Anc4SJIiDFtFJUa8v5_P9F7MWq8fnIvIC3uw70uk2TTVvUP4MCWD-HuHr_gI3DTks0HOm9WObaqSp8IqZSu2flVVdPycVLVj4652p9hVDNs2dSV3jHMaNnaojYtHoY5ebbGBJXN8ePQ7nt8DBeL-cXnM78rrOBrzA9qXyuhVChMlHCLCZ4JQmu50UJoHjpVZJhDFDKWdB7lnEIZmYbSJhyTg9jwJ3BUVqV9BgzBXpRhxNdSqBihVWEKJ5W0yjmu0iL04F0_rrnuSMep9sV1juCDtJEP2vDg9SD6s2XauE1oRsoZBIgcuzlRbb_lna_lXEdOCS5Nluo4EZFSiPEwKhc6UzzlqQdvSbU5GRU-jFbdTgR8JSLDyqciTrMYobP04LTXft6bZh6JLCPOnjDx4NXQjV5JUy2qtNUNykjanJrg3Tx42hrL8My9zXkgR2Y0eqlxT_n9qmH-Don-NQvj5_9_6Qs4idAlaBldxE_hqN7e2JeYV9XFBA7FRmArF18mcDybr87Xk-YfxaTxp7_0kSiN |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq7bW96wNCKaRKaROhKki5rda7a4oEdmlcIX4U_5EZvxoLxK2XRFqPkrXn7Z35BuClTTJpjHQ-LywlKBZVSpoIP1ygw6BwgaHe4fkinX2OP66S1Rb87nthqKyyt4mNobaVoXfku5HIMkJKCZN3pz98mhpFp6v9CI1WLA7dr5-Ysq3fHnxA_r6Kov3p8v3M76YK-AadY-0bLbQOhY0S7jC6sUHoHLdGCMPDQucZOtBcxpLWka7QSCPTULqEo2eMLcefvQJX0e8GpFBidZHfcUz3WvAizrNgd0011rgkRi6vmQzwt_3fcIDj4swNb7d_C252YSqbtHJ1G7ZceQdubIAX3oViUrLpgBXOqoItqtIntCttavbppKqpNp3k4HsHi-3vocu0bN4MrV4zDJfZsUNRcfg1HPizY4x-2RQtT9tUeQ-Wl_F878N2WZXuITDMJKMMwwkjhY4xb8ttXkgtnS4KrtM89OBN_1yV6RDNabDGN4WZDbFADSzw4MVAetrCePyLaI-YMxAQ8nazUJ19UZ0iK26iQgsubZaaOBGR1phAosvPTaZ5ylMPXhNrFdkH3IzRXZsD3hIhbamJiNMsxrxcerDTc191hmOtLsTcg-fDZVR5OsfRpavOkUZS52uC_-bBg1ZYhj1zESQEAeiBHInR6KbGV8qvJw2seEjYslkYP_r_vp7BtdlyfqSODhaHj-F6hHJPNXkR34Ht-uzcPcEgrc6fNqrBQF2yKv4Bvw9Rig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IJ7FUGBBILhYsb22d31AKKWJWkqjqipSbqv1PigS2KVxhfhp_DtmbMdNBOLWSyKtR8na8_bOfAPwymaFNEa6kHtLCYpFlZImwQ8X6TjyLjLUO3w4y_c-px_n2XwDfi97YaiscmkTW0Nta0PvyEeJKApCSomzke_LIo52p-_PfoQ0QYpOWpfjNDoROXC_fmL6tni3v4u8fp0k08nJh72wnzAQGnSUTWi00DoWNsm4w0jHRrFz3BohDI-9Lgt0pqVMJa0jnddII_NYuoyjl0wtx5-9BtcFz2JSMTG_zPU4pn4dkBHnRTRaUL01Lok199dOCfjbF6w4w_VCzRXPN70Dt_uQlY07GbsLG666B7dWgAzvgx9XbDLghrPas1ldhYR8pU3Djk7rhurUSSa-9xDZ4Q66T8sO2wHWC4ahMzt2KDYOv4bDf3aMkTCboBXqGiwfwMlVPN-HsFnVlXsEDLPKpMDQwkihU8zhSlt6qaXT3nOdl3EAb5fPVZke3ZyGbHxTmOUQC9TAggBeDqRnHaTHv4h2iDkDAaFwtwv1-RfVK7XiJvFacGmL3KSZSLTGZBLdf2kKzXOeB_CGWKvIVuBmjO5bHvCWCHVLjUWaFynm6DKA7SX3VW9EFupS5AN4MVxG9aczHV25-gJpJHXBZvhvAWx1wjLsmYsoIzjAAOSaGK3d1PqV6utpCzEeE85sEaeP_7-v53ADlVB92p8dPIGbCYo9leclfBs2m_ML9xTjtaZ81moGA3XFmvgHT2BVwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Evaluation+of+Non-Contact+Photoplethysmography-Based+Methods+for+Remote+Respiratory+Rate+Estimation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Boccignone%2C+Giuseppe&rft.au=D%E2%80%99Amelio%2C+Alessandro&rft.au=Ghezzi%2C+Omar&rft.au=Grossi%2C+Giuliano&rft.date=2023-03-23&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=7&rft_id=info:doi/10.3390%2Fs23073387&rft_id=info%3Apmid%2F37050444&rft.externalDocID=PMC10098914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |