Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liv...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 8; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM. |
---|---|
AbstractList | Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM. The current application of messenger RNA (mRNA)-based technology has largely been confined to liver diseases because of the lack of a specific and efficient extrahepatic in vivo systemic mRNA delivery system. Here, we have developed a library of N-series lipid nanoparticles (LNPs) that could specifically regulate the protein composition of protein corona on the surface of LNPs, which allows specific delivery of mRNA to the lung. We further demonstrated that our lung-targeting LNP could effectively deliver mouse tuberous sclerosis complex 2 ( Tsc2 ) mRNA into TSC2-null cells and restore its function, resulting in enhanced control of tumor burden in a preclinical model of lymphangioleiomyomatosis, a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 ( Tsc2 ) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM. Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 ( ) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM. Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography–mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM. |
Author | Qiu, Min Henske, Elizabeth P. Huang, Changfeng Xu, Qiaobing Chen, Jinjin Muriph, Rachel Tang, Yan Evans, Jason Ye, Zhongfeng |
Author_xml | – sequence: 1 givenname: Min surname: Qiu fullname: Qiu, Min – sequence: 2 givenname: Yan surname: Tang fullname: Tang, Yan – sequence: 3 givenname: Jinjin surname: Chen fullname: Chen, Jinjin – sequence: 4 givenname: Rachel surname: Muriph fullname: Muriph, Rachel – sequence: 5 givenname: Zhongfeng surname: Ye fullname: Ye, Zhongfeng – sequence: 6 givenname: Changfeng surname: Huang fullname: Huang, Changfeng – sequence: 7 givenname: Jason surname: Evans fullname: Evans, Jason – sequence: 8 givenname: Elizabeth P. surname: Henske fullname: Henske, Elizabeth P. – sequence: 9 givenname: Qiaobing surname: Xu fullname: Xu, Qiaobing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35173043$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFDEYxoNU7LZ69qQMePEybT4mM5mLUIpfsCiInkOavNnNkknGJFPY_94sW1ftwVNCnt_z5nl5LtBZiAEQeknwFcEDu56DyleUkJ4OhJDxCVoRPJK270Z8hlYY06EVHe3O0UXOO4zxyAV-hs4ZJwPDHVuhZb2ETZvBgy7uHprp25ebxoCv97Rvom3yPpQtFKcb72ZnmqBCnFWqDx5yY2NqqtyUBKpMEMrBMi9-ikFVv99P81aFjYseXJz2cVIlZpefo6dW-QwvHs5L9OPD---3n9r114-fb2_WreZ4LK0e-WiIvut5ZxiANsZgagcsuAJQjGDOjbVMWCU6TQllApNBC2rG3hrQll2id8e583I3gdE1YFJezslNNZ6Mysl_leC2chPvpRADHQZcB7x9GJDizwVykZPLGrxXAeKSJe3pKHpBeF_RN4_QXVxSqOtVinWY8ApV6vXfiU5RfjdSgesjoFPMOYE9IQTLQ-fy0Ln803l18EcO7YoqLh5Wcv4_vldH3y6XmE7fHFTRc8Z-AXk5vp4 |
CitedBy_id | crossref_primary_10_1126_scitranslmed_adg6229 crossref_primary_10_3762_bjnano_14_23 crossref_primary_10_1038_s41565_024_01747_6 crossref_primary_10_2174_1389200223666220803103039 crossref_primary_10_1016_j_cej_2024_153171 crossref_primary_10_1021_acsnano_4c02987 crossref_primary_10_1038_s41467_024_55721_w crossref_primary_10_2147_IJN_S433737 crossref_primary_10_1002_advs_202301929 crossref_primary_10_1038_s41467_024_53914_x crossref_primary_10_1038_s41467_024_50752_9 crossref_primary_10_1002_anie_202405444 crossref_primary_10_1002_smll_202301838 crossref_primary_10_1021_acs_jpcb_3c07600 crossref_primary_10_1038_s41467_024_55137_6 crossref_primary_10_1186_s43556_023_00160_0 crossref_primary_10_1016_j_cej_2023_146474 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1002_smll_202310531 crossref_primary_10_1080_17425247_2023_2255138 crossref_primary_10_1002_anie_202310401 crossref_primary_10_1039_D3TB00303E crossref_primary_10_1016_j_actbio_2024_01_032 crossref_primary_10_1038_s41563_024_02114_5 crossref_primary_10_1097_TP_0000000000005025 crossref_primary_10_1186_s12951_024_02630_1 crossref_primary_10_3390_ijms25052812 crossref_primary_10_1007_s12274_024_6747_6 crossref_primary_10_1002_ange_202407398 crossref_primary_10_1016_j_bioactmat_2023_07_022 crossref_primary_10_3390_pharmaceutics14122682 crossref_primary_10_1039_D3NJ05949A crossref_primary_10_1128_mbio_01775_23 crossref_primary_10_1002_anbr_202200082 crossref_primary_10_1002_adma_202305300 crossref_primary_10_1080_02652048_2024_2326091 crossref_primary_10_3389_fimmu_2022_931524 crossref_primary_10_1002_anie_202302676 crossref_primary_10_1016_j_ijbiomac_2023_125692 crossref_primary_10_1021_acs_bioconjchem_3c00019 crossref_primary_10_1016_j_mtbio_2024_101101 crossref_primary_10_1016_j_jviromet_2024_115040 crossref_primary_10_1039_D3MH02066E crossref_primary_10_1021_acs_nanolett_3c05031 crossref_primary_10_1021_jacs_3c11914 crossref_primary_10_1039_D4TB00186A crossref_primary_10_1039_D4NR00019F crossref_primary_10_1002_adfm_202417101 crossref_primary_10_3389_fonc_2024_1454370 crossref_primary_10_1021_acs_molpharmaceut_4c00276 crossref_primary_10_1073_pnas_2307801120 crossref_primary_10_1021_acs_biomac_4c01587 crossref_primary_10_1002_adma_202401445 crossref_primary_10_1021_acsnano_4c09919 crossref_primary_10_1016_j_addr_2023_115175 crossref_primary_10_1002_adma_202308029 crossref_primary_10_1016_j_addr_2023_115054 crossref_primary_10_3390_pharmaceutics15020622 crossref_primary_10_3390_vaccines11081287 crossref_primary_10_1002_adma_202309355 crossref_primary_10_1186_s12951_024_02972_w crossref_primary_10_1016_j_jconrel_2023_03_052 crossref_primary_10_1073_pnas_2307813120 crossref_primary_10_1080_17435889_2025_2457315 crossref_primary_10_1002_anbr_202300006 crossref_primary_10_1515_ntrev_2024_0134 crossref_primary_10_1021_acsnano_4c14041 crossref_primary_10_1007_s40291_024_00705_1 crossref_primary_10_1016_j_jconrel_2024_04_022 crossref_primary_10_3390_vaccines12080873 crossref_primary_10_1002_advs_202309748 crossref_primary_10_1016_j_copbio_2023_103046 crossref_primary_10_1021_acsnano_2c04543 crossref_primary_10_1002_adma_202303266 crossref_primary_10_3389_fimmu_2023_1129296 crossref_primary_10_1021_jacs_3c09143 crossref_primary_10_1002_adma_202303261 crossref_primary_10_1016_j_jconrel_2023_03_041 crossref_primary_10_1021_acsnano_4c18636 crossref_primary_10_1002_adhm_202203033 crossref_primary_10_1021_acsnano_3c00958 crossref_primary_10_1186_s12951_024_02919_1 crossref_primary_10_1021_jacs_4c00451 crossref_primary_10_1002_anie_202407398 crossref_primary_10_1016_j_biomaterials_2023_122134 crossref_primary_10_1039_D3BM00387F crossref_primary_10_1039_D4TB01063A crossref_primary_10_1039_D4NR04778H crossref_primary_10_1038_s43586_023_00200_7 crossref_primary_10_1021_jacs_4c10265 crossref_primary_10_1515_mr_2023_0010 crossref_primary_10_1007_s12274_023_6111_2 crossref_primary_10_1021_jacs_4c14500 crossref_primary_10_1021_acs_nanolett_3c03547 crossref_primary_10_1016_j_nano_2024_102745 crossref_primary_10_1021_acsnano_3c05853 crossref_primary_10_1002_biot_202300123 crossref_primary_10_1007_s12013_024_01395_6 crossref_primary_10_1016_j_cbpa_2024_102499 crossref_primary_10_1007_s12274_024_6978_6 crossref_primary_10_1002_adhm_202402366 crossref_primary_10_1021_acs_nanolett_4c02566 crossref_primary_10_1002_cbic_202200801 crossref_primary_10_1021_jacsau_4c00568 crossref_primary_10_1021_acsami_3c00494 crossref_primary_10_1002_smll_202409635 crossref_primary_10_1002_ange_202405444 crossref_primary_10_1186_s13287_023_03584_1 crossref_primary_10_1002_EXP_20210146 crossref_primary_10_1002_advs_202307940 crossref_primary_10_1021_acsami_4c02415 crossref_primary_10_1186_s12951_024_02585_3 crossref_primary_10_1021_acsnano_3c07461 crossref_primary_10_1016_j_mtbio_2024_100966 crossref_primary_10_1038_s41578_022_00529_7 crossref_primary_10_1016_j_isci_2024_109804 crossref_primary_10_1080_17425247_2025_2452295 crossref_primary_10_1021_acs_nanolett_4c04638 crossref_primary_10_1038_s41565_024_01765_4 crossref_primary_10_1039_D4BM00502C crossref_primary_10_1002_btm2_10374 crossref_primary_10_1016_j_jconrel_2023_06_014 crossref_primary_10_1016_j_bioactmat_2022_11_014 crossref_primary_10_1016_j_ajps_2023_100883 crossref_primary_10_1021_acs_nanolett_2c03234 crossref_primary_10_1016_j_apsb_2024_06_011 crossref_primary_10_3724_zdxbyxb_2023_0101 crossref_primary_10_1080_21645515_2024_2307187 crossref_primary_10_1016_j_jconrel_2023_07_058 crossref_primary_10_1039_D3BM01265D crossref_primary_10_1016_j_atherosclerosis_2024_117458 crossref_primary_10_1002_adma_202301686 crossref_primary_10_1021_acs_nanolett_4c04089 crossref_primary_10_1186_s12964_024_01586_x crossref_primary_10_1002_adma_202409812 crossref_primary_10_1002_wnan_1894 crossref_primary_10_1002_smtd_202401860 crossref_primary_10_1016_j_cej_2023_142841 crossref_primary_10_3390_vaccines12060603 crossref_primary_10_1038_s41565_023_01563_4 crossref_primary_10_1073_pnas_2307803120 crossref_primary_10_1016_j_ejps_2022_106234 crossref_primary_10_1002_adma_202409102 crossref_primary_10_1039_D4TB00960F crossref_primary_10_1093_nsr_nwad161 crossref_primary_10_1016_j_jconrel_2024_10_028 crossref_primary_10_1007_s12038_023_00415_6 crossref_primary_10_1016_j_addr_2023_115116 crossref_primary_10_1016_j_nantod_2023_101943 crossref_primary_10_15616_BSL_2023_29_4_231 crossref_primary_10_1016_j_addr_2023_115111 crossref_primary_10_1007_s40820_025_01665_9 crossref_primary_10_1073_pnas_2307798120 crossref_primary_10_1016_j_bioactmat_2024_12_032 crossref_primary_10_1038_s41467_024_52537_6 crossref_primary_10_1186_s12951_024_02590_6 crossref_primary_10_1080_17425247_2022_2093856 crossref_primary_10_1016_j_jmb_2023_168385 crossref_primary_10_1016_j_mtbio_2023_100716 crossref_primary_10_1038_s41467_024_52104_z crossref_primary_10_34133_research_0370 crossref_primary_10_1002_wnan_2004 crossref_primary_10_1016_j_tig_2022_12_001 crossref_primary_10_1016_j_biopha_2023_115065 crossref_primary_10_1093_bjd_ljad528 crossref_primary_10_1073_pnas_2207841119 crossref_primary_10_1002_cmdc_202400199 crossref_primary_10_1073_pnas_2406654121 crossref_primary_10_1073_pnas_2307809121 crossref_primary_10_1007_s40259_024_00647_4 crossref_primary_10_1002_smll_202401282 crossref_primary_10_1016_j_jconrel_2024_06_023 crossref_primary_10_1016_j_fmre_2023_02_022 crossref_primary_10_1016_j_isci_2024_110928 crossref_primary_10_1021_acsnano_3c11755 crossref_primary_10_1073_pnas_2314747121 crossref_primary_10_1038_s41467_024_45422_9 crossref_primary_10_1016_j_omtn_2023_102068 crossref_primary_10_1039_D3TB02766J crossref_primary_10_1186_s12951_024_02755_3 crossref_primary_10_1038_s41541_024_00900_5 crossref_primary_10_3390_biom14121628 crossref_primary_10_1002_smll_202407040 crossref_primary_10_1039_D3NA00198A crossref_primary_10_1021_acsabm_3c00721 crossref_primary_10_3390_ijms251810166 crossref_primary_10_1002_adma_202306246 crossref_primary_10_1002_adhm_202303857 crossref_primary_10_1039_D3TB00516J crossref_primary_10_1186_s40824_023_00425_3 crossref_primary_10_1021_acs_langmuir_2c01609 crossref_primary_10_1002_adhm_202400441 crossref_primary_10_1021_acs_jmedchem_4c02528 crossref_primary_10_1016_j_scitotenv_2024_172240 crossref_primary_10_1021_acs_accounts_3c00597 crossref_primary_10_1016_j_addr_2022_114635 crossref_primary_10_1002_smtd_202300880 crossref_primary_10_1021_acs_nanolett_4c01854 crossref_primary_10_1002_wnan_1978 crossref_primary_10_1016_j_xphs_2024_10_035 crossref_primary_10_1021_acsami_2c19161 crossref_primary_10_1186_s12951_024_02882_x crossref_primary_10_1002_advs_202416525 crossref_primary_10_1002_btm2_10580 crossref_primary_10_1016_j_copbio_2024_103101 crossref_primary_10_1039_D4PY00206G crossref_primary_10_1002_bmm2_12116 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1016_j_fmre_2023_11_020 crossref_primary_10_1007_s12274_023_6238_5 crossref_primary_10_1016_j_biotechadv_2024_108395 crossref_primary_10_1007_s11095_023_03471_7 crossref_primary_10_1007_s12274_024_6827_7 crossref_primary_10_1016_j_jconrel_2023_07_021 crossref_primary_10_3389_fnano_2025_1475969 crossref_primary_10_1021_acs_nanolett_4c03245 crossref_primary_10_3390_molecules29194737 crossref_primary_10_1016_j_ebiom_2024_105503 crossref_primary_10_3389_fphar_2024_1466337 crossref_primary_10_3389_fimmu_2025_1524317 crossref_primary_10_1002_advs_202404684 crossref_primary_10_1021_jacs_3c14010 crossref_primary_10_59717_j_xinn_med_2024_100081 crossref_primary_10_1016_j_addr_2023_114861 crossref_primary_10_1016_j_jconrel_2022_10_061 crossref_primary_10_1002_ange_202302676 crossref_primary_10_1021_acsnano_4c11652 crossref_primary_10_1016_j_jconrel_2024_11_038 crossref_primary_10_1002_adhm_202400225 crossref_primary_10_1016_j_blre_2023_101094 crossref_primary_10_1021_acsnano_4c13053 crossref_primary_10_1021_acsami_3c01501 crossref_primary_10_1016_j_biopha_2024_117108 crossref_primary_10_1360_TB_2023_0613 crossref_primary_10_1039_D3NH00145H crossref_primary_10_1016_j_gendis_2025_101605 crossref_primary_10_1038_s41573_023_00762_x crossref_primary_10_3390_pharmaceutics14102129 crossref_primary_10_1021_acs_nanolett_2c01784 crossref_primary_10_3389_fphar_2022_1025740 crossref_primary_10_1002_adma_202312026 crossref_primary_10_1016_j_addr_2023_114993 crossref_primary_10_1016_j_addr_2023_115042 crossref_primary_10_3390_pharmaceutics16121521 crossref_primary_10_1016_j_addr_2023_114990 crossref_primary_10_1080_17435889_2025_2480048 crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_1016_j_actbio_2024_06_026 crossref_primary_10_1016_j_biomaterials_2024_123047 crossref_primary_10_1002_adma_202415643 crossref_primary_10_1002_mco2_70035 crossref_primary_10_1021_acs_nanolett_3c03609 crossref_primary_10_1186_s12929_024_01080_z crossref_primary_10_1002_ange_202310401 crossref_primary_10_1002_adhm_202302691 crossref_primary_10_1038_s41467_024_49804_x crossref_primary_10_1021_acsabm_2c00668 crossref_primary_10_1038_s41587_024_02437_3 crossref_primary_10_1038_s41563_024_01867_3 crossref_primary_10_1089_hum_2024_106 crossref_primary_10_1126_scitranslmed_abq0603 crossref_primary_10_1002_adfm_202405286 crossref_primary_10_2174_0113892002339055241211050131 crossref_primary_10_1038_s41467_024_50093_7 crossref_primary_10_1016_j_ejpb_2023_10_006 crossref_primary_10_1016_j_jconrel_2024_05_006 crossref_primary_10_1007_s10405_025_00602_2 crossref_primary_10_3390_pharmaceutics16050674 crossref_primary_10_1039_D2TB02455A crossref_primary_10_1021_jacs_4c02704 crossref_primary_10_1021_acsnano_4c05653 crossref_primary_10_1007_s13346_024_01750_3 crossref_primary_10_3390_molecules28104046 crossref_primary_10_1021_acssynbio_3c00602 crossref_primary_10_1039_D2CS00998F crossref_primary_10_2174_0113892010302590240321073509 crossref_primary_10_1021_acsnano_3c13039 crossref_primary_10_1039_D3NH00124E crossref_primary_10_1073_pnas_2306129120 crossref_primary_10_1016_j_biomaterials_2024_122853 |
Cites_doi | 10.1126/scitranslmed.3003840 10.1002/adma.201902575 10.1002/smll.201805097 10.1021/ja107583h 10.1016/j.vaccine.2018.01.029 10.1016/j.vaccine.2019.04.074 10.1038/s41565-020-0669-6 10.1016/j.ymthe.2019.01.014 10.1186/s13045-019-0754-1 10.1056/NEJMoa1100391 10.1038/nrd.2017.243 10.1021/acs.nanolett.8b01101 10.1038/s41565-019-0600-1 10.1111/j.1538-7836.2010.04072.x 10.1038/nrd4278 10.1038/s41467-018-06979-4 10.1073/pnas.2020401118 10.1038/nnano.2013.181 10.1039/C8BM00637G 10.1038/s41565-019-0591-y 10.1021/nn505166x 10.1038/s41467-019-11593-z 10.1016/j.ymthe.2019.01.020 10.1038/s41586-020-2537-9 10.1165/rcmb.2018-0123OC 10.1021/sb300023h 10.1002/anie.201610209 10.1002/adma.201805308 10.1056/NEJMc1106358 10.1038/gt.2016.46 10.1038/natrevmats.2017.56 10.1126/sciadv.abc2315 10.1016/j.ymthe.2019.02.012 10.1021/acschembio.0c00003 10.1021/bm2015976 10.1038/s41587-019-0247-3 10.1073/pnas.1520244113 10.1038/nrd.2018.132 10.1126/sciadv.abb4429 10.1002/adma.201805740 10.1002/path.4471 10.1038/s41467-018-04315-4 10.1002/anie.202008082 10.1038/nri3739 10.1002/adma.201902251 10.1056/NEJMoa063564 10.1038/s41565-017-0043-5 10.1016/j.omtn.2017.11.005 10.1183/13993003.00745-2017 10.1002/anie.202013927 10.1016/j.ymthe.2018.03.010 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 22, 2022 2022 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 22, 2022 – notice: 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2116271119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10 |
ExternalDocumentID | PMC8872770 35173043 10_1073_pnas_2116271119 27118653 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UG3 TR002636 – fundername: NCATS NIH HHS grantid: UH3 TR002636 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-c959d1cb654d3eecddd02f7085aeea31055dff38fa84c21238017c82d96fdecf3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:12:49 EDT 2025 Thu Jul 10 17:09:39 EDT 2025 Mon Jun 30 09:54:07 EDT 2025 Thu Apr 03 06:56:30 EDT 2025 Tue Jul 01 01:03:11 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Thu May 29 08:48:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | lipid nanoparticles mRNA tuberous sclerosis complex lung-targeted delivery lymphangioleiomyomatosis |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-c959d1cb654d3eecddd02f7085aeea31055dff38fa84c21238017c82d96fdecf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Hongjie Dai, Chemistry, Stanford University, Stanford, CA; received September 2, 2021; accepted January 18, 2022 Author contributions: M.Q., Y.T., and Q.X. designed research; M.Q., Y.T., J.C., R.M., Z.Y., and C.H. performed research; M.Q., Y.T., J.C., R.M., J.E., E.P.H., and Q.X. analyzed data; and M.Q., Y.T., E.P.H., and Q.X. wrote the paper. 2M.Q., Y.T., and J.C. contributed equally to this work. 1Present address: Human Phenome Institute, Fudan University, Shanghai 201203, China. |
ORCID | 0000-0002-3386-5321 0000-0002-6223-8423 0000-0003-0383-7247 0000-0001-7978-6699 0000-0002-7373-2355 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8872770 |
PMID | 35173043 |
PQID | 2634015563 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872770 proquest_miscellaneous_2629868156 proquest_journals_2634015563 pubmed_primary_35173043 crossref_primary_10_1073_pnas_2116271119 crossref_citationtrail_10_1073_pnas_2116271119 jstor_primary_27118653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-22 |
PublicationDateYYYYMMDD | 2022-02-22 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 Ní Bhaoighill M. (e_1_3_4_46_2) 2019; 2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_48_2 doi: 10.1126/scitranslmed.3003840 – ident: e_1_3_4_15_2 doi: 10.1002/adma.201902575 – ident: e_1_3_4_28_2 doi: 10.1002/smll.201805097 – ident: e_1_3_4_40_2 doi: 10.1021/ja107583h – ident: e_1_3_4_7_2 doi: 10.1016/j.vaccine.2018.01.029 – ident: e_1_3_4_6_2 doi: 10.1016/j.vaccine.2019.04.074 – volume: 2 start-page: 1069 year: 2019 ident: e_1_3_4_46_2 article-title: Mechanistic target of rapamycin inhibitors: Successes and challenges as cancer therapeutics publication-title: MCancer Drug Resist. – ident: e_1_3_4_20_2 doi: 10.1038/s41565-020-0669-6 – ident: e_1_3_4_5_2 doi: 10.1016/j.ymthe.2019.01.014 – ident: e_1_3_4_44_2 doi: 10.1186/s13045-019-0754-1 – ident: e_1_3_4_47_2 doi: 10.1056/NEJMoa1100391 – ident: e_1_3_4_1_2 doi: 10.1038/nrd.2017.243 – ident: e_1_3_4_42_2 doi: 10.1021/acs.nanolett.8b01101 – ident: e_1_3_4_24_2 doi: 10.1038/s41565-019-0600-1 – ident: e_1_3_4_38_2 doi: 10.1111/j.1538-7836.2010.04072.x – ident: e_1_3_4_3_2 doi: 10.1038/nrd4278 – ident: e_1_3_4_37_2 doi: 10.1038/s41467-018-06979-4 – ident: e_1_3_4_16_2 doi: 10.1073/pnas.2020401118 – ident: e_1_3_4_21_2 doi: 10.1038/nnano.2013.181 – ident: e_1_3_4_52_2 doi: 10.1039/C8BM00637G – ident: e_1_3_4_11_2 doi: 10.1038/s41565-019-0591-y – ident: e_1_3_4_35_2 doi: 10.1021/nn505166x – ident: e_1_3_4_36_2 doi: 10.1038/s41467-019-11593-z – ident: e_1_3_4_2_2 doi: 10.1016/j.ymthe.2019.01.020 – ident: e_1_3_4_8_2 doi: 10.1038/s41586-020-2537-9 – ident: e_1_3_4_49_2 doi: 10.1165/rcmb.2018-0123OC – ident: e_1_3_4_29_2 doi: 10.1021/sb300023h – ident: e_1_3_4_41_2 doi: 10.1002/anie.201610209 – ident: e_1_3_4_12_2 doi: 10.1002/adma.201805308 – ident: e_1_3_4_45_2 doi: 10.1056/NEJMc1106358 – ident: e_1_3_4_13_2 doi: 10.1038/gt.2016.46 – ident: e_1_3_4_10_2 doi: 10.1038/natrevmats.2017.56 – ident: e_1_3_4_14_2 doi: 10.1126/sciadv.abc2315 – ident: e_1_3_4_9_2 doi: 10.1016/j.ymthe.2019.02.012 – ident: e_1_3_4_18_2 doi: 10.1021/acschembio.0c00003 – ident: e_1_3_4_39_2 doi: 10.1021/bm2015976 – ident: e_1_3_4_23_2 doi: 10.1038/s41587-019-0247-3 – ident: e_1_3_4_51_2 doi: 10.1073/pnas.1520244113 – ident: e_1_3_4_4_2 doi: 10.1038/nrd.2018.132 – ident: e_1_3_4_50_2 doi: 10.1126/sciadv.abb4429 – ident: e_1_3_4_34_2 doi: 10.1002/adma.201805740 – ident: e_1_3_4_31_2 doi: 10.1002/path.4471 – ident: e_1_3_4_19_2 doi: 10.1038/s41467-018-04315-4 – ident: e_1_3_4_25_2 doi: 10.1002/anie.202008082 – ident: e_1_3_4_32_2 doi: 10.1038/nri3739 – ident: e_1_3_4_22_2 doi: 10.1002/adma.201902251 – ident: e_1_3_4_43_2 doi: 10.1056/NEJMoa063564 – ident: e_1_3_4_17_2 doi: 10.1038/s41565-017-0043-5 – ident: e_1_3_4_33_2 doi: 10.1016/j.omtn.2017.11.005 – ident: e_1_3_4_30_2 doi: 10.1183/13993003.00745-2017 – ident: e_1_3_4_27_2 doi: 10.1002/anie.202013927 – ident: e_1_3_4_26_2 doi: 10.1016/j.ymthe.2018.03.010 |
SSID | ssj0009580 |
Score | 2.7114851 |
Snippet | Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of... The current application of messenger RNA (mRNA)-based technology has largely been confined to liver diseases because of the lack of a specific and efficient... Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Animals Biological Sciences Drug Delivery Systems - methods Drug development Female Gene Transfer Techniques Genetic Engineering - methods Lipids Liposomes - chemistry Liposomes - pharmacology Liquid chromatography Liver Lung - cytology Lung - pathology Lung diseases Lung Diseases - drug therapy Lung Diseases - metabolism Lymphangioleiomyomatosis - drug therapy Lymphangioleiomyomatosis - metabolism Mass spectrometry Mass spectroscopy Mice Mice, Inbred BALB C Mice, Inbred C57BL mRNA Mutation Nanoparticles Nanoparticles - chemistry Organs Physical Sciences Plasma proteins Protein Corona - chemistry Protein Corona - metabolism Proteins Ribonucleic acid RNA RNA, Messenger - administration & dosage RNA, Messenger - genetics RNA, Messenger - pharmacology RNA, Small Interfering - metabolism Spleen TSC2 gene Tuberous sclerosis Tuberous Sclerosis Complex 2 Tumor suppressor genes Tumors |
Title | Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis |
URI | https://www.jstor.org/stable/27118653 https://www.ncbi.nlm.nih.gov/pubmed/35173043 https://www.proquest.com/docview/2634015563 https://www.proquest.com/docview/2629868156 https://pubmed.ncbi.nlm.nih.gov/PMC8872770 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWBQGMhIPAxVKU3ixMljNW2aUCljaqXyFDn-GEFZWpHmofwWfizX-XCSqZuAl6iK7cjKPb0-1zn3GqH3YSilTTm1OAcXSBhRVhh7wpIBo4RRWwimE4U_z_2LJfm08laDwe-OaqnYxmP-a29eyf9YFe6BXXWW7D9Y1jwUbsBvsC9cwcJw_Ssbz-CfauXlSTZaAHRzNZ-OhEy11KL8cJ7vMuB3uiRrmmwSMcpYBjFyLYUzAsNWa67Vz0UK09dSunQHhmbZtf5yn6xvdmvgtus8ybt09tIsf3kjNpg3u4vTNleldiD5yBpdztuTj78mRaXcb8XA9e71txazp036SJL9aDsCPpJNuSN0pStSp93NC4h7dTJ4G-reN6Wu13ZgJSVVrvVYVo4aeI7lk-qoUePJa-9bQTbYu0KAS9PHGmcsH0Ps6zvUbkb1anHPv0Tny9ksWpytFg_QQweCEKd0-92SzkGV4FTPrikcRd2Ptx7f4zyV7HVfQHNbl9shOosn6HEdoeBpBZNDNJDZU3TYvC98Uhcq__AMFX38YY0_3OAPrxU2-MMl_nAPfxjwh6EZG_zpIQZ_-C78PUfL87PF6YVVH-NhcWCjW4uHXihsHvseEa6UXAgxcRQFrs-kZK4-oVUo5QaKBYRrJgWkifLAEaGvhOTKPUIH2TqTLxGmtpoob6JiJgVxYx4Df1cQMgAtjgkVfIjGzYuOeF3jXh-1kkal1oK6kbZM1FpmiE7MgE1V3uXurkel5Uw_fTvwPXeIjhtTRrVzgHG-S3Q44kPzO9MMrlt_j2OZXBe6jxMGvi7XNEQvKsubh7ueDWsvgdG0hwnTQZeF77dkyfeyPDzQBoDr5NX903qNHrV_yGN0sP1ZyDfAr7fx2xLmfwDw89pn |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lung-selective+mRNA+delivery+of+synthetic+lipid+nanoparticles+for+the+treatment+of+pulmonary+lymphangioleiomyomatosis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Qiu%2C+Min&rft.au=Tang%2C+Yan&rft.au=Chen%2C+Jinjin&rft.au=Muriph%2C+Rachel&rft.date=2022-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=8&rft_id=info:doi/10.1073%2Fpnas.2116271119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |