Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis

Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liv...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 8; pp. 1 - 10
Main Authors Qiu, Min, Tang, Yan, Chen, Jinjin, Muriph, Rachel, Ye, Zhongfeng, Huang, Changfeng, Evans, Jason, Henske, Elizabeth P., Xu, Qiaobing
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
AbstractList Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
The current application of messenger RNA (mRNA)-based technology has largely been confined to liver diseases because of the lack of a specific and efficient extrahepatic in vivo systemic mRNA delivery system. Here, we have developed a library of N-series lipid nanoparticles (LNPs) that could specifically regulate the protein composition of protein corona on the surface of LNPs, which allows specific delivery of mRNA to the lung. We further demonstrated that our lung-targeting LNP could effectively deliver mouse tuberous sclerosis complex 2 ( Tsc2 ) mRNA into TSC2-null cells and restore its function, resulting in enhanced control of tumor burden in a preclinical model of lymphangioleiomyomatosis, a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 ( Tsc2 ) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 ( ) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
Author Qiu, Min
Henske, Elizabeth P.
Huang, Changfeng
Xu, Qiaobing
Chen, Jinjin
Muriph, Rachel
Tang, Yan
Evans, Jason
Ye, Zhongfeng
Author_xml – sequence: 1
  givenname: Min
  surname: Qiu
  fullname: Qiu, Min
– sequence: 2
  givenname: Yan
  surname: Tang
  fullname: Tang, Yan
– sequence: 3
  givenname: Jinjin
  surname: Chen
  fullname: Chen, Jinjin
– sequence: 4
  givenname: Rachel
  surname: Muriph
  fullname: Muriph, Rachel
– sequence: 5
  givenname: Zhongfeng
  surname: Ye
  fullname: Ye, Zhongfeng
– sequence: 6
  givenname: Changfeng
  surname: Huang
  fullname: Huang, Changfeng
– sequence: 7
  givenname: Jason
  surname: Evans
  fullname: Evans, Jason
– sequence: 8
  givenname: Elizabeth P.
  surname: Henske
  fullname: Henske, Elizabeth P.
– sequence: 9
  givenname: Qiaobing
  surname: Xu
  fullname: Xu, Qiaobing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35173043$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFDEYxoNU7LZ69qQMePEybT4mM5mLUIpfsCiInkOavNnNkknGJFPY_94sW1ftwVNCnt_z5nl5LtBZiAEQeknwFcEDu56DyleUkJ4OhJDxCVoRPJK270Z8hlYY06EVHe3O0UXOO4zxyAV-hs4ZJwPDHVuhZb2ETZvBgy7uHprp25ebxoCv97Rvom3yPpQtFKcb72ZnmqBCnFWqDx5yY2NqqtyUBKpMEMrBMi9-ikFVv99P81aFjYseXJz2cVIlZpefo6dW-QwvHs5L9OPD---3n9r114-fb2_WreZ4LK0e-WiIvut5ZxiANsZgagcsuAJQjGDOjbVMWCU6TQllApNBC2rG3hrQll2id8e583I3gdE1YFJezslNNZ6Mysl_leC2chPvpRADHQZcB7x9GJDizwVykZPLGrxXAeKSJe3pKHpBeF_RN4_QXVxSqOtVinWY8ApV6vXfiU5RfjdSgesjoFPMOYE9IQTLQ-fy0Ln803l18EcO7YoqLh5Wcv4_vldH3y6XmE7fHFTRc8Z-AXk5vp4
CitedBy_id crossref_primary_10_1126_scitranslmed_adg6229
crossref_primary_10_3762_bjnano_14_23
crossref_primary_10_1038_s41565_024_01747_6
crossref_primary_10_2174_1389200223666220803103039
crossref_primary_10_1016_j_cej_2024_153171
crossref_primary_10_1021_acsnano_4c02987
crossref_primary_10_1038_s41467_024_55721_w
crossref_primary_10_2147_IJN_S433737
crossref_primary_10_1002_advs_202301929
crossref_primary_10_1038_s41467_024_53914_x
crossref_primary_10_1038_s41467_024_50752_9
crossref_primary_10_1002_anie_202405444
crossref_primary_10_1002_smll_202301838
crossref_primary_10_1021_acs_jpcb_3c07600
crossref_primary_10_1038_s41467_024_55137_6
crossref_primary_10_1186_s43556_023_00160_0
crossref_primary_10_1016_j_cej_2023_146474
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1002_smll_202310531
crossref_primary_10_1080_17425247_2023_2255138
crossref_primary_10_1002_anie_202310401
crossref_primary_10_1039_D3TB00303E
crossref_primary_10_1016_j_actbio_2024_01_032
crossref_primary_10_1038_s41563_024_02114_5
crossref_primary_10_1097_TP_0000000000005025
crossref_primary_10_1186_s12951_024_02630_1
crossref_primary_10_3390_ijms25052812
crossref_primary_10_1007_s12274_024_6747_6
crossref_primary_10_1002_ange_202407398
crossref_primary_10_1016_j_bioactmat_2023_07_022
crossref_primary_10_3390_pharmaceutics14122682
crossref_primary_10_1039_D3NJ05949A
crossref_primary_10_1128_mbio_01775_23
crossref_primary_10_1002_anbr_202200082
crossref_primary_10_1002_adma_202305300
crossref_primary_10_1080_02652048_2024_2326091
crossref_primary_10_3389_fimmu_2022_931524
crossref_primary_10_1002_anie_202302676
crossref_primary_10_1016_j_ijbiomac_2023_125692
crossref_primary_10_1021_acs_bioconjchem_3c00019
crossref_primary_10_1016_j_mtbio_2024_101101
crossref_primary_10_1016_j_jviromet_2024_115040
crossref_primary_10_1039_D3MH02066E
crossref_primary_10_1021_acs_nanolett_3c05031
crossref_primary_10_1021_jacs_3c11914
crossref_primary_10_1039_D4TB00186A
crossref_primary_10_1039_D4NR00019F
crossref_primary_10_1002_adfm_202417101
crossref_primary_10_3389_fonc_2024_1454370
crossref_primary_10_1021_acs_molpharmaceut_4c00276
crossref_primary_10_1073_pnas_2307801120
crossref_primary_10_1021_acs_biomac_4c01587
crossref_primary_10_1002_adma_202401445
crossref_primary_10_1021_acsnano_4c09919
crossref_primary_10_1016_j_addr_2023_115175
crossref_primary_10_1002_adma_202308029
crossref_primary_10_1016_j_addr_2023_115054
crossref_primary_10_3390_pharmaceutics15020622
crossref_primary_10_3390_vaccines11081287
crossref_primary_10_1002_adma_202309355
crossref_primary_10_1186_s12951_024_02972_w
crossref_primary_10_1016_j_jconrel_2023_03_052
crossref_primary_10_1073_pnas_2307813120
crossref_primary_10_1080_17435889_2025_2457315
crossref_primary_10_1002_anbr_202300006
crossref_primary_10_1515_ntrev_2024_0134
crossref_primary_10_1021_acsnano_4c14041
crossref_primary_10_1007_s40291_024_00705_1
crossref_primary_10_1016_j_jconrel_2024_04_022
crossref_primary_10_3390_vaccines12080873
crossref_primary_10_1002_advs_202309748
crossref_primary_10_1016_j_copbio_2023_103046
crossref_primary_10_1021_acsnano_2c04543
crossref_primary_10_1002_adma_202303266
crossref_primary_10_3389_fimmu_2023_1129296
crossref_primary_10_1021_jacs_3c09143
crossref_primary_10_1002_adma_202303261
crossref_primary_10_1016_j_jconrel_2023_03_041
crossref_primary_10_1021_acsnano_4c18636
crossref_primary_10_1002_adhm_202203033
crossref_primary_10_1021_acsnano_3c00958
crossref_primary_10_1186_s12951_024_02919_1
crossref_primary_10_1021_jacs_4c00451
crossref_primary_10_1002_anie_202407398
crossref_primary_10_1016_j_biomaterials_2023_122134
crossref_primary_10_1039_D3BM00387F
crossref_primary_10_1039_D4TB01063A
crossref_primary_10_1039_D4NR04778H
crossref_primary_10_1038_s43586_023_00200_7
crossref_primary_10_1021_jacs_4c10265
crossref_primary_10_1515_mr_2023_0010
crossref_primary_10_1007_s12274_023_6111_2
crossref_primary_10_1021_jacs_4c14500
crossref_primary_10_1021_acs_nanolett_3c03547
crossref_primary_10_1016_j_nano_2024_102745
crossref_primary_10_1021_acsnano_3c05853
crossref_primary_10_1002_biot_202300123
crossref_primary_10_1007_s12013_024_01395_6
crossref_primary_10_1016_j_cbpa_2024_102499
crossref_primary_10_1007_s12274_024_6978_6
crossref_primary_10_1002_adhm_202402366
crossref_primary_10_1021_acs_nanolett_4c02566
crossref_primary_10_1002_cbic_202200801
crossref_primary_10_1021_jacsau_4c00568
crossref_primary_10_1021_acsami_3c00494
crossref_primary_10_1002_smll_202409635
crossref_primary_10_1002_ange_202405444
crossref_primary_10_1186_s13287_023_03584_1
crossref_primary_10_1002_EXP_20210146
crossref_primary_10_1002_advs_202307940
crossref_primary_10_1021_acsami_4c02415
crossref_primary_10_1186_s12951_024_02585_3
crossref_primary_10_1021_acsnano_3c07461
crossref_primary_10_1016_j_mtbio_2024_100966
crossref_primary_10_1038_s41578_022_00529_7
crossref_primary_10_1016_j_isci_2024_109804
crossref_primary_10_1080_17425247_2025_2452295
crossref_primary_10_1021_acs_nanolett_4c04638
crossref_primary_10_1038_s41565_024_01765_4
crossref_primary_10_1039_D4BM00502C
crossref_primary_10_1002_btm2_10374
crossref_primary_10_1016_j_jconrel_2023_06_014
crossref_primary_10_1016_j_bioactmat_2022_11_014
crossref_primary_10_1016_j_ajps_2023_100883
crossref_primary_10_1021_acs_nanolett_2c03234
crossref_primary_10_1016_j_apsb_2024_06_011
crossref_primary_10_3724_zdxbyxb_2023_0101
crossref_primary_10_1080_21645515_2024_2307187
crossref_primary_10_1016_j_jconrel_2023_07_058
crossref_primary_10_1039_D3BM01265D
crossref_primary_10_1016_j_atherosclerosis_2024_117458
crossref_primary_10_1002_adma_202301686
crossref_primary_10_1021_acs_nanolett_4c04089
crossref_primary_10_1186_s12964_024_01586_x
crossref_primary_10_1002_adma_202409812
crossref_primary_10_1002_wnan_1894
crossref_primary_10_1002_smtd_202401860
crossref_primary_10_1016_j_cej_2023_142841
crossref_primary_10_3390_vaccines12060603
crossref_primary_10_1038_s41565_023_01563_4
crossref_primary_10_1073_pnas_2307803120
crossref_primary_10_1016_j_ejps_2022_106234
crossref_primary_10_1002_adma_202409102
crossref_primary_10_1039_D4TB00960F
crossref_primary_10_1093_nsr_nwad161
crossref_primary_10_1016_j_jconrel_2024_10_028
crossref_primary_10_1007_s12038_023_00415_6
crossref_primary_10_1016_j_addr_2023_115116
crossref_primary_10_1016_j_nantod_2023_101943
crossref_primary_10_15616_BSL_2023_29_4_231
crossref_primary_10_1016_j_addr_2023_115111
crossref_primary_10_1007_s40820_025_01665_9
crossref_primary_10_1073_pnas_2307798120
crossref_primary_10_1016_j_bioactmat_2024_12_032
crossref_primary_10_1038_s41467_024_52537_6
crossref_primary_10_1186_s12951_024_02590_6
crossref_primary_10_1080_17425247_2022_2093856
crossref_primary_10_1016_j_jmb_2023_168385
crossref_primary_10_1016_j_mtbio_2023_100716
crossref_primary_10_1038_s41467_024_52104_z
crossref_primary_10_34133_research_0370
crossref_primary_10_1002_wnan_2004
crossref_primary_10_1016_j_tig_2022_12_001
crossref_primary_10_1016_j_biopha_2023_115065
crossref_primary_10_1093_bjd_ljad528
crossref_primary_10_1073_pnas_2207841119
crossref_primary_10_1002_cmdc_202400199
crossref_primary_10_1073_pnas_2406654121
crossref_primary_10_1073_pnas_2307809121
crossref_primary_10_1007_s40259_024_00647_4
crossref_primary_10_1002_smll_202401282
crossref_primary_10_1016_j_jconrel_2024_06_023
crossref_primary_10_1016_j_fmre_2023_02_022
crossref_primary_10_1016_j_isci_2024_110928
crossref_primary_10_1021_acsnano_3c11755
crossref_primary_10_1073_pnas_2314747121
crossref_primary_10_1038_s41467_024_45422_9
crossref_primary_10_1016_j_omtn_2023_102068
crossref_primary_10_1039_D3TB02766J
crossref_primary_10_1186_s12951_024_02755_3
crossref_primary_10_1038_s41541_024_00900_5
crossref_primary_10_3390_biom14121628
crossref_primary_10_1002_smll_202407040
crossref_primary_10_1039_D3NA00198A
crossref_primary_10_1021_acsabm_3c00721
crossref_primary_10_3390_ijms251810166
crossref_primary_10_1002_adma_202306246
crossref_primary_10_1002_adhm_202303857
crossref_primary_10_1039_D3TB00516J
crossref_primary_10_1186_s40824_023_00425_3
crossref_primary_10_1021_acs_langmuir_2c01609
crossref_primary_10_1002_adhm_202400441
crossref_primary_10_1021_acs_jmedchem_4c02528
crossref_primary_10_1016_j_scitotenv_2024_172240
crossref_primary_10_1021_acs_accounts_3c00597
crossref_primary_10_1016_j_addr_2022_114635
crossref_primary_10_1002_smtd_202300880
crossref_primary_10_1021_acs_nanolett_4c01854
crossref_primary_10_1002_wnan_1978
crossref_primary_10_1016_j_xphs_2024_10_035
crossref_primary_10_1021_acsami_2c19161
crossref_primary_10_1186_s12951_024_02882_x
crossref_primary_10_1002_advs_202416525
crossref_primary_10_1002_btm2_10580
crossref_primary_10_1016_j_copbio_2024_103101
crossref_primary_10_1039_D4PY00206G
crossref_primary_10_1002_bmm2_12116
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1016_j_fmre_2023_11_020
crossref_primary_10_1007_s12274_023_6238_5
crossref_primary_10_1016_j_biotechadv_2024_108395
crossref_primary_10_1007_s11095_023_03471_7
crossref_primary_10_1007_s12274_024_6827_7
crossref_primary_10_1016_j_jconrel_2023_07_021
crossref_primary_10_3389_fnano_2025_1475969
crossref_primary_10_1021_acs_nanolett_4c03245
crossref_primary_10_3390_molecules29194737
crossref_primary_10_1016_j_ebiom_2024_105503
crossref_primary_10_3389_fphar_2024_1466337
crossref_primary_10_3389_fimmu_2025_1524317
crossref_primary_10_1002_advs_202404684
crossref_primary_10_1021_jacs_3c14010
crossref_primary_10_59717_j_xinn_med_2024_100081
crossref_primary_10_1016_j_addr_2023_114861
crossref_primary_10_1016_j_jconrel_2022_10_061
crossref_primary_10_1002_ange_202302676
crossref_primary_10_1021_acsnano_4c11652
crossref_primary_10_1016_j_jconrel_2024_11_038
crossref_primary_10_1002_adhm_202400225
crossref_primary_10_1016_j_blre_2023_101094
crossref_primary_10_1021_acsnano_4c13053
crossref_primary_10_1021_acsami_3c01501
crossref_primary_10_1016_j_biopha_2024_117108
crossref_primary_10_1360_TB_2023_0613
crossref_primary_10_1039_D3NH00145H
crossref_primary_10_1016_j_gendis_2025_101605
crossref_primary_10_1038_s41573_023_00762_x
crossref_primary_10_3390_pharmaceutics14102129
crossref_primary_10_1021_acs_nanolett_2c01784
crossref_primary_10_3389_fphar_2022_1025740
crossref_primary_10_1002_adma_202312026
crossref_primary_10_1016_j_addr_2023_114993
crossref_primary_10_1016_j_addr_2023_115042
crossref_primary_10_3390_pharmaceutics16121521
crossref_primary_10_1016_j_addr_2023_114990
crossref_primary_10_1080_17435889_2025_2480048
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_1016_j_actbio_2024_06_026
crossref_primary_10_1016_j_biomaterials_2024_123047
crossref_primary_10_1002_adma_202415643
crossref_primary_10_1002_mco2_70035
crossref_primary_10_1021_acs_nanolett_3c03609
crossref_primary_10_1186_s12929_024_01080_z
crossref_primary_10_1002_ange_202310401
crossref_primary_10_1002_adhm_202302691
crossref_primary_10_1038_s41467_024_49804_x
crossref_primary_10_1021_acsabm_2c00668
crossref_primary_10_1038_s41587_024_02437_3
crossref_primary_10_1038_s41563_024_01867_3
crossref_primary_10_1089_hum_2024_106
crossref_primary_10_1126_scitranslmed_abq0603
crossref_primary_10_1002_adfm_202405286
crossref_primary_10_2174_0113892002339055241211050131
crossref_primary_10_1038_s41467_024_50093_7
crossref_primary_10_1016_j_ejpb_2023_10_006
crossref_primary_10_1016_j_jconrel_2024_05_006
crossref_primary_10_1007_s10405_025_00602_2
crossref_primary_10_3390_pharmaceutics16050674
crossref_primary_10_1039_D2TB02455A
crossref_primary_10_1021_jacs_4c02704
crossref_primary_10_1021_acsnano_4c05653
crossref_primary_10_1007_s13346_024_01750_3
crossref_primary_10_3390_molecules28104046
crossref_primary_10_1021_acssynbio_3c00602
crossref_primary_10_1039_D2CS00998F
crossref_primary_10_2174_0113892010302590240321073509
crossref_primary_10_1021_acsnano_3c13039
crossref_primary_10_1039_D3NH00124E
crossref_primary_10_1073_pnas_2306129120
crossref_primary_10_1016_j_biomaterials_2024_122853
Cites_doi 10.1126/scitranslmed.3003840
10.1002/adma.201902575
10.1002/smll.201805097
10.1021/ja107583h
10.1016/j.vaccine.2018.01.029
10.1016/j.vaccine.2019.04.074
10.1038/s41565-020-0669-6
10.1016/j.ymthe.2019.01.014
10.1186/s13045-019-0754-1
10.1056/NEJMoa1100391
10.1038/nrd.2017.243
10.1021/acs.nanolett.8b01101
10.1038/s41565-019-0600-1
10.1111/j.1538-7836.2010.04072.x
10.1038/nrd4278
10.1038/s41467-018-06979-4
10.1073/pnas.2020401118
10.1038/nnano.2013.181
10.1039/C8BM00637G
10.1038/s41565-019-0591-y
10.1021/nn505166x
10.1038/s41467-019-11593-z
10.1016/j.ymthe.2019.01.020
10.1038/s41586-020-2537-9
10.1165/rcmb.2018-0123OC
10.1021/sb300023h
10.1002/anie.201610209
10.1002/adma.201805308
10.1056/NEJMc1106358
10.1038/gt.2016.46
10.1038/natrevmats.2017.56
10.1126/sciadv.abc2315
10.1016/j.ymthe.2019.02.012
10.1021/acschembio.0c00003
10.1021/bm2015976
10.1038/s41587-019-0247-3
10.1073/pnas.1520244113
10.1038/nrd.2018.132
10.1126/sciadv.abb4429
10.1002/adma.201805740
10.1002/path.4471
10.1038/s41467-018-04315-4
10.1002/anie.202008082
10.1038/nri3739
10.1002/adma.201902251
10.1056/NEJMoa063564
10.1038/s41565-017-0043-5
10.1016/j.omtn.2017.11.005
10.1183/13993003.00745-2017
10.1002/anie.202013927
10.1016/j.ymthe.2018.03.010
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 22, 2022
2022
Copyright_xml – notice: Copyright National Academy of Sciences Feb 22, 2022
– notice: 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2116271119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10
ExternalDocumentID PMC8872770
35173043
10_1073_pnas_2116271119
27118653
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UG3 TR002636
– fundername: NCATS NIH HHS
  grantid: UH3 TR002636
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-c959d1cb654d3eecddd02f7085aeea31055dff38fa84c21238017c82d96fdecf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:12:49 EDT 2025
Thu Jul 10 17:09:39 EDT 2025
Mon Jun 30 09:54:07 EDT 2025
Thu Apr 03 06:56:30 EDT 2025
Tue Jul 01 01:03:11 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Thu May 29 08:48:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords lipid nanoparticles
mRNA
tuberous sclerosis complex
lung-targeted delivery
lymphangioleiomyomatosis
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-c959d1cb654d3eecddd02f7085aeea31055dff38fa84c21238017c82d96fdecf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Hongjie Dai, Chemistry, Stanford University, Stanford, CA; received September 2, 2021; accepted January 18, 2022
Author contributions: M.Q., Y.T., and Q.X. designed research; M.Q., Y.T., J.C., R.M., Z.Y., and C.H. performed research; M.Q., Y.T., J.C., R.M., J.E., E.P.H., and Q.X. analyzed data; and M.Q., Y.T., E.P.H., and Q.X. wrote the paper.
2M.Q., Y.T., and J.C. contributed equally to this work.
1Present address: Human Phenome Institute, Fudan University, Shanghai 201203, China.
ORCID 0000-0002-3386-5321
0000-0002-6223-8423
0000-0003-0383-7247
0000-0001-7978-6699
0000-0002-7373-2355
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8872770
PMID 35173043
PQID 2634015563
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872770
proquest_miscellaneous_2629868156
proquest_journals_2634015563
pubmed_primary_35173043
crossref_primary_10_1073_pnas_2116271119
crossref_citationtrail_10_1073_pnas_2116271119
jstor_primary_27118653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-22
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
Ní Bhaoighill M. (e_1_3_4_46_2) 2019; 2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_48_2
  doi: 10.1126/scitranslmed.3003840
– ident: e_1_3_4_15_2
  doi: 10.1002/adma.201902575
– ident: e_1_3_4_28_2
  doi: 10.1002/smll.201805097
– ident: e_1_3_4_40_2
  doi: 10.1021/ja107583h
– ident: e_1_3_4_7_2
  doi: 10.1016/j.vaccine.2018.01.029
– ident: e_1_3_4_6_2
  doi: 10.1016/j.vaccine.2019.04.074
– volume: 2
  start-page: 1069
  year: 2019
  ident: e_1_3_4_46_2
  article-title: Mechanistic target of rapamycin inhibitors: Successes and challenges as cancer therapeutics
  publication-title: MCancer Drug Resist.
– ident: e_1_3_4_20_2
  doi: 10.1038/s41565-020-0669-6
– ident: e_1_3_4_5_2
  doi: 10.1016/j.ymthe.2019.01.014
– ident: e_1_3_4_44_2
  doi: 10.1186/s13045-019-0754-1
– ident: e_1_3_4_47_2
  doi: 10.1056/NEJMoa1100391
– ident: e_1_3_4_1_2
  doi: 10.1038/nrd.2017.243
– ident: e_1_3_4_42_2
  doi: 10.1021/acs.nanolett.8b01101
– ident: e_1_3_4_24_2
  doi: 10.1038/s41565-019-0600-1
– ident: e_1_3_4_38_2
  doi: 10.1111/j.1538-7836.2010.04072.x
– ident: e_1_3_4_3_2
  doi: 10.1038/nrd4278
– ident: e_1_3_4_37_2
  doi: 10.1038/s41467-018-06979-4
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.2020401118
– ident: e_1_3_4_21_2
  doi: 10.1038/nnano.2013.181
– ident: e_1_3_4_52_2
  doi: 10.1039/C8BM00637G
– ident: e_1_3_4_11_2
  doi: 10.1038/s41565-019-0591-y
– ident: e_1_3_4_35_2
  doi: 10.1021/nn505166x
– ident: e_1_3_4_36_2
  doi: 10.1038/s41467-019-11593-z
– ident: e_1_3_4_2_2
  doi: 10.1016/j.ymthe.2019.01.020
– ident: e_1_3_4_8_2
  doi: 10.1038/s41586-020-2537-9
– ident: e_1_3_4_49_2
  doi: 10.1165/rcmb.2018-0123OC
– ident: e_1_3_4_29_2
  doi: 10.1021/sb300023h
– ident: e_1_3_4_41_2
  doi: 10.1002/anie.201610209
– ident: e_1_3_4_12_2
  doi: 10.1002/adma.201805308
– ident: e_1_3_4_45_2
  doi: 10.1056/NEJMc1106358
– ident: e_1_3_4_13_2
  doi: 10.1038/gt.2016.46
– ident: e_1_3_4_10_2
  doi: 10.1038/natrevmats.2017.56
– ident: e_1_3_4_14_2
  doi: 10.1126/sciadv.abc2315
– ident: e_1_3_4_9_2
  doi: 10.1016/j.ymthe.2019.02.012
– ident: e_1_3_4_18_2
  doi: 10.1021/acschembio.0c00003
– ident: e_1_3_4_39_2
  doi: 10.1021/bm2015976
– ident: e_1_3_4_23_2
  doi: 10.1038/s41587-019-0247-3
– ident: e_1_3_4_51_2
  doi: 10.1073/pnas.1520244113
– ident: e_1_3_4_4_2
  doi: 10.1038/nrd.2018.132
– ident: e_1_3_4_50_2
  doi: 10.1126/sciadv.abb4429
– ident: e_1_3_4_34_2
  doi: 10.1002/adma.201805740
– ident: e_1_3_4_31_2
  doi: 10.1002/path.4471
– ident: e_1_3_4_19_2
  doi: 10.1038/s41467-018-04315-4
– ident: e_1_3_4_25_2
  doi: 10.1002/anie.202008082
– ident: e_1_3_4_32_2
  doi: 10.1038/nri3739
– ident: e_1_3_4_22_2
  doi: 10.1002/adma.201902251
– ident: e_1_3_4_43_2
  doi: 10.1056/NEJMoa063564
– ident: e_1_3_4_17_2
  doi: 10.1038/s41565-017-0043-5
– ident: e_1_3_4_33_2
  doi: 10.1016/j.omtn.2017.11.005
– ident: e_1_3_4_30_2
  doi: 10.1183/13993003.00745-2017
– ident: e_1_3_4_27_2
  doi: 10.1002/anie.202013927
– ident: e_1_3_4_26_2
  doi: 10.1016/j.ymthe.2018.03.010
SSID ssj0009580
Score 2.7114851
Snippet Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of...
The current application of messenger RNA (mRNA)-based technology has largely been confined to liver diseases because of the lack of a specific and efficient...
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Animals
Biological Sciences
Drug Delivery Systems - methods
Drug development
Female
Gene Transfer Techniques
Genetic Engineering - methods
Lipids
Liposomes - chemistry
Liposomes - pharmacology
Liquid chromatography
Liver
Lung - cytology
Lung - pathology
Lung diseases
Lung Diseases - drug therapy
Lung Diseases - metabolism
Lymphangioleiomyomatosis - drug therapy
Lymphangioleiomyomatosis - metabolism
Mass spectrometry
Mass spectroscopy
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
mRNA
Mutation
Nanoparticles
Nanoparticles - chemistry
Organs
Physical Sciences
Plasma proteins
Protein Corona - chemistry
Protein Corona - metabolism
Proteins
Ribonucleic acid
RNA
RNA, Messenger - administration & dosage
RNA, Messenger - genetics
RNA, Messenger - pharmacology
RNA, Small Interfering - metabolism
Spleen
TSC2 gene
Tuberous sclerosis
Tuberous Sclerosis Complex 2
Tumor suppressor genes
Tumors
Title Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis
URI https://www.jstor.org/stable/27118653
https://www.ncbi.nlm.nih.gov/pubmed/35173043
https://www.proquest.com/docview/2634015563
https://www.proquest.com/docview/2629868156
https://pubmed.ncbi.nlm.nih.gov/PMC8872770
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWBQGMhIPAxVKU3ixMljNW2aUCljaqXyFDn-GEFZWpHmofwWfizX-XCSqZuAl6iK7cjKPb0-1zn3GqH3YSilTTm1OAcXSBhRVhh7wpIBo4RRWwimE4U_z_2LJfm08laDwe-OaqnYxmP-a29eyf9YFe6BXXWW7D9Y1jwUbsBvsC9cwcJw_Ssbz-CfauXlSTZaAHRzNZ-OhEy11KL8cJ7vMuB3uiRrmmwSMcpYBjFyLYUzAsNWa67Vz0UK09dSunQHhmbZtf5yn6xvdmvgtus8ybt09tIsf3kjNpg3u4vTNleldiD5yBpdztuTj78mRaXcb8XA9e71txazp036SJL9aDsCPpJNuSN0pStSp93NC4h7dTJ4G-reN6Wu13ZgJSVVrvVYVo4aeI7lk-qoUePJa-9bQTbYu0KAS9PHGmcsH0Ps6zvUbkb1anHPv0Tny9ksWpytFg_QQweCEKd0-92SzkGV4FTPrikcRd2Ptx7f4zyV7HVfQHNbl9shOosn6HEdoeBpBZNDNJDZU3TYvC98Uhcq__AMFX38YY0_3OAPrxU2-MMl_nAPfxjwh6EZG_zpIQZ_-C78PUfL87PF6YVVH-NhcWCjW4uHXihsHvseEa6UXAgxcRQFrs-kZK4-oVUo5QaKBYRrJgWkifLAEaGvhOTKPUIH2TqTLxGmtpoob6JiJgVxYx4Df1cQMgAtjgkVfIjGzYuOeF3jXh-1kkal1oK6kbZM1FpmiE7MgE1V3uXurkel5Uw_fTvwPXeIjhtTRrVzgHG-S3Q44kPzO9MMrlt_j2OZXBe6jxMGvi7XNEQvKsubh7ueDWsvgdG0hwnTQZeF77dkyfeyPDzQBoDr5NX903qNHrV_yGN0sP1ZyDfAr7fx2xLmfwDw89pn
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung-selective+mRNA+delivery+of+synthetic+lipid+nanoparticles+for+the+treatment+of+pulmonary+lymphangioleiomyomatosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Qiu%2C+Min&rft.au=Tang%2C+Yan&rft.au=Chen%2C+Jinjin&rft.au=Muriph%2C+Rachel&rft.date=2022-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=8&rft_id=info:doi/10.1073%2Fpnas.2116271119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon