Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles

The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and f...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 7; pp. E1391 - E1400
Main Authors Chen, Yihuang, Wang, Zewei, He, Yanjie, Yoon, Young Jun, Jung, Jaehan, Zhang, Guangzhao, Lin, Zhiqun
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.02.2018
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.
AbstractList The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.
The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.
This work reports a versatile and robust strategy for creating monodisperse plasmonic nanoparticles (NPs) intimately and permanently capped with photoresponsive polymers via capitalizing on amphiphilic star-like diblock copolymer nanoreactors. The reversibly assembled nanostructures comprising photoresponsive NPs may exhibit a broad range of new attributes, functions, and applications as a direct consequence of size-dependent physical property from individual NP and the collective property originated from the NP interaction due to their close proximity within nanostructure. The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up important perspectives for rapid and convenient construction of a rich variety of complex assemblies and materials with new structures and functionalities. Here, we report an unconventional strategy for crafting stable hairy NPs with light-enabled reversible and reliable self-assembly and tunable optical properties. Central to our strategy is to judiciously design amphiphilic star-like diblock copolymers comprising inner hydrophilic blocks and outer hydrophobic photoresponsive blocks as nanoreactors to direct the synthesis of monodisperse plasmonic NPs intimately and permanently capped with photoresponsive polymers. The size and shape of hairy NPs can be precisely tailored by modulating the length of inner hydrophilic block of star-like diblock copolymers. The perpetual anchoring of photoresponsive polymers on the NP surface renders the attractive feature of self-assembly and disassembly of NPs on demand using light of different wavelengths, as revealed by tunable surface plasmon resonance absorption of NPs and the reversible transformation of NPs between their dispersed and aggregated states. The dye encapsulation/release studies manifested that such photoresponsive NPs may be exploited as smart guest molecule nanocarriers. By extension, the star-like block copolymer strategy enables the crafting of a family of stable stimuli-responsive NPs (e.g., temperature- or pH-sensitive polymer-capped magnetic, ferroelectric, upconversion, or semiconducting NPs) and their assemblies for fundamental research in self-assembly and crystallization kinetics of NPs as well as potential applications in optics, optoelectronics, magnetic technologies, sensory materials and devices, catalysis, nanotechnology, and biotechnology.
Author Jung, Jaehan
Lin, Zhiqun
Chen, Yihuang
Wang, Zewei
Yoon, Young Jun
Zhang, Guangzhao
He, Yanjie
Author_xml – sequence: 1
  givenname: Yihuang
  surname: Chen
  fullname: Chen, Yihuang
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 2
  givenname: Zewei
  surname: Wang
  fullname: Wang, Zewei
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 3
  givenname: Yanjie
  surname: He
  fullname: He, Yanjie
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 4
  givenname: Young Jun
  surname: Yoon
  fullname: Yoon, Young Jun
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 5
  givenname: Jaehan
  surname: Jung
  fullname: Jung, Jaehan
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 6
  givenname: Guangzhao
  surname: Zhang
  fullname: Zhang, Guangzhao
  organization: Faculty of Materials Science and Engineering, South China University of Technology, 510640 Guangzhou, China
– sequence: 7
  givenname: Zhiqun
  surname: Lin
  fullname: Lin, Zhiqun
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29386380$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1vFDEQxS0URC4HNRVoJRqaTcb2ftgNEor4kk6igdryemdzPvnsxfZGuv8eXy4kkILKlub3nt7MuyBnPngk5DWFSwo9v5q9Tpe0p03fCErbZ2RFQdK6aySckRUA62vRsOacXKS0AwDZCnhBzpnkouMCVsRs7M021-j14HCsIt5iTLb8q4RuqnVKuB_codJ-rPJyR1VhztZoV80xzBizxVSFqUr5brjVNh4qr32YdZkZh-kleT5pl_DV_bsmPz9_-nH9td58__Lt-uOmNi3IXBs5tGIaoWsmmEaKDFBLxrseRjkY003jIDRQrunQN9gitEIY1nSGA52GAfmafDj5zsuwx9Ggz1E7NUe71_Gggrbq34m3W3UTblUraEc7Xgze3xvE8GvBlNXeJoPOaY9hSYpKyblgPWcFffcE3YUl-rKeYkApExIKvCZv_070EOXP_QtwdQJMDClFnB4QCurYsDo2rB4bLor2icLYrLMNx5Ws-4_uzUm3SznExyRdW-i-4b8B91O3BQ
CitedBy_id crossref_primary_10_1021_acsaom_3c00473
crossref_primary_10_1016_j_nantod_2020_100855
crossref_primary_10_1021_acsnano_0c09693
crossref_primary_10_1039_D0CC04953K
crossref_primary_10_1002_adma_202205498
crossref_primary_10_1002_marc_202300500
crossref_primary_10_1002_app_55544
crossref_primary_10_1002_adma_201901602
crossref_primary_10_1021_acs_chemmater_0c02459
crossref_primary_10_1016_j_nanoen_2020_105043
crossref_primary_10_1002_smll_202207119
crossref_primary_10_1088_1361_6528_ab53ad
crossref_primary_10_1021_acsami_2c12749
crossref_primary_10_1016_j_polymer_2023_126415
crossref_primary_10_1002_adma_201906600
crossref_primary_10_1002_smll_202303282
crossref_primary_10_1021_acs_nanolett_8b04841
crossref_primary_10_1039_C8NR07115B
crossref_primary_10_1039_C8TA02893A
crossref_primary_10_1002_slct_202300362
crossref_primary_10_1007_s10118_021_2576_1
crossref_primary_10_1002_agt2_21
crossref_primary_10_1520_SSMS20190047
crossref_primary_10_1016_j_giant_2020_100010
crossref_primary_10_1002_adom_202001869
crossref_primary_10_1002_app_50706
crossref_primary_10_1016_j_cplett_2019_137059
crossref_primary_10_1002_rpm_20240024
crossref_primary_10_1155_2020_8281058
crossref_primary_10_1021_acsanm_0c02946
crossref_primary_10_1002_marc_202400851
crossref_primary_10_1142_S0218625X21500876
crossref_primary_10_1002_smll_202405816
crossref_primary_10_1021_acs_langmuir_8b02992
crossref_primary_10_1002_adma_201905866
crossref_primary_10_1002_asia_202400015
crossref_primary_10_1016_j_giant_2021_100048
crossref_primary_10_1021_acs_jpclett_4c00577
crossref_primary_10_1002_adma_202312374
crossref_primary_10_1016_j_jcis_2020_11_080
crossref_primary_10_1002_cjoc_202100319
crossref_primary_10_1021_acs_jpcb_2c07937
crossref_primary_10_1021_jacs_1c11242
crossref_primary_10_1021_acs_iecr_8b00937
crossref_primary_10_1002_marc_201800562
crossref_primary_10_1021_acsnano_1c08485
crossref_primary_10_1002_app_47845
crossref_primary_10_1002_adfm_201801782
crossref_primary_10_1002_ange_202105500
crossref_primary_10_1002_app_51895
crossref_primary_10_1021_acsnano_4c10912
crossref_primary_10_1016_j_giant_2020_100033
crossref_primary_10_1002_app_50562
crossref_primary_10_1021_acs_macromol_1c00370
crossref_primary_10_1039_D0NR02674C
crossref_primary_10_1007_s12274_019_2393_9
crossref_primary_10_1002_anie_202202405
crossref_primary_10_1016_j_matdes_2021_109694
crossref_primary_10_1002_anie_201906329
crossref_primary_10_1021_jacs_0c08135
crossref_primary_10_1021_acs_accounts_2c00818
crossref_primary_10_1002_app_48401
crossref_primary_10_1002_anie_202105500
crossref_primary_10_1016_j_polymer_2018_08_030
crossref_primary_10_1002_adma_202312956
crossref_primary_10_1021_acsami_8b02441
crossref_primary_10_1021_jacs_9b10272
crossref_primary_10_1002_app_54898
crossref_primary_10_1021_acsnano_0c06936
crossref_primary_10_1039_C9CS00043G
crossref_primary_10_1126_sciadv_abe3184
crossref_primary_10_1002_app_52247
crossref_primary_10_1007_s42247_018_0004_2
crossref_primary_10_1039_C9OB00193J
crossref_primary_10_1002_adbi_202000179
crossref_primary_10_1021_acs_langmuir_9b00066
crossref_primary_10_1016_j_matdes_2019_107837
crossref_primary_10_1002_marc_202100354
crossref_primary_10_1002_app_54673
crossref_primary_10_1002_adma_202200776
crossref_primary_10_1021_acsapm_0c00599
crossref_primary_10_1002_slct_201902909
crossref_primary_10_1021_acs_nanolett_4c01127
crossref_primary_10_1002_ange_201906329
crossref_primary_10_1002_lpor_202000421
crossref_primary_10_1002_aisy_202200009
crossref_primary_10_1016_j_mtla_2019_100296
crossref_primary_10_1021_acs_macromol_4c02709
crossref_primary_10_1002_adma_202005888
crossref_primary_10_1002_mabi_202000050
crossref_primary_10_1021_acs_macromol_8b01058
crossref_primary_10_1021_acs_macromol_8b00242
crossref_primary_10_1002_slct_202301116
crossref_primary_10_1002_cphc_201800535
crossref_primary_10_1039_C9CS00725C
crossref_primary_10_1002_ange_202202405
crossref_primary_10_1002_aenm_201901754
crossref_primary_10_1002_app_47802
crossref_primary_10_1039_C8TA10045D
crossref_primary_10_1002_slct_202203846
crossref_primary_10_1021_acs_nanolett_8b02325
crossref_primary_10_1002_aisy_202000193
Cites_doi 10.1002/smll.201602820
10.1021/ma201564t
10.1021/cr0300789
10.1002/anie.201302430
10.1126/science.aad8279
10.1002/anie.201508355
10.1021/jz500984w
10.1021/la101798x
10.1021/ja016424q
10.1002/adfm.201102471
10.1038/nchem.257
10.1021/ja408465t
10.1021/ja021096v
10.1021/cr030037c
10.1002/anie.201600702
10.1063/1.555680
10.1039/C2CS35191A
10.1021/ma030421b
10.1038/nnano.2013.85
10.1038/nmat1954
10.1002/smll.200902272
10.1021/ar9602664
10.1021/ja058260
10.1021/ma200594j
10.1002/anie.200603735
10.1021/ja993825l
10.1021/ja069033q
10.1038/382607a0
10.1021/am5009002
10.1126/sciadv.1500025
10.1002/adfm.201100590
10.1016/j.nantod.2014.06.005
10.1038/nnano.2015.256
10.1126/science.1131475
10.1021/jacs.5b06736
10.1021/jacs.7b04545
10.1038/nchem.2303
10.1002/anie.200603148
10.1021/nn100869j
10.1021/jp992179
10.1002/adma.201201734
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 13, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 13, 2018
– notice: 2018
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1714748115
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Light-enabled reversible assembly of nanoparticles
EISSN 1091-6490
EndPage E1400
ExternalDocumentID PMC5816163
29386380
10_1073_pnas_1714748115
26507374
Genre Journal Article
Feature
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: CMMI 1562075 and 1727313; DMR 1709420
– fundername: DOD | USAF | AFMC | Air Force Office of Scientific Research (AFOSR)
  grantid: FA9550-16-1-0187
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-c9b58fd064f0fd1e20ea923670d9bcc6fdb8a013a1b74e5e0588c246c301fbbe3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:04:12 EDT 2025
Fri Jul 11 06:59:46 EDT 2025
Mon Jun 30 08:33:17 EDT 2025
Wed Feb 19 02:43:19 EST 2025
Thu Apr 24 23:03:15 EDT 2025
Tue Jul 01 03:19:45 EDT 2025
Fri May 30 11:17:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords photoresponsive polymers
nanoreactor
stable hairy nanoparticles
reversible self-assembly
tunable optical properties
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-c9b58fd064f0fd1e20ea923670d9bcc6fdb8a013a1b74e5e0588c246c301fbbe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: Y.C. and Z.L. designed research; Y.C., Z.W., Y.H., Y.J.Y., and J.J. performed research; Y.C., Z.W., Y.H., Y.J.Y., J.J., G.Z., and Z.L. analyzed data; and Y.C., G.Z., and Z.L. wrote the paper.
Edited by Steve Granick, IBS Center for Soft and Living Matter, Uvalju-gun, Ulsan, Republic of Korea, and approved January 5, 2018 (received for review August 20, 2017)
OpenAccessLink https://www.pnas.org/content/pnas/115/7/E1391.full.pdf
PMID 29386380
PQID 2011289099
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5816163
proquest_miscellaneous_1993382732
proquest_journals_2011289099
pubmed_primary_29386380
crossref_primary_10_1073_pnas_1714748115
crossref_citationtrail_10_1073_pnas_1714748115
jstor_primary_26507374
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-13
PublicationDateYYYYMMDD 2018-02-13
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_31_2
  doi: 10.1002/smll.201602820
– ident: e_1_3_3_27_2
  doi: 10.1021/ma201564t
– ident: e_1_3_3_16_2
  doi: 10.1021/cr0300789
– ident: e_1_3_3_20_2
  doi: 10.1002/anie.201302430
– ident: e_1_3_3_24_2
  doi: 10.1126/science.aad8279
– ident: e_1_3_3_39_2
  doi: 10.1002/anie.201508355
– ident: e_1_3_3_18_2
  doi: 10.1021/jz500984w
– ident: e_1_3_3_19_2
  doi: 10.1021/la101798x
– ident: e_1_3_3_37_2
  doi: 10.1021/ja016424q
– ident: e_1_3_3_7_2
  doi: 10.1002/adfm.201102471
– ident: e_1_3_3_32_2
  doi: 10.1038/nchem.257
– ident: e_1_3_3_6_2
  doi: 10.1021/ja408465t
– ident: e_1_3_3_35_2
  doi: 10.1021/ja021096v
– ident: e_1_3_3_14_2
  doi: 10.1021/cr030037c
– ident: e_1_3_3_30_2
  doi: 10.1002/anie.201600702
– ident: e_1_3_3_38_2
  doi: 10.1063/1.555680
– ident: e_1_3_3_13_2
  doi: 10.1039/C2CS35191A
– ident: e_1_3_3_40_2
  doi: 10.1021/ma030421b
– ident: e_1_3_3_25_2
  doi: 10.1038/nnano.2013.85
– ident: e_1_3_3_8_2
  doi: 10.1038/nmat1954
– ident: e_1_3_3_12_2
  doi: 10.1002/smll.200902272
– ident: e_1_3_3_36_2
  doi: 10.1021/ar9602664
– ident: e_1_3_3_5_2
  doi: 10.1021/ja058260
– ident: e_1_3_3_26_2
  doi: 10.1021/ma200594j
– ident: e_1_3_3_3_2
  doi: 10.1002/anie.200603735
– ident: e_1_3_3_33_2
  doi: 10.1021/ja993825l
– ident: e_1_3_3_41_2
  doi: 10.1021/ja069033q
– ident: e_1_3_3_4_2
  doi: 10.1038/382607a0
– ident: e_1_3_3_17_2
  doi: 10.1021/am5009002
– ident: e_1_3_3_23_2
  doi: 10.1126/sciadv.1500025
– ident: e_1_3_3_15_2
  doi: 10.1002/adfm.201100590
– ident: e_1_3_3_21_2
  doi: 10.1016/j.nantod.2014.06.005
– ident: e_1_3_3_10_2
  doi: 10.1038/nnano.2015.256
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1131475
– ident: e_1_3_3_29_2
  doi: 10.1021/jacs.5b06736
– ident: e_1_3_3_28_2
  doi: 10.1021/jacs.7b04545
– ident: e_1_3_3_11_2
  doi: 10.1038/nchem.2303
– ident: e_1_3_3_22_2
  doi: 10.1002/anie.200603148
– ident: e_1_3_3_1_2
  doi: 10.1021/nn100869j
– ident: e_1_3_3_34_2
  doi: 10.1021/jp992179
– ident: e_1_3_3_9_2
  doi: 10.1002/adma.201201734
SSID ssj0009580
Score 2.5818179
Snippet The ability to dynamically organize functional nanoparticles (NPs) via the use of environmental triggers (temperature, pH, light, or solvent polarity) opens up...
This work reports a versatile and robust strategy for creating monodisperse plasmonic nanoparticles (NPs) intimately and permanently capped with...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E1391
SubjectTerms Anchoring
Assemblies
Biotechnology
Block copolymers
Catalysis
Chemical synthesis
Copolymers
Crystallization
Dismantling
Ferroelectric materials
Ferroelectricity
Hydrophobicity
Magnetic resonance
Nanoparticles
Nanotechnology
Optical properties
Optics
Optoelectronics
pH effects
Physical Sciences
PNAS Plus
Polarity
Polymers
Reaction kinetics
Resonance absorption
Self-assembly
Strategy
Surface plasmon resonance
Upconversion
Wavelengths
Title Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles
URI https://www.jstor.org/stable/26507374
https://www.ncbi.nlm.nih.gov/pubmed/29386380
https://www.proquest.com/docview/2011289099
https://www.proquest.com/docview/1993382732
https://pubmed.ncbi.nlm.nih.gov/PMC5816163
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCWGAhsCAjcVhUpeRt57hadVWtStlDKxUuke04alFJqz6EgD_P-JHXqkgLl6hKHLfqNxl_M5n5jNB7wXmaFAl1C-IxN8pT7qax5C6s9CQIWUB4oBqcP02S0Sy6mcfzXu93u7tkzwfi19G-kv9BFc4BrqpL9h-QrSeFE_AZ8IUjIAzHe2E81iogUrc_6S4UlfxSrVA7uSpcoMXyO18ZgaX9wTRJrTcmeb1RSfitUlNVdBEoorq4YMvtz37JSoikbcFcm7ze1ovdriotmFS5xMumM8W6i13f7d9Omn2Or2wfyJfl4sDseqkz-cbbfJU_5LLJzOqRrPy2lI1fMgUC2j_1bw5lO2HhU1XjbPpNrY8FiuImkdkldCCPnKscs2n0tBZIWm52CLzVP7oAgMdSuxaXbDdQW7uTiFazdKS2J5-z69l4nE2H8-kD9DCAGENXhY7ais3USFnYX1bpQpHw453pO5TGVLUei1fult22eMz0CXpsAxB8afA9RT1ZPkWnFWb4wuqQf3iGRMe8cGNeuGNeGMwLW_PC1rxwY154XWBjXlibF-6Y13M0ux5Or0au3ZPDFUAt965IeUyLHIhs4RW5LwNPslSrAMJjLkRS5JwyCCuYz0kkY-nFlIogSgQsJAXnMjxDJ-W6lC8RTuGOXPWB50Bjcy5TwgvgizRngnvCDx00qP7WTFjBerVvyirThRMkzBQOWYODgy7qGzZGq-XvQ880TvW4ACIVEpLIQecVcJl90neZIsnqhXyaOuhdfRn8sHq5xkq5PsDcQPRDCsFA4KAXBudm8jSksM55DiIdC6gHKI337pVyudBa7zGFkCwJX93je1-jR83jdo5O9tuDfAOMec_fasv-A0bfxo4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-enabled+reversible+self-assembly+and+tunable+optical+properties+of+stable+hairy+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+Yihuang&rft.au=Wang%2C+Zewei&rft.au=He%2C+Yanjie&rft.au=Yoon%2C+Young+Jun&rft.date=2018-02-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=115&rft.issue=7&rft.spage=E1391&rft_id=info:doi/10.1073%2Fpnas.1714748115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon