Temperature sensing using junctions between mobile ions and mobile electrons
Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electro...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 4; pp. 1 - 6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
25.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots. |
---|---|
AbstractList | Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots. Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots. We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated charges make the temperature sensors self-powered, which simplifies circuit design and enables portable sensing. The sensors are stretchable, but deformation does not affect temperature sensing. The sensors have high sensitivity and fast response. They can be made small and transparent. Such temperature sensors open new possibilities to create human–machine interfaces and soft robots in healthcare and engineering. Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots. |
Author | Suo, Zhigang Zhang, Shuwen Bai, Yang Jia, Kun Kim, Hyeong Jun Wang, Yecheng Hayward, Ryan C. |
Author_xml | – sequence: 1 givenname: Yecheng surname: Wang fullname: Wang, Yecheng – sequence: 2 givenname: Kun surname: Jia fullname: Jia, Kun – sequence: 3 givenname: Shuwen surname: Zhang fullname: Zhang, Shuwen – sequence: 4 givenname: Hyeong Jun surname: Kim fullname: Kim, Hyeong Jun – sequence: 5 givenname: Yang surname: Bai fullname: Bai, Yang – sequence: 6 givenname: Ryan C. surname: Hayward fullname: Hayward, Ryan C. – sequence: 7 givenname: Zhigang surname: Suo fullname: Suo, Zhigang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35064088$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaDZpzz21GHrpxclI1uelUEI_Agu5pGehtcepFlvaSnZK__vK2WzaBnIZodHvPZ5mTslRiAEJeUPhnIJqLnbB5XNGqTKyVPOCrCgYWktu4IisAJiqNWf8hJzmvAUAIzS8JCeNAMlB6xVZ3-C4w-SmOWGVMWQfbqv5vm7n0E4-hlxtcPqFGKoxbvyA1X3Phe5wxwHbKZXmK3LcuyHj64fzjHz_8vnm8lu9vv56dflpXbcCzFS3ygBnoHshdS-pY5obKTracblhPW24RikY65Si0LIeBWg0jXYCGOOMquaMfNz77ubNiF2LYUpusLvkR5d-2-i8_f8l-B_2Nt5ZrQzXIIrBhweDFH_OmCc7-tziMLiAcc6WScZKqjKhgr5_gm7jnEL53kJxqYVRC_Xu30SPUQ6DLoDYA22KOSfsbesnt4y3BPSDpWCXhdplofbvQovu4onuYP284u1esc1TTI84UwWRTDd_AE7GrA4 |
CitedBy_id | crossref_primary_10_1002_adfm_202407639 crossref_primary_10_3389_fphy_2022_890845 crossref_primary_10_1021_acs_macromol_4c02212 crossref_primary_10_1063_5_0190801 crossref_primary_10_3390_polym15163379 crossref_primary_10_3390_polym15183692 crossref_primary_10_1021_acsomega_3c07945 crossref_primary_10_1002_smll_202205136 crossref_primary_10_1002_adsr_202200069 crossref_primary_10_1016_j_polymer_2024_127104 crossref_primary_10_1109_JSEN_2023_3255180 crossref_primary_10_1002_aisy_202300233 crossref_primary_10_1063_5_0133912 crossref_primary_10_1002_admi_202400873 crossref_primary_10_1002_adfm_202412377 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1002_adma_202306795 crossref_primary_10_1038_s41578_024_00755_1 crossref_primary_10_1063_5_0142020 crossref_primary_10_1021_acsami_3c18512 crossref_primary_10_1038_s41467_023_40583_5 |
Cites_doi | 10.1063/1.1305516 10.1021/acsami.9b01989 10.1021/acsami.1c05291 10.1021/j100839a044 10.1021/acsami.8b03524 10.1126/science.1240228 10.1021/acsami.7b07361 10.1039/D0SM01789B 10.1126/science.aay8467 10.1002/adma.202004832 10.1039/D1MH00418B 10.1126/sciadv.aba5575 10.1002/adhm.201601371 10.1126/science.1206157 10.1021/cr60130a002 10.1063/1.3243692 10.1021/acsami.0c10229 10.1103/PhysRevLett.113.268501 10.1006/jcis.2001.7864 10.1021/am501130t 10.1039/C5EE01192B 10.1002/adma.201504441 10.1093/qjmed/95.4.251 10.1002/aelm.201500407 10.1038/nmat3755 10.1073/pnas.1516873112 10.1073/pnas.1515650112 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jan 25, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jan 25, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2117962119 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6 |
ExternalDocumentID | PMC8794805 35064088 10_1073_pnas_2117962119 27117628 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: DMR-2105825 – fundername: National Science Foundation (NSF) grantid: DMR-1609972 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11872292 – fundername: National Science Foundation (NSF) grantid: DMR2011754 – fundername: National Natural Science Foundation of China (NSFC) grantid: 12002259 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-c7904208f568f61a284965d1d46b2f1348e6522d7710c2fe508e938a502242173 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:44 EDT 2025 Thu Jul 10 22:16:33 EDT 2025 Mon Jun 30 10:05:20 EDT 2025 Wed Feb 19 02:26:25 EST 2025 Tue Jul 01 01:03:09 EDT 2025 Thu Apr 24 23:01:12 EDT 2025 Thu May 29 08:49:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | self-powered thermometer hydrogel nonfaradaic interface stretchable electronics ionotronics |
Language | English |
License | Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-c7904208f568f61a284965d1d46b2f1348e6522d7710c2fe508e938a502242173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: Y.W. and Z.S. designed research; Y.W. and K.J. performed research; Y.W., K.J., S.Z., H.J.K., Y.B., R.C.H., and Z.S. analyzed data; and Y.W. and Z.S. wrote the paper. Contributed by Zhigang Suo; received September 30, 2021; accepted December 4, 2021; reviewed by Michael Dickey and Michael McAlpine |
ORCID | 0000-0002-4068-4844 0000-0001-6483-2234 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8794805 |
PMID | 35064088 |
PQID | 2624685978 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8794805 proquest_miscellaneous_2622284088 proquest_journals_2624685978 pubmed_primary_35064088 crossref_citationtrail_10_1073_pnas_2117962119 crossref_primary_10_1073_pnas_2117962119 jstor_primary_27117628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-25 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 Bard A. J. (e_1_3_4_9_2) 1980 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_2_2 doi: 10.1063/1.1305516 – ident: e_1_3_4_19_2 doi: 10.1021/acsami.9b01989 – ident: e_1_3_4_20_2 doi: 10.1021/acsami.1c05291 – ident: e_1_3_4_25_2 doi: 10.1021/j100839a044 – ident: e_1_3_4_21_2 doi: 10.1021/acsami.8b03524 – ident: e_1_3_4_11_2 doi: 10.1126/science.1240228 – ident: e_1_3_4_24_2 doi: 10.1021/acsami.7b07361 – ident: e_1_3_4_12_2 doi: 10.1039/D0SM01789B – ident: e_1_3_4_17_2 doi: 10.1126/science.aay8467 – ident: e_1_3_4_16_2 doi: 10.1002/adma.202004832 – ident: e_1_3_4_13_2 doi: 10.1039/D1MH00418B – ident: e_1_3_4_14_2 doi: 10.1126/sciadv.aba5575 – ident: e_1_3_4_3_2 doi: 10.1002/adhm.201601371 – ident: e_1_3_4_5_2 doi: 10.1126/science.1206157 – ident: e_1_3_4_10_2 doi: 10.1021/cr60130a002 – ident: e_1_3_4_8_2 doi: 10.1063/1.3243692 – ident: e_1_3_4_18_2 doi: 10.1021/acsami.0c10229 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 1980 ident: e_1_3_4_9_2 – ident: e_1_3_4_22_2 doi: 10.1103/PhysRevLett.113.268501 – ident: e_1_3_4_26_2 doi: 10.1006/jcis.2001.7864 – ident: e_1_3_4_15_2 doi: 10.1021/am501130t – ident: e_1_3_4_23_2 doi: 10.1039/C5EE01192B – ident: e_1_3_4_7_2 doi: 10.1002/adma.201504441 – ident: e_1_3_4_1_2 doi: 10.1093/qjmed/95.4.251 – ident: e_1_3_4_27_2 doi: 10.1002/aelm.201500407 – ident: e_1_3_4_4_2 doi: 10.1038/nmat3755 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.1516873112 – ident: e_1_3_4_6_2 doi: 10.1073/pnas.1515650112 |
SSID | ssj0009580 |
Score | 2.5002348 |
Snippet | Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of... We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Dielectrics Electrodes Electrolytes Electrons Interfaces Ions Open circuit voltage Physical Sciences Sensors Temperature sensors |
Title | Temperature sensing using junctions between mobile ions and mobile electrons |
URI | https://www.jstor.org/stable/27117628 https://www.ncbi.nlm.nih.gov/pubmed/35064088 https://www.proquest.com/docview/2624685978 https://www.proquest.com/docview/2622284088 https://pubmed.ncbi.nlm.nih.gov/PMC8794805 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLggBgw6BgoSh6HKpXUc2zlOaFM1qrJDK8opShxH2wTpRBoh-Ot5_pl0FGlwiRrbSSq_L8_PzufvIfS2ULRSZUGxYDTHNFHgB3M5wXEal0yRgvDKqH3O2XRJz1fJqtuuaHaXbIqR_LVzX8n_WBXKwK56l-w_WDbcFArgN9gXjmBhON7NxgqCXiuKPGw0Ex2m_a05XsNwZTlunoj1bV2AAxiaMr1Y7s59GpymH6VehFGt8RyCuV80POm2oDi_0Azx8GLeJTT-7JagvygAhBsYNUfH0nI_tgGO3WL1ZftD9egABqPTn0rnQTp37d3KBNEUD2x3MTtnCrEIZtSmAx2pHWXeAzuvedWtL_zh2cEV6XTEdd6MiJaxY8RftaWhPf-UnS1ns2xxulrcRw8ITB4M3XPal2IWVqPC_RMv-MTj97duvxWrWLrqronIbT5tL0BZPEaP3MwiOrEw2Uf3VP0E7XsbRcdOYPzdUzTr4SZyuIkMbqKAm8jhJrI4iUwZ4MafB9w8Q8uz08WHKXZZNbCE4HCDJU_HmlNRJUxUbJJDfJKypJyUlBWkmsRUKAZBeckh9pSkUhDBqzQWeaKjPZjAxgdor17X6gWKBPSRFEox_TG7SHlaVrmUJJWVGBdS8gEa-f7LpJOc15lPvmaG-sDjTHd41nX4AB2HC26s2srfmx4Yg4R2hEMdI2KAjryFMveuwnWMUCZg8gzVb0I1eFL9eSyv1bo1bQh0Bgy7A_TcGjTcPNa6jqaGb5k6NNAq7ds19dWlUWsXMOKJcXJ4h-e-RA-79-gI7W2-t-oVxLyb4rWB8G9Gvq30 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+sensing+using+junctions+between+mobile+ions+and+mobile+electrons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yecheng&rft.au=Jia%2C+Kun&rft.au=Zhang%2C+Shuwen&rft.au=Kim%2C+Hyeong+Jun&rft.date=2022-01-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=4&rft_id=info:doi/10.1073%2Fpnas.2117962119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |