Temperature sensing using junctions between mobile ions and mobile electrons

Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electro...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 4; pp. 1 - 6
Main Authors Wang, Yecheng, Jia, Kun, Zhang, Shuwen, Kim, Hyeong Jun, Bai, Yang, Hayward, Ryan C., Suo, Zhigang
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.
AbstractList Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.
Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.
We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated charges make the temperature sensors self-powered, which simplifies circuit design and enables portable sensing. The sensors are stretchable, but deformation does not affect temperature sensing. The sensors have high sensitivity and fast response. They can be made small and transparent. Such temperature sensors open new possibilities to create human–machine interfaces and soft robots in healthcare and engineering. Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of stretchable and self-powered temperature sensing. The basic sensing element consists of three layers: an electrolyte, a dielectric, and an electrode. The electrolyte/dielectric interface accumulates ions, and the dielectric/electrode interface accumulates electrons (in either excess or deficiency). The ions and electrons at the two interfaces are usually not charge-neutral, and this charge imbalance sets up an ionic cloud in the electrolyte. The design functions as a charged temperature-sensitive capacitor. When temperature changes, the ionic cloud changes thickness, and the electrode changes open-circuit voltage. We demonstrate high sensitivity (∼1 mV/K) and fast response (∼10 ms). Such temperature sensors can be made small, stable, and transparent. Depending on the arrangement of the electrolyte, dielectric, and electrode, we develop four designs for the temperature sensor. In addition, the temperature sensor has good linearity in the range of tens of Kelvin. We further show that the temperature sensors can be integrated into stretchable electronics and soft robots.
Author Suo, Zhigang
Zhang, Shuwen
Bai, Yang
Jia, Kun
Kim, Hyeong Jun
Wang, Yecheng
Hayward, Ryan C.
Author_xml – sequence: 1
  givenname: Yecheng
  surname: Wang
  fullname: Wang, Yecheng
– sequence: 2
  givenname: Kun
  surname: Jia
  fullname: Jia, Kun
– sequence: 3
  givenname: Shuwen
  surname: Zhang
  fullname: Zhang, Shuwen
– sequence: 4
  givenname: Hyeong Jun
  surname: Kim
  fullname: Kim, Hyeong Jun
– sequence: 5
  givenname: Yang
  surname: Bai
  fullname: Bai, Yang
– sequence: 6
  givenname: Ryan C.
  surname: Hayward
  fullname: Hayward, Ryan C.
– sequence: 7
  givenname: Zhigang
  surname: Suo
  fullname: Suo, Zhigang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35064088$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJaDZpzz21GHrpxclI1uelUEI_Agu5pGehtcepFlvaSnZK__vK2WzaBnIZodHvPZ5mTslRiAEJeUPhnIJqLnbB5XNGqTKyVPOCrCgYWktu4IisAJiqNWf8hJzmvAUAIzS8JCeNAMlB6xVZ3-C4w-SmOWGVMWQfbqv5vm7n0E4-hlxtcPqFGKoxbvyA1X3Phe5wxwHbKZXmK3LcuyHj64fzjHz_8vnm8lu9vv56dflpXbcCzFS3ygBnoHshdS-pY5obKTracblhPW24RikY65Si0LIeBWg0jXYCGOOMquaMfNz77ubNiF2LYUpusLvkR5d-2-i8_f8l-B_2Nt5ZrQzXIIrBhweDFH_OmCc7-tziMLiAcc6WScZKqjKhgr5_gm7jnEL53kJxqYVRC_Xu30SPUQ6DLoDYA22KOSfsbesnt4y3BPSDpWCXhdplofbvQovu4onuYP284u1esc1TTI84UwWRTDd_AE7GrA4
CitedBy_id crossref_primary_10_1002_adfm_202407639
crossref_primary_10_3389_fphy_2022_890845
crossref_primary_10_1021_acs_macromol_4c02212
crossref_primary_10_1063_5_0190801
crossref_primary_10_3390_polym15163379
crossref_primary_10_3390_polym15183692
crossref_primary_10_1021_acsomega_3c07945
crossref_primary_10_1002_smll_202205136
crossref_primary_10_1002_adsr_202200069
crossref_primary_10_1016_j_polymer_2024_127104
crossref_primary_10_1109_JSEN_2023_3255180
crossref_primary_10_1002_aisy_202300233
crossref_primary_10_1063_5_0133912
crossref_primary_10_1002_admi_202400873
crossref_primary_10_1002_adfm_202412377
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_1002_adma_202306795
crossref_primary_10_1038_s41578_024_00755_1
crossref_primary_10_1063_5_0142020
crossref_primary_10_1021_acsami_3c18512
crossref_primary_10_1038_s41467_023_40583_5
Cites_doi 10.1063/1.1305516
10.1021/acsami.9b01989
10.1021/acsami.1c05291
10.1021/j100839a044
10.1021/acsami.8b03524
10.1126/science.1240228
10.1021/acsami.7b07361
10.1039/D0SM01789B
10.1126/science.aay8467
10.1002/adma.202004832
10.1039/D1MH00418B
10.1126/sciadv.aba5575
10.1002/adhm.201601371
10.1126/science.1206157
10.1021/cr60130a002
10.1063/1.3243692
10.1021/acsami.0c10229
10.1103/PhysRevLett.113.268501
10.1006/jcis.2001.7864
10.1021/am501130t
10.1039/C5EE01192B
10.1002/adma.201504441
10.1093/qjmed/95.4.251
10.1002/aelm.201500407
10.1038/nmat3755
10.1073/pnas.1516873112
10.1073/pnas.1515650112
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jan 25, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jan 25, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2117962119
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6
ExternalDocumentID PMC8794805
35064088
10_1073_pnas_2117962119
27117628
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: DMR-2105825
– fundername: National Science Foundation (NSF)
  grantid: DMR-1609972
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11872292
– fundername: National Science Foundation (NSF)
  grantid: DMR2011754
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 12002259
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-c7904208f568f61a284965d1d46b2f1348e6522d7710c2fe508e938a502242173
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:29:44 EDT 2025
Thu Jul 10 22:16:33 EDT 2025
Mon Jun 30 10:05:20 EDT 2025
Wed Feb 19 02:26:25 EST 2025
Tue Jul 01 01:03:09 EDT 2025
Thu Apr 24 23:01:12 EDT 2025
Thu May 29 08:49:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords self-powered thermometer
hydrogel
nonfaradaic interface
stretchable electronics
ionotronics
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-c7904208f568f61a284965d1d46b2f1348e6522d7710c2fe508e938a502242173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: Y.W. and Z.S. designed research; Y.W. and K.J. performed research; Y.W., K.J., S.Z., H.J.K., Y.B., R.C.H., and Z.S. analyzed data; and Y.W. and Z.S. wrote the paper.
Contributed by Zhigang Suo; received September 30, 2021; accepted December 4, 2021; reviewed by Michael Dickey and Michael McAlpine
ORCID 0000-0002-4068-4844
0000-0001-6483-2234
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8794805
PMID 35064088
PQID 2624685978
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8794805
proquest_miscellaneous_2622284088
proquest_journals_2624685978
pubmed_primary_35064088
crossref_citationtrail_10_1073_pnas_2117962119
crossref_primary_10_1073_pnas_2117962119
jstor_primary_27117628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
Bard A. J. (e_1_3_4_9_2) 1980
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_10_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_2_2
  doi: 10.1063/1.1305516
– ident: e_1_3_4_19_2
  doi: 10.1021/acsami.9b01989
– ident: e_1_3_4_20_2
  doi: 10.1021/acsami.1c05291
– ident: e_1_3_4_25_2
  doi: 10.1021/j100839a044
– ident: e_1_3_4_21_2
  doi: 10.1021/acsami.8b03524
– ident: e_1_3_4_11_2
  doi: 10.1126/science.1240228
– ident: e_1_3_4_24_2
  doi: 10.1021/acsami.7b07361
– ident: e_1_3_4_12_2
  doi: 10.1039/D0SM01789B
– ident: e_1_3_4_17_2
  doi: 10.1126/science.aay8467
– ident: e_1_3_4_16_2
  doi: 10.1002/adma.202004832
– ident: e_1_3_4_13_2
  doi: 10.1039/D1MH00418B
– ident: e_1_3_4_14_2
  doi: 10.1126/sciadv.aba5575
– ident: e_1_3_4_3_2
  doi: 10.1002/adhm.201601371
– ident: e_1_3_4_5_2
  doi: 10.1126/science.1206157
– ident: e_1_3_4_10_2
  doi: 10.1021/cr60130a002
– ident: e_1_3_4_8_2
  doi: 10.1063/1.3243692
– ident: e_1_3_4_18_2
  doi: 10.1021/acsami.0c10229
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 1980
  ident: e_1_3_4_9_2
– ident: e_1_3_4_22_2
  doi: 10.1103/PhysRevLett.113.268501
– ident: e_1_3_4_26_2
  doi: 10.1006/jcis.2001.7864
– ident: e_1_3_4_15_2
  doi: 10.1021/am501130t
– ident: e_1_3_4_23_2
  doi: 10.1039/C5EE01192B
– ident: e_1_3_4_7_2
  doi: 10.1002/adma.201504441
– ident: e_1_3_4_1_2
  doi: 10.1093/qjmed/95.4.251
– ident: e_1_3_4_27_2
  doi: 10.1002/aelm.201500407
– ident: e_1_3_4_4_2
  doi: 10.1038/nmat3755
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.1516873112
– ident: e_1_3_4_6_2
  doi: 10.1073/pnas.1515650112
SSID ssj0009580
Score 2.5002348
Snippet Sensing technology is under intense development to enable the Internet of everything and everyone in new and useful ways. Here we demonstrate a method of...
We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Dielectrics
Electrodes
Electrolytes
Electrons
Interfaces
Ions
Open circuit voltage
Physical Sciences
Sensors
Temperature sensors
Title Temperature sensing using junctions between mobile ions and mobile electrons
URI https://www.jstor.org/stable/27117628
https://www.ncbi.nlm.nih.gov/pubmed/35064088
https://www.proquest.com/docview/2624685978
https://www.proquest.com/docview/2622284088
https://pubmed.ncbi.nlm.nih.gov/PMC8794805
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgXLggBgw6BgoSh6HKpXUc2zlOaFM1qrJDK8opShxH2wTpRBoh-Ot5_pl0FGlwiRrbSSq_L8_PzufvIfS2ULRSZUGxYDTHNFHgB3M5wXEal0yRgvDKqH3O2XRJz1fJqtuuaHaXbIqR_LVzX8n_WBXKwK56l-w_WDbcFArgN9gXjmBhON7NxgqCXiuKPGw0Ex2m_a05XsNwZTlunoj1bV2AAxiaMr1Y7s59GpymH6VehFGt8RyCuV80POm2oDi_0Azx8GLeJTT-7JagvygAhBsYNUfH0nI_tgGO3WL1ZftD9egABqPTn0rnQTp37d3KBNEUD2x3MTtnCrEIZtSmAx2pHWXeAzuvedWtL_zh2cEV6XTEdd6MiJaxY8RftaWhPf-UnS1ns2xxulrcRw8ITB4M3XPal2IWVqPC_RMv-MTj97duvxWrWLrqronIbT5tL0BZPEaP3MwiOrEw2Uf3VP0E7XsbRcdOYPzdUzTr4SZyuIkMbqKAm8jhJrI4iUwZ4MafB9w8Q8uz08WHKXZZNbCE4HCDJU_HmlNRJUxUbJJDfJKypJyUlBWkmsRUKAZBeckh9pSkUhDBqzQWeaKjPZjAxgdor17X6gWKBPSRFEox_TG7SHlaVrmUJJWVGBdS8gEa-f7LpJOc15lPvmaG-sDjTHd41nX4AB2HC26s2srfmx4Yg4R2hEMdI2KAjryFMveuwnWMUCZg8gzVb0I1eFL9eSyv1bo1bQh0Bgy7A_TcGjTcPNa6jqaGb5k6NNAq7ds19dWlUWsXMOKJcXJ4h-e-RA-79-gI7W2-t-oVxLyb4rWB8G9Gvq30
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+sensing+using+junctions+between+mobile+ions+and+mobile+electrons&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yecheng&rft.au=Jia%2C+Kun&rft.au=Zhang%2C+Shuwen&rft.au=Kim%2C+Hyeong+Jun&rft.date=2022-01-25&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=4&rft_id=info:doi/10.1073%2Fpnas.2117962119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon