Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm
To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 1; p. 69 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network. |
---|---|
AbstractList | To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network. To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network.To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network. |
Audience | Academic |
Author | Li, Xun Wang, Guohao |
AuthorAffiliation | School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 202231903013@stu.hebut.edu.cn |
AuthorAffiliation_xml | – name: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 202231903013@stu.hebut.edu.cn |
Author_xml | – sequence: 1 givenname: Guohao surname: Wang fullname: Wang, Guohao – sequence: 2 givenname: Xun orcidid: 0000-0002-4772-0000 surname: Li fullname: Li, Xun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39796860$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vEzEQhleoiLaBA38ArcQFDmn9vfYJRREflVqKBBXcLMee3Trs2qm9aVV-PU5TorZCPtgaP_POjP0eVnshBqiq1xgdUarQcSYcYYSEelYdYEbYVBKC9h6c96vDnJcIEUqpfFHtU9UoIQU6qH799Al6yLn-DiHHVH-F8Sam3_U8XkMyHdTnq9EP_o8ZfQz1Rfahq019Fp1vPbj6zCQfoP6WwJmxpM_6LiY_Xg4vq-et6TO8ut8n1cWnjz_mX6an559P5rPTqeVIjVMrOUFowV0jF2yhnMCWIsqaBnNHHFMtbUGBapWVUjBnG7BMiAXjTFjBlaWT6mSr66JZ6lXyg0m3Ohqv7wIxddqk0dseNBfWWesI4JYwDiCVcQw3VqoWoGEbrQ9brdV6MYCzEMZk-keij2-Cv9RdvNYYN4QiRYvCu3uFFK_WkEc9-Gyh702AuM6aYs4Y4gqjgr59gi7jOoXyVhuKCil5EZ1UR1uqM2UCH9pYCtuyHAzeFhu0vsRnklCOmVCsJLx5OMOu-X9fXoD3W8CmmHOCdodgpDd20js7Ffb4CWv9eOeE0oXv_5PxF6wJyzg |
CitedBy_id | crossref_primary_10_3390_s25051467 |
Cites_doi | 10.1007/s11227-022-04869-7 10.3934/mbe.2024124 10.1007/s12205-020-0504-5 10.1109/ACCESS.2019.2902072 10.1016/j.forpol.2020.102164 10.1109/ACCESS.2022.3156729 10.1016/j.engappai.2021.104417 10.1016/j.eswa.2020.113377 10.5296/npa.v6i4.6449 10.1007/s10489-022-03994-3 10.1007/s11831-023-09912-1 10.1016/j.knosys.2015.12.022 10.4316/AECE.2017.02010 10.1109/ICACI58115.2023.10146165 10.1007/s11277-021-08627-5 10.1016/j.adhoc.2023.103284 10.1016/j.ins.2013.02.041 10.1155/2021/8812542 10.1109/ICSENS.2010.5690033 10.1016/j.cie.2021.107739 10.1109/JSEN.2023.3307949 10.3390/su14169944 10.1016/j.advengsoft.2013.12.007 10.1109/JSEN.2023.3287582 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25010069 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_56cdccd2e1f245ee89ad417c89fee74c PMC11723093 A823514694 39796860 10_3390_s25010069 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61804044 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-c85200b5d78b4b9d61c30347715d2d49f3fe9e9f9c8864dc7ec466b4546c659c3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:25 EDT 2025 Thu Aug 21 18:28:39 EDT 2025 Thu Jul 10 18:53:36 EDT 2025 Fri Jul 25 22:44:29 EDT 2025 Tue Jun 10 20:57:20 EDT 2025 Fri May 02 01:41:29 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 02:10:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | coverage optimization marine predator algorithm wireless sensor network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-c85200b5d78b4b9d61c30347715d2d49f3fe9e9f9c8864dc7ec466b4546c659c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4772-0000 |
OpenAccessLink | https://doaj.org/article/56cdccd2e1f245ee89ad417c89fee74c |
PMID | 39796860 |
PQID | 3153688572 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_56cdccd2e1f245ee89ad417c89fee74c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11723093 proquest_miscellaneous_3154405910 proquest_journals_3153688572 gale_infotracacademiconefile_A823514694 pubmed_primary_39796860 crossref_primary_10_3390_s25010069 crossref_citationtrail_10_3390_s25010069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Faramarzi (ref_16) 2020; 152 Sun (ref_32) 2024; 21 Wang (ref_22) 2022; 1 Hu (ref_20) 2021; 105 Tanyildizi (ref_25) 2017; 17 Mirjalili (ref_26) 2014; 69 Gao (ref_33) 2024; 14 Engmann (ref_10) 2022; 2022 Zhang (ref_19) 2023; 10 Zhai (ref_3) 2021; 2021 Farsi (ref_6) 2019; 7 Lepagnot (ref_12) 2013; 237 Gokhale (ref_2) 2018; 5 Wang (ref_30) 2023; 150 Verkerk (ref_1) 2020; 115 Yao (ref_14) 2023; 23 Kiani (ref_8) 2022; 5 Osamy (ref_11) 2022; 10 Awadallah (ref_17) 2023; 30 Ammari (ref_7) 2023; 19 ref_21 Li (ref_23) 2020; 24 Mirjalili (ref_27) 2016; 96 Jin (ref_18) 2023; 24 ref_29 Chen (ref_24) 2023; 79 Ling (ref_15) 2020; 1 Singh (ref_13) 2021; 162 Singh (ref_5) 2021; 121 Hawbani (ref_9) 2014; 6 Ma (ref_31) 2023; 42 ref_4 Zhao (ref_28) 2023; 53 |
References_xml | – volume: 10 start-page: 1219 year: 2023 ident: ref_19 article-title: An adaptive marine predator algorithm based optimization method for hood lightweight design publication-title: J. Comput. – volume: 79 start-page: 5576 year: 2023 ident: ref_24 article-title: Harris hawks optimization based on global cross-variation and tent mapping publication-title: J. Supercomput. doi: 10.1007/s11227-022-04869-7 – volume: 19 start-page: 35 year: 2023 ident: ref_7 article-title: A computational geometry-based approach for planar k-coverage in wireless sensor networks publication-title: ACM T. Sensor Network – volume: 1 start-page: 8820907 year: 2020 ident: ref_15 article-title: Coverage optimization of sensors under multiple constraints using the improved PSO algorithm publication-title: Math. Probl. Eng. – volume: 21 start-page: 2787 year: 2024 ident: ref_32 article-title: An optimization method for wireless sensor networks coverage based on genetic algorithm and reinforced whale algorithm publication-title: Math Biosci. Eng. doi: 10.3934/mbe.2024124 – volume: 5 start-page: 215 year: 2022 ident: ref_8 article-title: Improved Virtual Force Algorithm based on the States of Matter for Improving Coverage of Mobile Wireless Sensor Networks publication-title: Int. J. Ind. Electron. Control Optim. – volume: 2022 start-page: 1628537 year: 2022 ident: ref_10 article-title: WSN protocols and security challenges for environmental monitoring applications: A survey publication-title: J. Sensors – volume: 24 start-page: 3703 year: 2020 ident: ref_23 article-title: Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-020-0504-5 – volume: 7 start-page: 28940 year: 2019 ident: ref_6 article-title: Deployment techniques in wireless sensor networks, coverage and connectivity: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902072 – volume: 115 start-page: 102164 year: 2020 ident: ref_1 article-title: Climate-smart forestry: The missing link publication-title: For. Policy Econ. doi: 10.1016/j.forpol.2020.102164 – volume: 10 start-page: 30232 year: 2022 ident: ref_11 article-title: Coverage, deployment and localization challenges in wireless sensor networks based on artificial intelligence techniques: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3156729 – volume: 105 start-page: 104417 year: 2021 ident: ref_20 article-title: An improved marine predators algorithm for shape optimization of developable Ball surfaces publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104417 – volume: 152 start-page: 113377 year: 2020 ident: ref_16 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 6 start-page: 1 year: 2014 ident: ref_9 article-title: Grid coverage algorithm & analysis for wireless sensor networks publication-title: Netw. Protoc. Algorithms doi: 10.5296/npa.v6i4.6449 – volume: 53 start-page: 11833 year: 2023 ident: ref_28 article-title: Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems publication-title: Appl. Intell. doi: 10.1007/s10489-022-03994-3 – volume: 30 start-page: 3405 year: 2023 ident: ref_17 article-title: Marine predators algorithm: A review publication-title: Arch. Comput. Method. E. doi: 10.1007/s11831-023-09912-1 – volume: 5 start-page: 41 year: 2018 ident: ref_2 article-title: Introduction to IOT publication-title: Int. Adv. Res. J. Sci. Eng. Technol. – volume: 96 start-page: 120 year: 2016 ident: ref_27 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 1 start-page: 9593103 year: 2022 ident: ref_22 article-title: Multistrategy integrated marine predator algorithm applied to 3D surface WSN coverage optimization publication-title: Wirel. Commun. Mob. Com. – volume: 17 start-page: 71 year: 2017 ident: ref_25 article-title: Golden sine algorithm: A novel math-inspired algorithm publication-title: Adv. Electr. Comput. En. doi: 10.4316/AECE.2017.02010 – ident: ref_29 doi: 10.1109/ICACI58115.2023.10146165 – volume: 121 start-page: 127 year: 2021 ident: ref_5 article-title: Multi-objective optimization in WSN: Opportunities and challenges publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08627-5 – volume: 150 start-page: 103284 year: 2023 ident: ref_30 article-title: A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2023.103284 – volume: 237 start-page: 82 year: 2013 ident: ref_12 article-title: A survey on optimization metaheuristics publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.041 – volume: 2021 start-page: 8812542 year: 2021 ident: ref_3 article-title: A Review of Artificial Intelligence (AI) in Education from 2010 to 2020 publication-title: Complexity doi: 10.1155/2021/8812542 – ident: ref_4 doi: 10.1109/ICSENS.2010.5690033 – volume: 162 start-page: 107739 year: 2021 ident: ref_13 article-title: An ensemble approach to meta-heuristic algorithms: Comparative analysis and its applications publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107739 – volume: 23 start-page: 23721 year: 2023 ident: ref_14 article-title: Coverage Optimization Strategy for 3-D Wireless Sensor Networks Based on Improved Sparrow Search Algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3307949 – volume: 42 start-page: 156 year: 2023 ident: ref_31 article-title: Coverage optimization of WSNs based on modified specular reflection optimization algorithm publication-title: Transducer Microsyst. Technol. – volume: 14 start-page: 56 year: 2024 ident: ref_33 article-title: WSN coverage optimization based on ISSA publication-title: Intern. Things Tech. – ident: ref_21 doi: 10.3390/su14169944 – volume: 69 start-page: 46 year: 2014 ident: ref_26 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 24 start-page: 5486 year: 2023 ident: ref_18 article-title: A novel coverage optimization scheme based on enhanced marine predator algorithm for urban sensing systems publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3287582 |
SSID | ssj0023338 |
Score | 2.4481084 |
Snippet | To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 69 |
SubjectTerms | Algorithms Animals Brownian motion Computer Communication Networks coverage optimization Environmental Monitoring - methods Internet of Things marine predator algorithm Optimization Predatory Behavior Remote Sensing Technology Sensors wireless sensor network Wireless sensor networks Wireless Technology |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT3oQ30ZXaUXQS1g7qX4dx8VlEWYVdGFuTfrlDswmMjv7_61KMmGCghev6SJ0quuZrvqKsXcfRaNz8r4kKJaS8NlLjEKgzLWvo0L_ohL1Di8v1PklfFnJ1cGoL6oJG-CBB8adSBViCLFKIlcgUzK2iSB0MDanpCGQ9UWft0-mxlSrxsxrwBGqMak_uUFHLwiUd-Z9epD-P03xgS-a10keOJ6zB-z-GDHyxbDTh-xOah-xewc4go_ZimpYN2iz-HfMSrstvxiKu_kpFWiixeBf0TJcjy2XvC8T4A1fdnGdMQTly4Z6APm3bYqUg_PF5me3Xe-urp-wy7PPP07Py3FkQhnQ8-_KYAhGycuojQdvoxIBfRRoLWSsIthc52STzTYYoyAGnQIo5UGCCkraUD9lR23XpueMg7YNxoaA762gicLXkqCYc0hCZRCxYB_2rHRhxBOnsRYbh3kFcd1NXC_Y24n01wCi8TeiT3QeEwHhXvcPUBrcKA3uX9JQsPd0mo60EzcTmrHJAD-JcK7cwlTUuqAsFOx4f-BuVNsbV6P9V8ZIXRXszbSMCke3KE2butueBjDKxTCrYM8G-Zj2TJekyihcMTPJmX3UfKVdX_Wg3gIjSbqVfvE_2PCS3a1oTnH_q-iYHe22t-kVBk87_7rXk9_qgRoh priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQkEFIcImKEz9PaKmoKqQtSFBpb1b8aittk7K7_f_MJN50IxDX2Ipsj-flmfmGkPefWKNSdK5EKJYS8dlLsEJ4mWpXBwn6RUasHZ6fypMz_m0hFvnBbZ3TKrcysRfUofP4Rn5YA2tKrYWqPl__LrFrFEZXcwuNu-QeQpdhSpda3DpcNfhfA5pQDa794RrUPUNo3okO6qH6_xbIOxppmi25o36OH5GH2W6ks4HQj8md2D4hD3bQBJ-SBWayLkFy0Z_gm3YrejqkeNMjTNMEuUG_g3y4yoWXtE8WoA2dd-EygSFK5w1WAtIfqxjQE6ez5TkcwObi6hk5O_766-ikzI0TSg_6f1N6jWBKTgSlHXcmSOZBU3GlmAhV4CbVKZpokvFaSx68ip5L6bjg0kthfP2c7LVdG_cJ5co0YCFy-G_Fm8BcLRCQOfnIZOIsFOTj9iitz6ji2NxiacG7wFO346kX5N049XqA0vjXpC9Ij3ECol_3H7rVuc3MZIX0wftQRZYqLmLUpgmcKa9NilFxX5APSE2LPAqL8U0uNYAtIdqVnekKCxik4QU52BLcZuZd29urVpC34zCwHcZSmjZ2N_0cDrYuGFsFeTHcj3HNGCqVWsKIntycyaamI-3lRQ_tzcCexNj0y_-v6xW5X2Ef4v4p6IDsbVY38TUYRxv3pueAP1tfD_Y priority: 102 providerName: ProQuest |
Title | Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39796860 https://www.proquest.com/docview/3153688572 https://www.proquest.com/docview/3154405910 https://pubmed.ncbi.nlm.nih.gov/PMC11723093 https://doaj.org/article/56cdccd2e1f245ee89ad417c89fee74c |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1piRaEBBdDba_3cUAorRoqpIQKiJSbZe-jjZTa1E0l-PfM2I4Vix64-OBdv3Zndr7xznwD8PYoyqV3RRESFUtI_OwhohAe-qRIrED7IhzlDk9n4mzOvy7SxQ5samx2A3hzp2tH9aTm9erD7-s_n1HhP5HHiS77xxs04xFR7u7CPhokSfo55f1mQpwkTUFryukK0R4etQRDw0sHZqlh7_93jd4yUsMAyi2LNHkIDzooycbt3D-CHVc-hvtbBINPYEHBrStczNgPdFerms3aqG92QpGbuJSwb7hkXHW5mKyJH2A5m1Z26RGbsmlOyYHsvHaWnHM2Xl1U9XJ9efUU5pPTnydnYVdLITQICdahUcSvVKRWqoIX2orIoPHiUkapjS3XPvFOO-21UUpwa6QzXIiCp1wYkWqTPIO9sirdC2Bc6hxBI8f7xjy3UZGkxNHsjYuE55EN4P1mKDPTEY1TvYtVhg4HjXrWj3oAb_quv1p2jbs6HdN89B2IELs5UdUXWadfWSqMNcbGLvIxT51TOrcoCkZp75zkJoB3NJsZCRK-jMm77AP8JCLAysYqppwGoXkAh5sJzzbimCVoGIRSqYwDeN03oybS9kpeuuq26cMR_iL-CuB5Kx_9O9PuqVACW9RAcgYfNWwpl5cN23eEEJO2q1_-x4MP4F5M9YmbX0SHsLeub90rBE3rYgS7ciHxqCZfRrB_fDo7_z5qfkCMGmX5Cw_-GXo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFW8CBQwCwSXqOnEc-4DQUqi2tLsg0Up7SxPbaSttk3Z3K8Sf4jcyk1c3AnHrNbYsezzPeOYbgDcDnsa5yzKfoFh8wmf30QsRfh5moZVoX6Sj2uHxRI4OxddpNF2D320tDKVVtjqxUtS2NPSPfCtE0ZRKRXHw8fzCp65R9LrattCo2WLP_fqJIdviw-5nvN-3QbDz5WB75DddBXyDxnHpG0VIQ1lkY5WJTFvJDapxEcc8soEVOg9zp53OtVFKCmtiZ4SUmYiENDLSJsR1b8BNNLwDkqh4ehXghRjv1ehFYagHWwt0LzhBAfdsXtUa4G8DsGIB-9mZK-Zu5y5sNH4qG9aMdQ_WXHEf7qygFz6AKWXOzlBTsh8YC5dzNqlTytk2pYWinmLfUB-dNYWerEpOYCkbl_Y0R8eXjVOqPGTf585S5M-Gs2Mk-PLk7CEcXgtJH8F6URbuCTAR6xQ9UoHrBiK1PAsjAoDOjeMyF9x68L4lZWIaFHNqpjFLMJohqicd1T143U09r6E7_jXpE91HN4HQtqsP5fw4aYQ3iaSxxtjA8TwQkXNKp1bw2CidOxcL48E7us2EdAJuxqRNaQMeidC1kqEKqGBCauHBZnvhSaMsFskVa3vwqhtGMae3m7Rw5WU1R6Bvjc6dB49r_uj2TE-zUkkcUT3O6R2qP1KcnlRQ4hz9V3oLf_r_fb2EW6OD8X6yvzvZewa3A-qBXP2G2oT15fzSPUfHbJm9qKSBwdF1i98f6m5MJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4VLwxFFgQCC5WuvZ6HweEQkvUUhIqQaXcXHsfbaU0bpNUiL_Gr2PGdtJEIG69eler9ew8d2e-AXizxQsVfFnGBMUSEz57jF6IiENapk6ifZGeaof7A7l7KL4Ms-Ea_J7XwlBa5Vwn1oraVZbuyDspiqbUOlNJJ7RpEQc7vY_nFzF1kKKX1nk7jYZF9v2vnxi-TT_s7eBZv02S3ucf27tx22EgtmgoZ7HVhDpUZk7pUpTGSW5RpQuleOYSJ0xIgzfeBGO1lsJZ5a2QshSZkFZmxqa47g24qdKMk4yp4VWwl2Ls1yAZpanZ6kzR1eAEC7xi_-o2AX8bgyVruJqpuWT6endho_VZWbdhsnuw5sf34c4SkuEDGFIW7Qi1JvuOcXE1YYMmvZxtU4oo6iz2DXXTWVv0yepEBVawfuVOAzrBrF9QFSI7mHhHtwCsOzpGgs9Ozh7C4bWQ9BGsj6uxfwJMKFOgdypw3UQUjpdpRmDQwXoug-AugvdzUua2RTSnxhqjHCMbonq-oHoErxdTzxsYj39N-kTnsZhAyNv1h2pynLeCnGfSOmtd4nlIROa9NoUTXFltgvdK2Aje0WnmpB9wM7ZoyxzwlwhpK-_qhIonpBERbM4PPG8VxzS_YvMIXi2GUeTpHacY--qyniPQz0ZHL4LHDX8s9kzPtFJLHNErnLPyU6sj49OTGlacoy9L7-JP_7-vl3ALBS__ujfYfwa3E2qHXN9IbcL6bHLpn6OPNitf1MLA4Oi6pe8PRBZQXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Sensor+Network+Coverage+Optimization+Using+a+Modified+Marine+Predator+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Guohao&rft.au=Li%2C+Xun&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fs25010069&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |