Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles
The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and f...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 7; pp. E1391 - E1400 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.02.2018
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology. |
---|---|
AbstractList | The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology. The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology. This work reports a versatile and robust strategy for creating monodisperse plasmonic nanoparticles (NPs) intimately and permanently capped with photoresponsive polymers via capitalizing on amphiphilic star-like diblock copolymer nanoreactors. The reversibly assembled nanostructures comprising photoresponsive NPs may exhibit a broad range of new attributes, functions, and applications as a direct consequence of size-dependent physical property from individual NP and the collective property originated from the NP interaction due to their close proximity within nanostructure. The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology. |
Author | Jung, Jaehan Lin, Zhiqun Chen, Yihuang Wang, Zewei Yoon, Young Jun Zhang, Guangzhao He, Yanjie |
Author_xml | – sequence: 1 givenname: Yihuang surname: Chen fullname: Chen, Yihuang organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 2 givenname: Zewei surname: Wang fullname: Wang, Zewei organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 3 givenname: Yanjie surname: He fullname: He, Yanjie organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 4 givenname: Young Jun surname: Yoon fullname: Yoon, Young Jun organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 5 givenname: Jaehan surname: Jung fullname: Jung, Jaehan organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 6 givenname: Guangzhao surname: Zhang fullname: Zhang, Guangzhao organization: Faculty of Materials Science and Engineering, South China University of Technology, 510640 Guangzhou, China – sequence: 7 givenname: Zhiqun surname: Lin fullname: Lin, Zhiqun organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29386380$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1vFDEQxS0URC4HNRVoJRqaTcb2ftgNEor4kk6igdryemdzPvnsxfZGuv8eXy4kkILKlub3nt7MuyBnPngk5DWFSwo9v5q9Tpe0p03fCErbZ2RFQdK6aySckRUA62vRsOacXKS0AwDZCnhBzpnkouMCVsRs7M021-j14HCsIt5iTLb8q4RuqnVKuB_codJ-rPJyR1VhztZoV80xzBizxVSFqUr5brjVNh4qr32YdZkZh-kleT5pl_DV_bsmPz9_-nH9td58__Lt-uOmNi3IXBs5tGIaoWsmmEaKDFBLxrseRjkY003jIDRQrunQN9gitEIY1nSGA52GAfmafDj5zsuwx9Ggz1E7NUe71_Gggrbq34m3W3UTblUraEc7Xgze3xvE8GvBlNXeJoPOaY9hSYpKyblgPWcFffcE3YUl-rKeYkApExIKvCZv_070EOXP_QtwdQJMDClFnB4QCurYsDo2rB4bLor2icLYrLMNx5Ws-4_uzUm3SznExyRdW-i-4b8B91O3BQ |
CitedBy_id | crossref_primary_10_1021_acsaom_3c00473 crossref_primary_10_1016_j_nantod_2020_100855 crossref_primary_10_1021_acsnano_0c09693 crossref_primary_10_1039_D0CC04953K crossref_primary_10_1002_adma_202205498 crossref_primary_10_1002_marc_202300500 crossref_primary_10_1002_app_55544 crossref_primary_10_1002_adma_201901602 crossref_primary_10_1021_acs_chemmater_0c02459 crossref_primary_10_1016_j_nanoen_2020_105043 crossref_primary_10_1002_smll_202207119 crossref_primary_10_1088_1361_6528_ab53ad crossref_primary_10_1021_acsami_2c12749 crossref_primary_10_1016_j_polymer_2023_126415 crossref_primary_10_1002_adma_201906600 crossref_primary_10_1002_smll_202303282 crossref_primary_10_1021_acs_nanolett_8b04841 crossref_primary_10_1039_C8NR07115B crossref_primary_10_1039_C8TA02893A crossref_primary_10_1002_slct_202300362 crossref_primary_10_1007_s10118_021_2576_1 crossref_primary_10_1002_agt2_21 crossref_primary_10_1520_SSMS20190047 crossref_primary_10_1016_j_giant_2020_100010 crossref_primary_10_1002_adom_202001869 crossref_primary_10_1002_app_50706 crossref_primary_10_1016_j_cplett_2019_137059 crossref_primary_10_1002_rpm_20240024 crossref_primary_10_1155_2020_8281058 crossref_primary_10_1021_acsanm_0c02946 crossref_primary_10_1002_marc_202400851 crossref_primary_10_1142_S0218625X21500876 crossref_primary_10_1002_smll_202405816 crossref_primary_10_1021_acs_langmuir_8b02992 crossref_primary_10_1002_adma_201905866 crossref_primary_10_1002_asia_202400015 crossref_primary_10_1016_j_giant_2021_100048 crossref_primary_10_1021_acs_jpclett_4c00577 crossref_primary_10_1002_adma_202312374 crossref_primary_10_1016_j_jcis_2020_11_080 crossref_primary_10_1002_cjoc_202100319 crossref_primary_10_1021_acs_jpcb_2c07937 crossref_primary_10_1021_jacs_1c11242 crossref_primary_10_1021_acs_iecr_8b00937 crossref_primary_10_1002_marc_201800562 crossref_primary_10_1021_acsnano_1c08485 crossref_primary_10_1002_app_47845 crossref_primary_10_1002_adfm_201801782 crossref_primary_10_1002_ange_202105500 crossref_primary_10_1002_app_51895 crossref_primary_10_1021_acsnano_4c10912 crossref_primary_10_1016_j_giant_2020_100033 crossref_primary_10_1002_app_50562 crossref_primary_10_1021_acs_macromol_1c00370 crossref_primary_10_1039_D0NR02674C crossref_primary_10_1007_s12274_019_2393_9 crossref_primary_10_1002_anie_202202405 crossref_primary_10_1016_j_matdes_2021_109694 crossref_primary_10_1002_anie_201906329 crossref_primary_10_1021_jacs_0c08135 crossref_primary_10_1021_acs_accounts_2c00818 crossref_primary_10_1002_app_48401 crossref_primary_10_1002_anie_202105500 crossref_primary_10_1016_j_polymer_2018_08_030 crossref_primary_10_1002_adma_202312956 crossref_primary_10_1021_acsami_8b02441 crossref_primary_10_1021_jacs_9b10272 crossref_primary_10_1002_app_54898 crossref_primary_10_1021_acsnano_0c06936 crossref_primary_10_1039_C9CS00043G crossref_primary_10_1126_sciadv_abe3184 crossref_primary_10_1002_app_52247 crossref_primary_10_1007_s42247_018_0004_2 crossref_primary_10_1039_C9OB00193J crossref_primary_10_1002_adbi_202000179 crossref_primary_10_1021_acs_langmuir_9b00066 crossref_primary_10_1016_j_matdes_2019_107837 crossref_primary_10_1002_marc_202100354 crossref_primary_10_1002_app_54673 crossref_primary_10_1002_adma_202200776 crossref_primary_10_1021_acsapm_0c00599 crossref_primary_10_1002_slct_201902909 crossref_primary_10_1021_acs_nanolett_4c01127 crossref_primary_10_1002_ange_201906329 crossref_primary_10_1002_lpor_202000421 crossref_primary_10_1002_aisy_202200009 crossref_primary_10_1016_j_mtla_2019_100296 crossref_primary_10_1021_acs_macromol_4c02709 crossref_primary_10_1002_adma_202005888 crossref_primary_10_1002_mabi_202000050 crossref_primary_10_1021_acs_macromol_8b01058 crossref_primary_10_1021_acs_macromol_8b00242 crossref_primary_10_1002_slct_202301116 crossref_primary_10_1002_cphc_201800535 crossref_primary_10_1039_C9CS00725C crossref_primary_10_1002_ange_202202405 crossref_primary_10_1002_aenm_201901754 crossref_primary_10_1002_app_47802 crossref_primary_10_1039_C8TA10045D crossref_primary_10_1002_slct_202203846 crossref_primary_10_1021_acs_nanolett_8b02325 crossref_primary_10_1002_aisy_202000193 |
Cites_doi | 10.1002/smll.201602820 10.1021/ma201564t 10.1021/cr0300789 10.1002/anie.201302430 10.1126/science.aad8279 10.1002/anie.201508355 10.1021/jz500984w 10.1021/la101798x 10.1021/ja016424q 10.1002/adfm.201102471 10.1038/nchem.257 10.1021/ja408465t 10.1021/ja021096v 10.1021/cr030037c 10.1002/anie.201600702 10.1063/1.555680 10.1039/C2CS35191A 10.1021/ma030421b 10.1038/nnano.2013.85 10.1038/nmat1954 10.1002/smll.200902272 10.1021/ar9602664 10.1021/ja058260 10.1021/ma200594j 10.1002/anie.200603735 10.1021/ja993825l 10.1021/ja069033q 10.1038/382607a0 10.1021/am5009002 10.1126/sciadv.1500025 10.1002/adfm.201100590 10.1016/j.nantod.2014.06.005 10.1038/nnano.2015.256 10.1126/science.1131475 10.1021/jacs.5b06736 10.1021/jacs.7b04545 10.1038/nchem.2303 10.1002/anie.200603148 10.1021/nn100869j 10.1021/jp992179 10.1002/adma.201201734 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Feb 13, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Feb 13, 2018 – notice: 2018 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1714748115 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Light-enabled reversible assembly of nanoparticles |
EISSN | 1091-6490 |
EndPage | E1400 |
ExternalDocumentID | PMC5816163 29386380 10_1073_pnas_1714748115 26507374 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: CMMI 1562075 and 1727313; DMR 1709420 – fundername: DOD | USAF | AFMC | Air Force Office of Scientific Research (AFOSR) grantid: FA9550-16-1-0187 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-c9b58fd064f0fd1e20ea923670d9bcc6fdb8a013a1b74e5e0588c246c301fbbe3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:04:12 EDT 2025 Fri Jul 11 06:59:46 EDT 2025 Mon Jun 30 08:33:17 EDT 2025 Wed Feb 19 02:43:19 EST 2025 Thu Apr 24 23:03:15 EDT 2025 Tue Jul 01 03:19:45 EDT 2025 Fri May 30 11:17:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | photoresponsive polymers nanoreactor stable hairy nanoparticles reversible self-assembly tunable optical properties |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-c9b58fd064f0fd1e20ea923670d9bcc6fdb8a013a1b74e5e0588c246c301fbbe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: Y.C. and Z.L. designed research; Y.C., Z.W., Y.H., Y.J.Y., and J.J. performed research; Y.C., Z.W., Y.H., Y.J.Y., J.J., G.Z., and Z.L. analyzed data; and Y.C., G.Z., and Z.L. wrote the paper. Edited by Steve Granick, IBS Center for Soft and Living Matter, Uvalju-gun, Ulsan, Republic of Korea, and approved January 5, 2018 (received for review August 20, 2017) |
OpenAccessLink | https://www.pnas.org/content/pnas/115/7/E1391.full.pdf |
PMID | 29386380 |
PQID | 2011289099 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816163 proquest_miscellaneous_1993382732 proquest_journals_2011289099 pubmed_primary_29386380 crossref_primary_10_1073_pnas_1714748115 crossref_citationtrail_10_1073_pnas_1714748115 jstor_primary_26507374 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-13 |
PublicationDateYYYYMMDD | 2018-02-13 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_31_2 doi: 10.1002/smll.201602820 – ident: e_1_3_3_27_2 doi: 10.1021/ma201564t – ident: e_1_3_3_16_2 doi: 10.1021/cr0300789 – ident: e_1_3_3_20_2 doi: 10.1002/anie.201302430 – ident: e_1_3_3_24_2 doi: 10.1126/science.aad8279 – ident: e_1_3_3_39_2 doi: 10.1002/anie.201508355 – ident: e_1_3_3_18_2 doi: 10.1021/jz500984w – ident: e_1_3_3_19_2 doi: 10.1021/la101798x – ident: e_1_3_3_37_2 doi: 10.1021/ja016424q – ident: e_1_3_3_7_2 doi: 10.1002/adfm.201102471 – ident: e_1_3_3_32_2 doi: 10.1038/nchem.257 – ident: e_1_3_3_6_2 doi: 10.1021/ja408465t – ident: e_1_3_3_35_2 doi: 10.1021/ja021096v – ident: e_1_3_3_14_2 doi: 10.1021/cr030037c – ident: e_1_3_3_30_2 doi: 10.1002/anie.201600702 – ident: e_1_3_3_38_2 doi: 10.1063/1.555680 – ident: e_1_3_3_13_2 doi: 10.1039/C2CS35191A – ident: e_1_3_3_40_2 doi: 10.1021/ma030421b – ident: e_1_3_3_25_2 doi: 10.1038/nnano.2013.85 – ident: e_1_3_3_8_2 doi: 10.1038/nmat1954 – ident: e_1_3_3_12_2 doi: 10.1002/smll.200902272 – ident: e_1_3_3_36_2 doi: 10.1021/ar9602664 – ident: e_1_3_3_5_2 doi: 10.1021/ja058260 – ident: e_1_3_3_26_2 doi: 10.1021/ma200594j – ident: e_1_3_3_3_2 doi: 10.1002/anie.200603735 – ident: e_1_3_3_33_2 doi: 10.1021/ja993825l – ident: e_1_3_3_41_2 doi: 10.1021/ja069033q – ident: e_1_3_3_4_2 doi: 10.1038/382607a0 – ident: e_1_3_3_17_2 doi: 10.1021/am5009002 – ident: e_1_3_3_23_2 doi: 10.1126/sciadv.1500025 – ident: e_1_3_3_15_2 doi: 10.1002/adfm.201100590 – ident: e_1_3_3_21_2 doi: 10.1016/j.nantod.2014.06.005 – ident: e_1_3_3_10_2 doi: 10.1038/nnano.2015.256 – ident: e_1_3_3_2_2 doi: 10.1126/science.1131475 – ident: e_1_3_3_29_2 doi: 10.1021/jacs.5b06736 – ident: e_1_3_3_28_2 doi: 10.1021/jacs.7b04545 – ident: e_1_3_3_11_2 doi: 10.1038/nchem.2303 – ident: e_1_3_3_22_2 doi: 10.1002/anie.200603148 – ident: e_1_3_3_1_2 doi: 10.1021/nn100869j – ident: e_1_3_3_34_2 doi: 10.1021/jp992179 – ident: e_1_3_3_9_2 doi: 10.1002/adma.201201734 |
SSID | ssj0009580 |
Score | 2.5818179 |
Snippet | The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up... This work reports a versatile and robust strategy for creating monodisperse plasmonic nanoparticles (NPs) intimately and permanently capped with... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E1391 |
SubjectTerms | Anchoring Assemblies Biotechnology Block copolymers Catalysis Chemical synthesis Copolymers Crystallization Dismantling Ferroelectric materials Ferroelectricity Hydrophobicity Magnetic resonance Nanoparticles Nanotechnology Optical properties Optics Optoelectronics pH effects Physical Sciences PNAS Plus Polarity Polymers Reaction kinetics Resonance absorption Self-assembly Strategy Surface plasmon resonance Upconversion Wavelengths |
Title | Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles |
URI | https://www.jstor.org/stable/26507374 https://www.ncbi.nlm.nih.gov/pubmed/29386380 https://www.proquest.com/docview/2011289099 https://www.proquest.com/docview/1993382732 https://pubmed.ncbi.nlm.nih.gov/PMC5816163 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGAhsCAjcVhUpeRt57hadVWtStlDKxUuke04alFJqz6EgD_P-JHXqkgLl6hKHLfqNxl_M5n5jNB7wXmaFAl1C-IxN8pT7qax5C6s9CQIWUB4oBqcP02S0Sy6mcfzXu93u7tkzwfi19G-kv9BFc4BrqpL9h-QrSeFE_AZ8IUjIAzHe2E81iogUrc_6S4UlfxSrVA7uSpcoMXyO18ZgaX9wTRJrTcmeb1RSfitUlNVdBEoorq4YMvtz37JSoikbcFcm7ze1ovdriotmFS5xMumM8W6i13f7d9Omn2Or2wfyJfl4sDseqkz-cbbfJU_5LLJzOqRrPy2lI1fMgUC2j_1bw5lO2HhU1XjbPpNrY8FiuImkdkldCCPnKscs2n0tBZIWm52CLzVP7oAgMdSuxaXbDdQW7uTiFazdKS2J5-z69l4nE2H8-kD9DCAGENXhY7ais3USFnYX1bpQpHw453pO5TGVLUei1fult22eMz0CXpsAxB8afA9RT1ZPkWnFWb4wuqQf3iGRMe8cGNeuGNeGMwLW_PC1rxwY154XWBjXlibF-6Y13M0ux5Or0au3ZPDFUAt965IeUyLHIhs4RW5LwNPslSrAMJjLkRS5JwyCCuYz0kkY-nFlIogSgQsJAXnMjxDJ-W6lC8RTuGOXPWB50Bjcy5TwgvgizRngnvCDx00qP7WTFjBerVvyirThRMkzBQOWYODgy7qGzZGq-XvQ880TvW4ACIVEpLIQecVcJl90neZIsnqhXyaOuhdfRn8sHq5xkq5PsDcQPRDCsFA4KAXBudm8jSksM55DiIdC6gHKI337pVyudBa7zGFkCwJX93je1-jR83jdo5O9tuDfAOMec_fasv-A0bfxo4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-enabled+reversible+self-assembly+and+tunable+optical+properties+of+stable+hairy+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Yihuang&rft.au=Wang%2C+Zewei&rft.au=He%2C+Yanjie&rft.au=Yoon%2C+Young+Jun&rft.date=2018-02-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=7&rft.spage=E1391&rft_id=info:doi/10.1073%2Fpnas.1714748115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |