Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm
Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equip...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 14; p. 6310 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
11.07.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields. |
---|---|
AbstractList | Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields.Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields. |
Audience | Academic |
Author | Li, Wenyu Zhou, Jie Zhang, Qian Liang, Liyan Gao, Xiaorong |
AuthorAffiliation | 2 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China 1 China Academy of Information and Communications Technology, Beijing 100161, China; 18618488256@163.com (L.L.) |
AuthorAffiliation_xml | – name: 1 China Academy of Information and Communications Technology, Beijing 100161, China; 18618488256@163.com (L.L.) – name: 2 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China |
Author_xml | – sequence: 1 givenname: Liyan orcidid: 0000-0003-0909-7200 surname: Liang fullname: Liang, Liyan – sequence: 2 givenname: Qian surname: Zhang fullname: Zhang, Qian – sequence: 3 givenname: Jie surname: Zhou fullname: Zhou, Jie – sequence: 4 givenname: Wenyu surname: Li fullname: Li, Wenyu – sequence: 5 givenname: Xiaorong surname: Gao fullname: Gao, Xiaorong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37514603$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEQx1eoiD7gwBdAK3GBQ1q_1vGeUEjTEqmISi1crakfiaNdO3g3lfj2zHZL1FbIssca__z3zHiOi4OYoiuK95Sccl6Ts45xKiSn5FVxRAUTE8UYOXiyPyyOu25DCOOcqzfFIZ9WeIHwowLOoYfO9eXiHpod9CHF8rvr18mWEG05226bYEa3T7m8dhlNC9G48tZ1fYirMvny5ubX4nrydb4sz51JdvDOmlXKoV-3b4vXHprOvXu0J8XPi8Xt_Nvk6sflcj67mpiK1P2werBSAbO1RDMFR--YNACKTYWXFUhCOeEYtcBDL4mtaqBE1EIZqSw_KZajrk2w0dscWsh_dIKgHxwprzTkPpjGaVpJZ4wTzCsphHVQG6qMdfiilNZ41Poyam13d62zxsU-Q_NM9PlJDGu9SveaEq6qiipU-PSokNPvHVZKt6EzrmkgurTrNFNCEJyMIPrxBbpJuxyxVgPFKVO8rpE6HakVYAYh-oQPGxzWtcFgP_iA_tm0qvGTKzZE8OFpDvvg__09Ap9HwOTUddn5PUKJHvpK7_sK2bMXrAn9Q1tgFKH5z42_GJDNJQ |
CitedBy_id | crossref_primary_10_1007_s11760_024_03304_z |
Cites_doi | 10.3390/s22218303 10.1016/j.jneumeth.2022.109597 10.1093/gigascience/giz002 10.1088/1741-2552/ac0bfa 10.1088/1741-2560/2/4/008 10.1088/2057-1976/ac6300 10.1007/978-3-030-72254-8_20 10.1088/1741-2552/acacca 10.3389/fnins.2020.00627 10.1109/TNSRE.2016.2627556 10.1016/j.medengphy.2022.103945 10.1016/j.tics.2021.04.003 10.1109/TBME.2022.3198639 10.1016/j.jneumeth.2022.109688 10.3390/s23052425 10.1109/TNSRE.2016.2519350 10.1007/s11571-022-09923-x 10.1088/1741-2560/12/4/046008 10.37944/jams.v5i1.115 10.1109/MC.2012.107 10.1088/1741-2560/6/4/046002 10.1088/1741-2552/ac81ee 10.1088/1741-2552/ac8dc5 10.1109/TBME.2017.2694818 10.1016/S1388-2457(02)00057-3 10.1109/TNSRE.2021.3114340 10.1007/s11571-021-09676-z 10.1038/s41597-022-01372-9 10.1007/978-1-84996-272-8 10.1109/5.939829 10.1142/S0129065714500130 10.1109/TNSRE.2022.3225878 10.1142/S0129065718500284 10.1109/EMBC46164.2021.9630511 10.1109/TNSRE.2022.3217789 10.1109/TNSRE.2023.3246359 10.1073/pnas.1508080112 10.1016/j.clinph.2013.11.016 10.1088/1741-2552/ac823e 10.3390/s21041256 10.1109/IDAACS.2015.7341393 10.1371/journal.pone.0140703 10.3390/s22207715 10.1109/TBME.2022.3227036 10.1109/TNSRE.2023.3260842 10.1109/TNSRE.2023.3243290 10.1002/asjc.3050 10.1016/j.bspc.2022.104171 10.1088/1741-2552/abaa9b |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23146310 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_156ecce42f8644dea9c18cdee1b66dcf PMC10385518 A759233528 37514603 10_3390_s23146310 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China Academy of Information and Communications Technology grantid: No. 2021YFF0601801 – fundername: Key Research and Development Program of Ningxia Province of China grantid: 2022CMG02026 – fundername: National Key Research and Development Program of China grantid: 2021YFF0601801 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-c50fad68a2d9668a7ae1b26caa8274f65a6013036034a7af60d59a104948c68d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:24:56 EDT 2025 Thu Aug 21 18:36:59 EDT 2025 Fri Jul 11 02:30:16 EDT 2025 Fri Jul 25 08:24:19 EDT 2025 Tue Jun 10 21:21:26 EDT 2025 Wed Feb 19 02:05:25 EST 2025 Tue Jul 01 01:20:14 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | brain–computer interface (BCI) performance testing dataset algorithm steady-state visual evoked potential (SSVEP) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-c50fad68a2d9668a7ae1b26caa8274f65a6013036034a7af60d59a104948c68d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0909-7200 |
OpenAccessLink | https://doaj.org/article/156ecce42f8644dea9c18cdee1b66dcf |
PMID | 37514603 |
PQID | 2843128399 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_156ecce42f8644dea9c18cdee1b66dcf pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385518 proquest_miscellaneous_2844084420 proquest_journals_2843128399 gale_infotracacademiconefile_A759233528 pubmed_primary_37514603 crossref_primary_10_3390_s23146310 crossref_citationtrail_10_3390_s23146310 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230711 |
PublicationDateYYYYMMDD | 2023-07-11 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230711 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ziafati (ref_23) 2023; 111 ref_14 ref_13 ref_12 ref_10 Liu (ref_11) 2022; 9 Lee (ref_22) 2023; 31 Bian (ref_46) 2023; 31 Liu (ref_33) 2021; 29 ref_19 Zhang (ref_29) 2022; 19 Sun (ref_51) 2022; 375 Wong (ref_35) 2023; 31 ref_15 Luo (ref_24) 2022; 70 Guney (ref_17) 2023; 20 Nakanishi (ref_7) 2018; 65 ref_25 Xu (ref_6) 2021; 15 Bassi (ref_50) 2022; 8 Zhang (ref_18) 2023; 31 ref_27 Wolpaw (ref_2) 2002; 113 Zhou (ref_49) 2022; 380 Pfurtscheller (ref_52) 2001; 89 Pan (ref_26) 2022; 19 Yu (ref_47) 2014; 24 Chen (ref_32) 2015; 12 Wang (ref_16) 2023; 70 ref_34 Scherer (ref_5) 2005; 2 Chen (ref_31) 2015; 112 Wang (ref_48) 2016; 24 Wang (ref_8) 2017; 25 Lee (ref_45) 2019; 8 ref_39 Ke (ref_20) 2023; 31 ref_38 ref_37 Bin (ref_4) 2009; 6 Yan (ref_28) 2022; 19 Oh (ref_36) 2022; 5 Liu (ref_9) 2020; 14 Yang (ref_30) 2018; 28 Gao (ref_1) 2021; 25 ref_44 ref_40 Chen (ref_41) 2021; 18 Tabanfar (ref_21) 2023; 79 Erp (ref_3) 2012; 45 Chang (ref_43) 2014; 125 Liang (ref_42) 2020; 17 |
References_xml | – ident: ref_25 doi: 10.3390/s22218303 – volume: 375 start-page: 109597 year: 2022 ident: ref_51 article-title: A 120-target brain-computer interface based on code-modulated visual evoked potentials publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2022.109597 – volume: 8 start-page: giz002 year: 2019 ident: ref_45 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – volume: 18 start-page: 046094 year: 2021 ident: ref_41 article-title: Implementing a calibration-free SSVEP-based BCI system with 160 targets publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac0bfa – volume: 2 start-page: 123 year: 2005 ident: ref_5 article-title: Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/008 – volume: 8 start-page: 035018 year: 2022 ident: ref_50 article-title: FBDNN: Filter banks and deep neural networks for portable and fast brain-computer interfaces publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ac6300 – ident: ref_39 – ident: ref_37 doi: 10.1007/978-3-030-72254-8_20 – volume: 20 start-page: 016013 year: 2023 ident: ref_17 article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acacca – volume: 14 start-page: 627 year: 2020 ident: ref_9 article-title: BETA: A large benchmark database toward SSVEP-BCI application publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00627 – volume: 25 start-page: 1746 year: 2017 ident: ref_8 article-title: A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627556 – volume: 111 start-page: 103945 year: 2023 ident: ref_23 article-title: Genetic algorithm based ensemble system using MLR and MsetCCA methods for SSVEP frequency recognition publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2022.103945 – volume: 25 start-page: 671 year: 2021 ident: ref_1 article-title: Interface, interaction, and intelligence in generalized brain-computer interfaces publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2021.04.003 – volume: 70 start-page: 603 year: 2023 ident: ref_16 article-title: Stimulus-Stimulus Transfer Based on Time-Frequency-Joint Representation in SSVEP-Based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3198639 – volume: 380 start-page: 109688 year: 2022 ident: ref_49 article-title: A L1 normalization enhanced dynamic window method for SSVEP-based BCIs publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2022.109688 – ident: ref_15 doi: 10.3390/s23052425 – ident: ref_13 – volume: 24 start-page: 532 year: 2016 ident: ref_48 article-title: Discriminative Feature Extraction via Multivariate Linear Regression for SSVEP-Based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2519350 – ident: ref_19 doi: 10.1007/s11571-022-09923-x – volume: 12 start-page: 046008 year: 2015 ident: ref_32 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046008 – volume: 5 start-page: 35 year: 2022 ident: ref_36 article-title: Military application study of BCI technology using brain waves in Republic of Korea Army: Focusing on personal firearms publication-title: J. Adv. Mil. Stud. doi: 10.37944/jams.v5i1.115 – volume: 45 start-page: 26 year: 2012 ident: ref_3 article-title: Brain-Computer Interfaces: Beyond Medical Applications publication-title: Computer doi: 10.1109/MC.2012.107 – volume: 6 start-page: 046002 year: 2009 ident: ref_4 article-title: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method publication-title: J. Neural Eng. doi: 10.1088/1741-2560/6/4/046002 – volume: 19 start-page: 046028 year: 2022 ident: ref_28 article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac81ee – ident: ref_34 – volume: 19 start-page: 056014 year: 2022 ident: ref_26 article-title: An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac8dc5 – volume: 65 start-page: 104 year: 2018 ident: ref_7 article-title: Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2694818 – volume: 113 start-page: 767 year: 2002 ident: ref_2 article-title: Brain-computer interfaces for communication and control publication-title: Suppl. Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00057-3 – volume: 29 start-page: 1998 year: 2021 ident: ref_33 article-title: Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3114340 – volume: 15 start-page: 569 year: 2021 ident: ref_6 article-title: Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-021-09676-z – volume: 9 start-page: 252 year: 2022 ident: ref_11 article-title: eldBETA: A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population publication-title: Sci. Data doi: 10.1038/s41597-022-01372-9 – ident: ref_38 doi: 10.1007/978-1-84996-272-8 – volume: 89 start-page: 1123 year: 2001 ident: ref_52 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – volume: 24 start-page: 1450013 year: 2014 ident: ref_47 article-title: Frequency Recognition in Ssvep-Based Bci Using Multiset Canonical Correlation Analysis publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065714500130 – volume: 31 start-page: 446 year: 2023 ident: ref_46 article-title: Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-Based BCIs publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3225878 – volume: 28 start-page: 1850028 year: 2018 ident: ref_30 article-title: A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065718500284 – ident: ref_40 doi: 10.1109/EMBC46164.2021.9630511 – volume: 31 start-page: 78 year: 2023 ident: ref_22 article-title: Adaptive Window Method Based on FBCCA for Optimal SSVEP Recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3217789 – volume: 31 start-page: 1405 year: 2023 ident: ref_20 article-title: Enhancing Detection of Control State for High-Speed Asynchronous SSVEP-BCIs Using Frequency-Specific Framework publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3246359 – volume: 112 start-page: E6058 year: 2015 ident: ref_31 article-title: High-speed spelling with a noninvasive brain-computer interface publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508080112 – volume: 125 start-page: 1380 year: 2014 ident: ref_43 article-title: An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.11.016 – volume: 19 start-page: 046027 year: 2022 ident: ref_29 article-title: Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac823e – ident: ref_10 doi: 10.3390/s21041256 – ident: ref_44 doi: 10.1109/IDAACS.2015.7341393 – ident: ref_12 doi: 10.1371/journal.pone.0140703 – ident: ref_27 doi: 10.3390/s22207715 – volume: 70 start-page: 1775 year: 2022 ident: ref_24 article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces publication-title: IEEE Trans. BioMed. Eng. doi: 10.1109/TBME.2022.3227036 – volume: 31 start-page: 1796 year: 2023 ident: ref_18 article-title: Improving AR-SSVEP Recognition Accuracy Under High Ambient Brightness Through Iterative Learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3260842 – volume: 31 start-page: 1343 year: 2023 ident: ref_35 article-title: Enhancing Detection of Multi-Frequency-Modulated SSVEP Using Phase Difference Constrained Canonical Correlation Analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3243290 – ident: ref_14 doi: 10.1002/asjc.3050 – volume: 79 start-page: 104171 year: 2023 ident: ref_21 article-title: A subject-independent SSVEP-based BCI target detection system based on fuzzy ordering of EEG task-related components publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2022.104171 – volume: 17 start-page: 046026 year: 2020 ident: ref_42 article-title: Optimizing a dual-frequency and phase modulation method for SSVEP-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abaa9b |
SSID | ssj0023338 |
Score | 2.4264176 |
Snippet | Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and... Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6310 |
SubjectTerms | algorithm Algorithms Brain research Brain-Computer Interfaces brain–computer interface (BCI) Codes Correlation analysis dataset Datasets Electrodes Electroencephalography - methods Evoked Potentials, Visual Humans Methods performance testing Photic Stimulation Signal to noise ratio steady-state visual evoked potential (SSVEP) |
SummonAdditionalLinks | – databaseName: Acceso a contenido Full Text - Doaj dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCA-CZQkEFIcIkax17He9y2WxWkokptUW_WxB9tpZJFbfr_mUmyaVYgceGwe1hbWmc84_deEj8DfJIyzX1tZe5NrHMdjclRBp-HFHWiRVlH5FsDR9_N4Zn-dj47nxz1xe-E9fbAfeB2SF_Qv0RdJkvQHSLOvbQ-xChrY4JPvPoS5q3F1CC1FCmv3kdIkajfuSUWo43ibbIT9OlM-v9ciidYtPme5AR4Dp7A44ExikU_0qfwIDbP4NHER_A54D62hEatWI7e3eKoOxpaYBPE4v4htSCOKo7vNwuIU3bZaC7EKomTkx_L43x376vYJ03KmCYW1xerm6v28ucLODtYnu4d5sPZCbknCtDyd8JgLJaBBI3FCilgpfGIlnRoMjM0RQdfhdLUmEwRZnOUnVuMNzaol7DVrJr4GkSlzDxURcBQG12lsla29Kii9IHIjEwZfFnH1PnBWJzPt7h2JDA4_G4MfwYfx66_ejeNv3Xa5YkZO7ABdvcDpYUb0sL9Ky0y-MzT6rhMaTAeh90GdElseOUW1YyoLVvbZLC9nnk31O-tI9BWhNzE3jL4MDZT5fHjFGzi6q7rowv6lDTiV32ijGNWFRFRim0GdiOFNi5qs6W5uuzcvdmxnm3y3vyPMLyFhyVVA9-MlnIbttqbu_iOWFRbv-8K5jeoUR5J priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagXOCAeHehIIOQ4LLqer3xOieUtqkKUlGltig3a9aPFKnslmb7_5lxnE0iEIfsIfZhPJ637W8Y-yhEGNtGi9wq3-SVVyoH4Wzugq8CGuXKA5UGTr-rk8vq22w0SwW3RbpWubKJ0VC7zlKNfB_NqERbiv70y83vnLpG0elqaqFxnz0g6DK60lXP1gmXxPxriSYkMbXfX2AsUylJj2U3fFCE6v_bIG94pO3bkhvu5_gJe5ziRj5ZbvRTds-3z9ijDTTB5wyOoEef1PPpgODNT2ODaA6t45P1UTXHSJWfrZ8M8AvC2mjnvAv8_PzH9Cw_OPzKjzAzJc_GJ9dz5ER_9esFuzyeXhye5KmDQm4xEOjpG8ApDaXDtEZDDV40pbIAGrPRoEagiujEClnhYFCFG41BRMwYq7STL9lO27V-l_FaqrGrCweuUVUdykbq0oL0wjoMaUTI2OcVT41N8OLU5eLaYJpB7DcD-zP2YZh6s8TU-NekA9qYYQLBYMc_utu5SVplMPlEEfRVGTTGdc7D2AptncdVKuUsEvWJttWQsiIxFtKbA1wSwV6ZST3CAJcAbjK2t9p5k7R4YdYyl7H3wzDqHx2qQOu7uzinKvBXIsWvloIy0CxrDEeRtxnTWyK0tajtkfbnVcT4Jtx6Ast7_X-63rCHJco5FZuF2GM7_e2df4tRUt-8i6rwBzw-E9I priority: 102 providerName: ProQuest |
Title | Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37514603 https://www.proquest.com/docview/2843128399 https://www.proquest.com/docview/2844084420 https://pubmed.ncbi.nlm.nih.gov/PMC10385518 https://doaj.org/article/156ecce42f8644dea9c18cdee1b66dcf |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTULjAfFNYFQGIcFLWJy4TvqAULu1DKROFVtR3yLHH92kkkCXSfDfc5cmWSPGQ_IQnyLbd5f7nR3_DuAt526gs4T7WtrMF1ZKX3GjfeOscPhRFlbR0sD0VJ7MxddFf7EDTY3NegKvbk3tqJ7UfL368PvXn0_o8B8p48SU_fAKMYqQER202sOAFJN_TkW7mRBGmIZtSIW64vtwN4oRMMimYlYdlSry_n8_0Vsxqvv_5FZAmjyA-zWSZMON6h_Cjs0fwb0tfsHHoI5ViVGqZOOW05tNq5LRTOWGDW82rxliVza7OUTAzol9I1-ywrGzs-_jmT86-sKOMVelWMeGq2WxviwvfjyB-WR8fnTi1zUVfI3QoKS7U0YmKjSY6CQqVpZnodRKJZifOtlXMqjCWhAJbHQyMP2B4hWLjJaJiZ7Cbl7k9jmwOJIDEwdGmUyK2IVZlIRaRZZrgyCHOw_eN3Oa6ppwnOperFJMPEgTaasJD960oj83LBu3CY1IMa0AEWNXD4r1Mq39LMV0FI3SitAliPSMVQPNE20sjlJKo7FT70itKRkUdkar-hQCDomIsNJh3EfIS5Q3Hhw0mk8bs0wxmEcY0RHVefC6bUaPpG0WldviupIRAV4h9vjZxlDaPjf25kHSMaHOoLot-eVFxfpNTPZEn_fivy99CfshWjutPHN-ALvl-tq-QshUZj24Ey9ivCeTzz3YG41PZ9961fJDr3KVv2R5GUo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWq1-us7QNCaZMqoU1VqSnKbVnvI63U2qVxhfhT_EZm_EoiELce7IN3Zc3OznMf3xDynjGX6ixhvhY28yMrhK-Y0b5xNnJglCOrcGlgcihGJ9HXWW-2QX63d2HwWGVrEytDbQqNa-TbYEY52FLwp18uf_hYNQp3V9sSGrVY7NtfPyFlW3weD2B-P4Th3nC6O_KbqgK-BudY4tspIxIVGgj1ExUry7JQaKUSyNCc6CkRVIY94BE0OhGYXqpYhaOiRWI4_PcWuQ3UBKhR8WyZ4HHI92r0Is7TYHsBsVMkOF7OXfF5VWmAvx3AigdcP5254u72HpD7TZxK-7VgPSQbNn9E7q2gFz4maqBK8IElHXaI4XRSFaSmKje0v9wapxAZ06PlFQU6RWyPfE4LR4-Pvw2P_J3dMR1AJoyelPbP58D58vTiCTm5Ed4-JZt5kdvnhMZcpCYOjDKZiGIXZjwJteKWaQMhFHMe-dTyVOoGzhyrapxLSGuQ_bJjv0fedV0vawyPf3XawYnpOiDsdvWhuJrLRoslJLsg8jYKXQJxpLEq1SzRxsIohTAaiPqI0yrROAAxWjV3HGBICLMl-3EPAmoE1PHIVjvzsrEaC7mUcY-87ZpB33ETR-W2uK76RAE8IVD8rBaUjmYeQ_gLvPVIsiZCa4Nab8nPTitMccTJR3C-F_-n6w25M5pODuTB-HD_JbkbgszjQjdjW2SzvLq2ryBCK7PXlVpQ8v2m9fAPwZNPoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN64FFgQCC5WvF57bR8QSptEDaVVpLYot-16HylSa5fGFeKv8euYcWwnEYhbD_bBu7JmZ-e5j28IeceYy3SeMl8Lm_uRFcJXzGjfOBs5MMqRVbg0cHAo9k6iL9N4ukF-t3dh8FhlaxNrQ21KjWvkPTCjHGwp-NOea45FTAajz5c_fKwghTutbTmNhYjs218_IX2bfxoPYK7fh-FoeLy75zcVBnwNjrLCt1NGpCo0EPanKlGW5aHQSqWQrTkRKxHURj7gETQ6EZg4U6zGVNEiNRz-e4vcTnjMUMeS6TLZ45D7LZCMOM-C3hziqEhwvKi74v_qMgF_O4MVb7h-UnPF9Y0ekPtNzEr7CyF7SDZs8YjcW0EyfEzUQFXgDys67NDD6UFdnJqqwtD-cpucQpRMJ8vrCvQYcT6KGS0dPTr6Npz4O7tjOoCsGL0q7Z_PgPPV2cUTcnIjvH1KNouysM8JTbjITBIYZXIRJS7MeRpqxS3TBsIp5jzyseWp1A20OVbYOJeQ4iD7Zcd-j7ztul4u8Dz-1WkHJ6brgBDc9YfyaiYbjZaQ-IL42yh0KcSUxqpMs1QbC6MUwmgg6gNOq0RDAcRo1dx3gCEh5JbsJzEE1wiu45HtduZlY0HmcinvHnnTNYPu44aOKmx5XfeJAnhCoPjZQlA6mnkCoTDw1iPpmgitDWq9pfh-VuOLI2Y-AvVt_Z-u1-QOaKD8Oj7cf0HuhiDyuObN2DbZrK6u7UsI1qr8Va0VlJzetBr-AVR_U9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+Evaluation+Method+and+Application+for+Performance+Testing+of+SSVEP-BCI+Decoding+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liang%2C+Liyan&rft.au=Zhang%2C+Qian&rft.au=Zhou%2C+Jie&rft.au=Li%2C+Wenyu&rft.date=2023-07-11&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft_id=info:doi/10.3390%2Fs23146310&rft_id=info%3Apmid%2F37514603&rft.externalDocID=37514603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |