Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm

To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 1; p. 69
Main Authors Wang, Guohao, Li, Xun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network.
AbstractList To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network.
To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network.To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator algorithm (MMPA) is proposed. Four modifications have been made based on the standard marine predator algorithm (MPA). Firstly, tent mapping is integrated into the initialization step to improve the searching ability of the early stage. Secondly, a hybrid search strategy is used to enhance the ability to search and jump out of local optimum. Thirdly, the golden sine guiding mechanism is applied to accelerate the convergence of the algorithm. Finally, a stage-adjustment strategy is proposed to make the transition of stages more smoothly. Six specific test functions chosen from the CEC2017 function and the benchmark function are used to evaluate the performance of MMPA. It shows that this modified algorithm has good optimization capability and stability compared to MPA, grey wolf optimizer, sine cosine algorithm, and sea horse optimizer. The results of coverage tests show that MMPA has a better uniformity of node distribution compared to MPA. The average coverage rates of MMPA are the highest compared to the commonly used metaheuristic-based algorithms, which are 91.8% in scenario 1, 95.98% in scenario 2, and 93.88% in scenario 3, respectively. This demonstrates the superiority of this proposed algorithm in coverage optimization of the wireless sensor network.
Audience Academic
Author Li, Xun
Wang, Guohao
AuthorAffiliation School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 202231903013@stu.hebut.edu.cn
AuthorAffiliation_xml – name: School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China; 202231903013@stu.hebut.edu.cn
Author_xml – sequence: 1
  givenname: Guohao
  surname: Wang
  fullname: Wang, Guohao
– sequence: 2
  givenname: Xun
  orcidid: 0000-0002-4772-0000
  surname: Li
  fullname: Li, Xun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39796860$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiLaBA38ArcQFDmn9vfYJRREflVqKBBXcLMee3Trs2qm9aVV-PU5TorZCPtgaP_POjP0eVnshBqiq1xgdUarQcSYcYYSEelYdYEbYVBKC9h6c96vDnJcIEUqpfFHtU9UoIQU6qH799Al6yLn-DiHHVH-F8Sam3_U8XkMyHdTnq9EP_o8ZfQz1Rfahq019Fp1vPbj6zCQfoP6WwJmxpM_6LiY_Xg4vq-et6TO8ut8n1cWnjz_mX6an559P5rPTqeVIjVMrOUFowV0jF2yhnMCWIsqaBnNHHFMtbUGBapWVUjBnG7BMiAXjTFjBlaWT6mSr66JZ6lXyg0m3Ohqv7wIxddqk0dseNBfWWesI4JYwDiCVcQw3VqoWoGEbrQ9brdV6MYCzEMZk-keij2-Cv9RdvNYYN4QiRYvCu3uFFK_WkEc9-Gyh702AuM6aYs4Y4gqjgr59gi7jOoXyVhuKCil5EZ1UR1uqM2UCH9pYCtuyHAzeFhu0vsRnklCOmVCsJLx5OMOu-X9fXoD3W8CmmHOCdodgpDd20js7Ffb4CWv9eOeE0oXv_5PxF6wJyzg
CitedBy_id crossref_primary_10_3390_s25051467
Cites_doi 10.1007/s11227-022-04869-7
10.3934/mbe.2024124
10.1007/s12205-020-0504-5
10.1109/ACCESS.2019.2902072
10.1016/j.forpol.2020.102164
10.1109/ACCESS.2022.3156729
10.1016/j.engappai.2021.104417
10.1016/j.eswa.2020.113377
10.5296/npa.v6i4.6449
10.1007/s10489-022-03994-3
10.1007/s11831-023-09912-1
10.1016/j.knosys.2015.12.022
10.4316/AECE.2017.02010
10.1109/ICACI58115.2023.10146165
10.1007/s11277-021-08627-5
10.1016/j.adhoc.2023.103284
10.1016/j.ins.2013.02.041
10.1155/2021/8812542
10.1109/ICSENS.2010.5690033
10.1016/j.cie.2021.107739
10.1109/JSEN.2023.3307949
10.3390/su14169944
10.1016/j.advengsoft.2013.12.007
10.1109/JSEN.2023.3287582
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25010069
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_56cdccd2e1f245ee89ad417c89fee74c
PMC11723093
A823514694
39796860
10_3390_s25010069
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61804044
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-c85200b5d78b4b9d61c30347715d2d49f3fe9e9f9c8864dc7ec466b4546c659c3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:25 EDT 2025
Thu Aug 21 18:28:39 EDT 2025
Thu Jul 10 18:53:36 EDT 2025
Fri Jul 25 22:44:29 EDT 2025
Tue Jun 10 20:57:20 EDT 2025
Fri May 02 01:41:29 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 02:10:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords coverage optimization
marine predator algorithm
wireless sensor network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-c85200b5d78b4b9d61c30347715d2d49f3fe9e9f9c8864dc7ec466b4546c659c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4772-0000
OpenAccessLink https://doaj.org/article/56cdccd2e1f245ee89ad417c89fee74c
PMID 39796860
PQID 3153688572
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_56cdccd2e1f245ee89ad417c89fee74c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11723093
proquest_miscellaneous_3154405910
proquest_journals_3153688572
gale_infotracacademiconefile_A823514694
pubmed_primary_39796860
crossref_primary_10_3390_s25010069
crossref_citationtrail_10_3390_s25010069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Faramarzi (ref_16) 2020; 152
Sun (ref_32) 2024; 21
Wang (ref_22) 2022; 1
Hu (ref_20) 2021; 105
Tanyildizi (ref_25) 2017; 17
Mirjalili (ref_26) 2014; 69
Gao (ref_33) 2024; 14
Engmann (ref_10) 2022; 2022
Zhang (ref_19) 2023; 10
Zhai (ref_3) 2021; 2021
Farsi (ref_6) 2019; 7
Lepagnot (ref_12) 2013; 237
Gokhale (ref_2) 2018; 5
Wang (ref_30) 2023; 150
Verkerk (ref_1) 2020; 115
Yao (ref_14) 2023; 23
Kiani (ref_8) 2022; 5
Osamy (ref_11) 2022; 10
Awadallah (ref_17) 2023; 30
Ammari (ref_7) 2023; 19
ref_21
Li (ref_23) 2020; 24
Mirjalili (ref_27) 2016; 96
Jin (ref_18) 2023; 24
ref_29
Chen (ref_24) 2023; 79
Ling (ref_15) 2020; 1
Singh (ref_13) 2021; 162
Singh (ref_5) 2021; 121
Hawbani (ref_9) 2014; 6
Ma (ref_31) 2023; 42
ref_4
Zhao (ref_28) 2023; 53
References_xml – volume: 10
  start-page: 1219
  year: 2023
  ident: ref_19
  article-title: An adaptive marine predator algorithm based optimization method for hood lightweight design
  publication-title: J. Comput.
– volume: 79
  start-page: 5576
  year: 2023
  ident: ref_24
  article-title: Harris hawks optimization based on global cross-variation and tent mapping
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-022-04869-7
– volume: 19
  start-page: 35
  year: 2023
  ident: ref_7
  article-title: A computational geometry-based approach for planar k-coverage in wireless sensor networks
  publication-title: ACM T. Sensor Network
– volume: 1
  start-page: 8820907
  year: 2020
  ident: ref_15
  article-title: Coverage optimization of sensors under multiple constraints using the improved PSO algorithm
  publication-title: Math. Probl. Eng.
– volume: 21
  start-page: 2787
  year: 2024
  ident: ref_32
  article-title: An optimization method for wireless sensor networks coverage based on genetic algorithm and reinforced whale algorithm
  publication-title: Math Biosci. Eng.
  doi: 10.3934/mbe.2024124
– volume: 5
  start-page: 215
  year: 2022
  ident: ref_8
  article-title: Improved Virtual Force Algorithm based on the States of Matter for Improving Coverage of Mobile Wireless Sensor Networks
  publication-title: Int. J. Ind. Electron. Control Optim.
– volume: 2022
  start-page: 1628537
  year: 2022
  ident: ref_10
  article-title: WSN protocols and security challenges for environmental monitoring applications: A survey
  publication-title: J. Sensors
– volume: 24
  start-page: 3703
  year: 2020
  ident: ref_23
  article-title: Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-020-0504-5
– volume: 7
  start-page: 28940
  year: 2019
  ident: ref_6
  article-title: Deployment techniques in wireless sensor networks, coverage and connectivity: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902072
– volume: 115
  start-page: 102164
  year: 2020
  ident: ref_1
  article-title: Climate-smart forestry: The missing link
  publication-title: For. Policy Econ.
  doi: 10.1016/j.forpol.2020.102164
– volume: 10
  start-page: 30232
  year: 2022
  ident: ref_11
  article-title: Coverage, deployment and localization challenges in wireless sensor networks based on artificial intelligence techniques: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3156729
– volume: 105
  start-page: 104417
  year: 2021
  ident: ref_20
  article-title: An improved marine predators algorithm for shape optimization of developable Ball surfaces
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104417
– volume: 152
  start-page: 113377
  year: 2020
  ident: ref_16
  article-title: Marine Predators Algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 6
  start-page: 1
  year: 2014
  ident: ref_9
  article-title: Grid coverage algorithm & analysis for wireless sensor networks
  publication-title: Netw. Protoc. Algorithms
  doi: 10.5296/npa.v6i4.6449
– volume: 53
  start-page: 11833
  year: 2023
  ident: ref_28
  article-title: Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03994-3
– volume: 30
  start-page: 3405
  year: 2023
  ident: ref_17
  article-title: Marine predators algorithm: A review
  publication-title: Arch. Comput. Method. E.
  doi: 10.1007/s11831-023-09912-1
– volume: 5
  start-page: 41
  year: 2018
  ident: ref_2
  article-title: Introduction to IOT
  publication-title: Int. Adv. Res. J. Sci. Eng. Technol.
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_27
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 1
  start-page: 9593103
  year: 2022
  ident: ref_22
  article-title: Multistrategy integrated marine predator algorithm applied to 3D surface WSN coverage optimization
  publication-title: Wirel. Commun. Mob. Com.
– volume: 17
  start-page: 71
  year: 2017
  ident: ref_25
  article-title: Golden sine algorithm: A novel math-inspired algorithm
  publication-title: Adv. Electr. Comput. En.
  doi: 10.4316/AECE.2017.02010
– ident: ref_29
  doi: 10.1109/ICACI58115.2023.10146165
– volume: 121
  start-page: 127
  year: 2021
  ident: ref_5
  article-title: Multi-objective optimization in WSN: Opportunities and challenges
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08627-5
– volume: 150
  start-page: 103284
  year: 2023
  ident: ref_30
  article-title: A novel self-adaptive multi-strategy artificial bee colony algorithm for coverage optimization in wireless sensor networks
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2023.103284
– volume: 237
  start-page: 82
  year: 2013
  ident: ref_12
  article-title: A survey on optimization metaheuristics
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.041
– volume: 2021
  start-page: 8812542
  year: 2021
  ident: ref_3
  article-title: A Review of Artificial Intelligence (AI) in Education from 2010 to 2020
  publication-title: Complexity
  doi: 10.1155/2021/8812542
– ident: ref_4
  doi: 10.1109/ICSENS.2010.5690033
– volume: 162
  start-page: 107739
  year: 2021
  ident: ref_13
  article-title: An ensemble approach to meta-heuristic algorithms: Comparative analysis and its applications
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107739
– volume: 23
  start-page: 23721
  year: 2023
  ident: ref_14
  article-title: Coverage Optimization Strategy for 3-D Wireless Sensor Networks Based on Improved Sparrow Search Algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3307949
– volume: 42
  start-page: 156
  year: 2023
  ident: ref_31
  article-title: Coverage optimization of WSNs based on modified specular reflection optimization algorithm
  publication-title: Transducer Microsyst. Technol.
– volume: 14
  start-page: 56
  year: 2024
  ident: ref_33
  article-title: WSN coverage optimization based on ISSA
  publication-title: Intern. Things Tech.
– ident: ref_21
  doi: 10.3390/su14169944
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_26
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 24
  start-page: 5486
  year: 2023
  ident: ref_18
  article-title: A novel coverage optimization scheme based on enhanced marine predator algorithm for urban sensing systems
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3287582
SSID ssj0023338
Score 2.4481084
Snippet To solve the coverage problem caused by the random deployment of wireless sensor network nodes in the forest fire-monitoring system, a modified marine predator...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 69
SubjectTerms Algorithms
Animals
Brownian motion
Computer Communication Networks
coverage optimization
Environmental Monitoring - methods
Internet of Things
marine predator algorithm
Optimization
Predatory Behavior
Remote Sensing Technology
Sensors
wireless sensor network
Wireless sensor networks
Wireless Technology
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT3oQ30ZXaUXQS1g7qX4dx8VlEWYVdGFuTfrlDswmMjv7_61KMmGCghev6SJ0quuZrvqKsXcfRaNz8r4kKJaS8NlLjEKgzLWvo0L_ohL1Di8v1PklfFnJ1cGoL6oJG-CBB8adSBViCLFKIlcgUzK2iSB0MDanpCGQ9UWft0-mxlSrxsxrwBGqMak_uUFHLwiUd-Z9epD-P03xgS-a10keOJ6zB-z-GDHyxbDTh-xOah-xewc4go_ZimpYN2iz-HfMSrstvxiKu_kpFWiixeBf0TJcjy2XvC8T4A1fdnGdMQTly4Z6APm3bYqUg_PF5me3Xe-urp-wy7PPP07Py3FkQhnQ8-_KYAhGycuojQdvoxIBfRRoLWSsIthc52STzTYYoyAGnQIo5UGCCkraUD9lR23XpueMg7YNxoaA762gicLXkqCYc0hCZRCxYB_2rHRhxBOnsRYbh3kFcd1NXC_Y24n01wCi8TeiT3QeEwHhXvcPUBrcKA3uX9JQsPd0mo60EzcTmrHJAD-JcK7cwlTUuqAsFOx4f-BuVNsbV6P9V8ZIXRXszbSMCke3KE2butueBjDKxTCrYM8G-Zj2TJekyihcMTPJmX3UfKVdX_Wg3gIjSbqVfvE_2PCS3a1oTnH_q-iYHe22t-kVBk87_7rXk9_qgRoh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQkEFIcImKEz9PaKmoKqQtSFBpb1b8aittk7K7_f_MJN50IxDX2Ipsj-flmfmGkPefWKNSdK5EKJYS8dlLsEJ4mWpXBwn6RUasHZ6fypMz_m0hFvnBbZ3TKrcysRfUofP4Rn5YA2tKrYWqPl__LrFrFEZXcwuNu-QeQpdhSpda3DpcNfhfA5pQDa794RrUPUNo3okO6qH6_xbIOxppmi25o36OH5GH2W6ks4HQj8md2D4hD3bQBJ-SBWayLkFy0Z_gm3YrejqkeNMjTNMEuUG_g3y4yoWXtE8WoA2dd-EygSFK5w1WAtIfqxjQE6ez5TkcwObi6hk5O_766-ikzI0TSg_6f1N6jWBKTgSlHXcmSOZBU3GlmAhV4CbVKZpokvFaSx68ip5L6bjg0kthfP2c7LVdG_cJ5co0YCFy-G_Fm8BcLRCQOfnIZOIsFOTj9iitz6ji2NxiacG7wFO346kX5N049XqA0vjXpC9Ij3ECol_3H7rVuc3MZIX0wftQRZYqLmLUpgmcKa9NilFxX5APSE2LPAqL8U0uNYAtIdqVnekKCxik4QU52BLcZuZd29urVpC34zCwHcZSmjZ2N_0cDrYuGFsFeTHcj3HNGCqVWsKIntycyaamI-3lRQ_tzcCexNj0y_-v6xW5X2Ef4v4p6IDsbVY38TUYRxv3pueAP1tfD_Y
  priority: 102
  providerName: ProQuest
Title Wireless Sensor Network Coverage Optimization Using a Modified Marine Predator Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/39796860
https://www.proquest.com/docview/3153688572
https://www.proquest.com/docview/3154405910
https://pubmed.ncbi.nlm.nih.gov/PMC11723093
https://doaj.org/article/56cdccd2e1f245ee89ad417c89fee74c
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1piRaEBBdDba_3cUAorRoqpIQKiJSbZe-jjZTa1E0l-PfM2I4Vix64-OBdv3Zndr7xznwD8PYoyqV3RRESFUtI_OwhohAe-qRIrED7IhzlDk9n4mzOvy7SxQ5samx2A3hzp2tH9aTm9erD7-s_n1HhP5HHiS77xxs04xFR7u7CPhokSfo55f1mQpwkTUFryukK0R4etQRDw0sHZqlh7_93jd4yUsMAyi2LNHkIDzooycbt3D-CHVc-hvtbBINPYEHBrStczNgPdFerms3aqG92QpGbuJSwb7hkXHW5mKyJH2A5m1Z26RGbsmlOyYHsvHaWnHM2Xl1U9XJ9efUU5pPTnydnYVdLITQICdahUcSvVKRWqoIX2orIoPHiUkapjS3XPvFOO-21UUpwa6QzXIiCp1wYkWqTPIO9sirdC2Bc6hxBI8f7xjy3UZGkxNHsjYuE55EN4P1mKDPTEY1TvYtVhg4HjXrWj3oAb_quv1p2jbs6HdN89B2IELs5UdUXWadfWSqMNcbGLvIxT51TOrcoCkZp75zkJoB3NJsZCRK-jMm77AP8JCLAysYqppwGoXkAh5sJzzbimCVoGIRSqYwDeN03oybS9kpeuuq26cMR_iL-CuB5Kx_9O9PuqVACW9RAcgYfNWwpl5cN23eEEJO2q1_-x4MP4F5M9YmbX0SHsLeub90rBE3rYgS7ciHxqCZfRrB_fDo7_z5qfkCMGmX5Cw_-GXo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFW8CBQwCwSXqOnEc-4DQUqi2tLsg0Up7SxPbaSttk3Z3K8Sf4jcyk1c3AnHrNbYsezzPeOYbgDcDnsa5yzKfoFh8wmf30QsRfh5moZVoX6Sj2uHxRI4OxddpNF2D320tDKVVtjqxUtS2NPSPfCtE0ZRKRXHw8fzCp65R9LrattCo2WLP_fqJIdviw-5nvN-3QbDz5WB75DddBXyDxnHpG0VIQ1lkY5WJTFvJDapxEcc8soEVOg9zp53OtVFKCmtiZ4SUmYiENDLSJsR1b8BNNLwDkqh4ehXghRjv1ehFYagHWwt0LzhBAfdsXtUa4G8DsGIB-9mZK-Zu5y5sNH4qG9aMdQ_WXHEf7qygFz6AKWXOzlBTsh8YC5dzNqlTytk2pYWinmLfUB-dNYWerEpOYCkbl_Y0R8eXjVOqPGTf585S5M-Gs2Mk-PLk7CEcXgtJH8F6URbuCTAR6xQ9UoHrBiK1PAsjAoDOjeMyF9x68L4lZWIaFHNqpjFLMJohqicd1T143U09r6E7_jXpE91HN4HQtqsP5fw4aYQ3iaSxxtjA8TwQkXNKp1bw2CidOxcL48E7us2EdAJuxqRNaQMeidC1kqEKqGBCauHBZnvhSaMsFskVa3vwqhtGMae3m7Rw5WU1R6Bvjc6dB49r_uj2TE-zUkkcUT3O6R2qP1KcnlRQ4hz9V3oLf_r_fb2EW6OD8X6yvzvZewa3A-qBXP2G2oT15fzSPUfHbJm9qKSBwdF1i98f6m5MJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4VLwxFFgQCC5WuvZ6HweEQkvUUhIqQaXcXHsfbaU0bpNUiL_Gr2PGdtJEIG69eler9ew8d2e-AXizxQsVfFnGBMUSEz57jF6IiENapk6ifZGeaof7A7l7KL4Ms-Ea_J7XwlBa5Vwn1oraVZbuyDspiqbUOlNJJ7RpEQc7vY_nFzF1kKKX1nk7jYZF9v2vnxi-TT_s7eBZv02S3ucf27tx22EgtmgoZ7HVhDpUZk7pUpTGSW5RpQuleOYSJ0xIgzfeBGO1lsJZ5a2QshSZkFZmxqa47g24qdKMk4yp4VWwl2Ls1yAZpanZ6kzR1eAEC7xi_-o2AX8bgyVruJqpuWT6endho_VZWbdhsnuw5sf34c4SkuEDGFIW7Qi1JvuOcXE1YYMmvZxtU4oo6iz2DXXTWVv0yepEBVawfuVOAzrBrF9QFSI7mHhHtwCsOzpGgs9Ozh7C4bWQ9BGsj6uxfwJMKFOgdypw3UQUjpdpRmDQwXoug-AugvdzUua2RTSnxhqjHCMbonq-oHoErxdTzxsYj39N-kTnsZhAyNv1h2pynLeCnGfSOmtd4nlIROa9NoUTXFltgvdK2Aje0WnmpB9wM7ZoyxzwlwhpK-_qhIonpBERbM4PPG8VxzS_YvMIXi2GUeTpHacY--qyniPQz0ZHL4LHDX8s9kzPtFJLHNErnLPyU6sj49OTGlacoy9L7-JP_7-vl3ALBS__ujfYfwa3E2qHXN9IbcL6bHLpn6OPNitf1MLA4Oi6pe8PRBZQXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wireless+Sensor+Network+Coverage+Optimization+Using+a+Modified+Marine+Predator+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Guohao&rft.au=Li%2C+Xun&rft.date=2025-01-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fs25010069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon