Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm

Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equip...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 14; p. 6310
Main Authors Liang, Liyan, Zhang, Qian, Zhou, Jie, Li, Wenyu, Gao, Xiaorong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 11.07.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields.
AbstractList Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields.
Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields.Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and multiple sets of standard datasets have been published and widely used. However, there are differences in sample distribution and collection equipment across different datasets, and there is a lack of a unified evaluation method. Most new SSVEP decoding algorithms are tested based on self-collected data or offline performance verification using one or two previous datasets, which can lead to performance differences when used in actual application scenarios. To address these issues, this paper proposed a SSVEP dataset evaluation method and analyzed six datasets with frequency and phase modulation paradigms to form an SSVEP algorithm evaluation dataset system. Finally, based on the above datasets, performance tests were carried out on the four existing SSVEP decoding algorithms. The findings reveal that the performance of the same algorithm varies significantly when tested on diverse datasets. Substantial performance variations were observed among subjects, ranging from the best-performing to the worst-performing. The above results demonstrate that the SSVEP dataset evaluation method can integrate six datasets to form a SSVEP algorithm performance testing dataset system. This system can test and verify the SSVEP decoding algorithm from different perspectives such as different subjects, different environments, and different equipment, which is helpful for the research of new SSVEP decoding algorithms and has significant reference value for other BCI application fields.
Audience Academic
Author Li, Wenyu
Zhou, Jie
Zhang, Qian
Liang, Liyan
Gao, Xiaorong
AuthorAffiliation 2 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
1 China Academy of Information and Communications Technology, Beijing 100161, China; 18618488256@163.com (L.L.)
AuthorAffiliation_xml – name: 1 China Academy of Information and Communications Technology, Beijing 100161, China; 18618488256@163.com (L.L.)
– name: 2 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
Author_xml – sequence: 1
  givenname: Liyan
  orcidid: 0000-0003-0909-7200
  surname: Liang
  fullname: Liang, Liyan
– sequence: 2
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
– sequence: 3
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
– sequence: 4
  givenname: Wenyu
  surname: Li
  fullname: Li, Wenyu
– sequence: 5
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37514603$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQx1eoiD7gwBdAK3GBQ1q_1vGeUEjTEqmISi1crakfiaNdO3g3lfj2zHZL1FbIssca__z3zHiOi4OYoiuK95Sccl6Ts45xKiSn5FVxRAUTE8UYOXiyPyyOu25DCOOcqzfFIZ9WeIHwowLOoYfO9eXiHpod9CHF8rvr18mWEG05226bYEa3T7m8dhlNC9G48tZ1fYirMvny5ubX4nrydb4sz51JdvDOmlXKoV-3b4vXHprOvXu0J8XPi8Xt_Nvk6sflcj67mpiK1P2werBSAbO1RDMFR--YNACKTYWXFUhCOeEYtcBDL4mtaqBE1EIZqSw_KZajrk2w0dscWsh_dIKgHxwprzTkPpjGaVpJZ4wTzCsphHVQG6qMdfiilNZ41Poyam13d62zxsU-Q_NM9PlJDGu9SveaEq6qiipU-PSokNPvHVZKt6EzrmkgurTrNFNCEJyMIPrxBbpJuxyxVgPFKVO8rpE6HakVYAYh-oQPGxzWtcFgP_iA_tm0qvGTKzZE8OFpDvvg__09Ap9HwOTUddn5PUKJHvpK7_sK2bMXrAn9Q1tgFKH5z42_GJDNJQ
CitedBy_id crossref_primary_10_1007_s11760_024_03304_z
Cites_doi 10.3390/s22218303
10.1016/j.jneumeth.2022.109597
10.1093/gigascience/giz002
10.1088/1741-2552/ac0bfa
10.1088/1741-2560/2/4/008
10.1088/2057-1976/ac6300
10.1007/978-3-030-72254-8_20
10.1088/1741-2552/acacca
10.3389/fnins.2020.00627
10.1109/TNSRE.2016.2627556
10.1016/j.medengphy.2022.103945
10.1016/j.tics.2021.04.003
10.1109/TBME.2022.3198639
10.1016/j.jneumeth.2022.109688
10.3390/s23052425
10.1109/TNSRE.2016.2519350
10.1007/s11571-022-09923-x
10.1088/1741-2560/12/4/046008
10.37944/jams.v5i1.115
10.1109/MC.2012.107
10.1088/1741-2560/6/4/046002
10.1088/1741-2552/ac81ee
10.1088/1741-2552/ac8dc5
10.1109/TBME.2017.2694818
10.1016/S1388-2457(02)00057-3
10.1109/TNSRE.2021.3114340
10.1007/s11571-021-09676-z
10.1038/s41597-022-01372-9
10.1007/978-1-84996-272-8
10.1109/5.939829
10.1142/S0129065714500130
10.1109/TNSRE.2022.3225878
10.1142/S0129065718500284
10.1109/EMBC46164.2021.9630511
10.1109/TNSRE.2022.3217789
10.1109/TNSRE.2023.3246359
10.1073/pnas.1508080112
10.1016/j.clinph.2013.11.016
10.1088/1741-2552/ac823e
10.3390/s21041256
10.1109/IDAACS.2015.7341393
10.1371/journal.pone.0140703
10.3390/s22207715
10.1109/TBME.2022.3227036
10.1109/TNSRE.2023.3260842
10.1109/TNSRE.2023.3243290
10.1002/asjc.3050
10.1016/j.bspc.2022.104171
10.1088/1741-2552/abaa9b
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23146310
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_156ecce42f8644dea9c18cdee1b66dcf
PMC10385518
A759233528
37514603
10_3390_s23146310
Genre Journal Article
GrantInformation_xml – fundername: China Academy of Information and Communications Technology
  grantid: No. 2021YFF0601801
– fundername: Key Research and Development Program of Ningxia Province of China
  grantid: 2022CMG02026
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0601801
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-c50fad68a2d9668a7ae1b26caa8274f65a6013036034a7af60d59a104948c68d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:24:56 EDT 2025
Thu Aug 21 18:36:59 EDT 2025
Fri Jul 11 02:30:16 EDT 2025
Fri Jul 25 08:24:19 EDT 2025
Tue Jun 10 21:21:26 EDT 2025
Wed Feb 19 02:05:25 EST 2025
Tue Jul 01 01:20:14 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords brain–computer interface (BCI)
performance testing
dataset
algorithm
steady-state visual evoked potential (SSVEP)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-c50fad68a2d9668a7ae1b26caa8274f65a6013036034a7af60d59a104948c68d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0909-7200
OpenAccessLink https://doaj.org/article/156ecce42f8644dea9c18cdee1b66dcf
PMID 37514603
PQID 2843128399
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_156ecce42f8644dea9c18cdee1b66dcf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10385518
proquest_miscellaneous_2844084420
proquest_journals_2843128399
gale_infotracacademiconefile_A759233528
pubmed_primary_37514603
crossref_primary_10_3390_s23146310
crossref_citationtrail_10_3390_s23146310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230711
PublicationDateYYYYMMDD 2023-07-11
PublicationDate_xml – month: 7
  year: 2023
  text: 20230711
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ziafati (ref_23) 2023; 111
ref_14
ref_13
ref_12
ref_10
Liu (ref_11) 2022; 9
Lee (ref_22) 2023; 31
Bian (ref_46) 2023; 31
Liu (ref_33) 2021; 29
ref_19
Zhang (ref_29) 2022; 19
Sun (ref_51) 2022; 375
Wong (ref_35) 2023; 31
ref_15
Luo (ref_24) 2022; 70
Guney (ref_17) 2023; 20
Nakanishi (ref_7) 2018; 65
ref_25
Xu (ref_6) 2021; 15
Bassi (ref_50) 2022; 8
Zhang (ref_18) 2023; 31
ref_27
Wolpaw (ref_2) 2002; 113
Zhou (ref_49) 2022; 380
Pfurtscheller (ref_52) 2001; 89
Pan (ref_26) 2022; 19
Yu (ref_47) 2014; 24
Chen (ref_32) 2015; 12
Wang (ref_16) 2023; 70
ref_34
Scherer (ref_5) 2005; 2
Chen (ref_31) 2015; 112
Wang (ref_48) 2016; 24
Wang (ref_8) 2017; 25
Lee (ref_45) 2019; 8
ref_39
Ke (ref_20) 2023; 31
ref_38
ref_37
Bin (ref_4) 2009; 6
Yan (ref_28) 2022; 19
Oh (ref_36) 2022; 5
Liu (ref_9) 2020; 14
Yang (ref_30) 2018; 28
Gao (ref_1) 2021; 25
ref_44
ref_40
Chen (ref_41) 2021; 18
Tabanfar (ref_21) 2023; 79
Erp (ref_3) 2012; 45
Chang (ref_43) 2014; 125
Liang (ref_42) 2020; 17
References_xml – ident: ref_25
  doi: 10.3390/s22218303
– volume: 375
  start-page: 109597
  year: 2022
  ident: ref_51
  article-title: A 120-target brain-computer interface based on code-modulated visual evoked potentials
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109597
– volume: 8
  start-page: giz002
  year: 2019
  ident: ref_45
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– volume: 18
  start-page: 046094
  year: 2021
  ident: ref_41
  article-title: Implementing a calibration-free SSVEP-based BCI system with 160 targets
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac0bfa
– volume: 2
  start-page: 123
  year: 2005
  ident: ref_5
  article-title: Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/008
– volume: 8
  start-page: 035018
  year: 2022
  ident: ref_50
  article-title: FBDNN: Filter banks and deep neural networks for portable and fast brain-computer interfaces
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ac6300
– ident: ref_39
– ident: ref_37
  doi: 10.1007/978-3-030-72254-8_20
– volume: 20
  start-page: 016013
  year: 2023
  ident: ref_17
  article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acacca
– volume: 14
  start-page: 627
  year: 2020
  ident: ref_9
  article-title: BETA: A large benchmark database toward SSVEP-BCI application
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00627
– volume: 25
  start-page: 1746
  year: 2017
  ident: ref_8
  article-title: A Benchmark Dataset for SSVEP-Based Brain-Computer Interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627556
– volume: 111
  start-page: 103945
  year: 2023
  ident: ref_23
  article-title: Genetic algorithm based ensemble system using MLR and MsetCCA methods for SSVEP frequency recognition
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2022.103945
– volume: 25
  start-page: 671
  year: 2021
  ident: ref_1
  article-title: Interface, interaction, and intelligence in generalized brain-computer interfaces
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2021.04.003
– volume: 70
  start-page: 603
  year: 2023
  ident: ref_16
  article-title: Stimulus-Stimulus Transfer Based on Time-Frequency-Joint Representation in SSVEP-Based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3198639
– volume: 380
  start-page: 109688
  year: 2022
  ident: ref_49
  article-title: A L1 normalization enhanced dynamic window method for SSVEP-based BCIs
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109688
– ident: ref_15
  doi: 10.3390/s23052425
– ident: ref_13
– volume: 24
  start-page: 532
  year: 2016
  ident: ref_48
  article-title: Discriminative Feature Extraction via Multivariate Linear Regression for SSVEP-Based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2519350
– ident: ref_19
  doi: 10.1007/s11571-022-09923-x
– volume: 12
  start-page: 046008
  year: 2015
  ident: ref_32
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046008
– volume: 5
  start-page: 35
  year: 2022
  ident: ref_36
  article-title: Military application study of BCI technology using brain waves in Republic of Korea Army: Focusing on personal firearms
  publication-title: J. Adv. Mil. Stud.
  doi: 10.37944/jams.v5i1.115
– volume: 45
  start-page: 26
  year: 2012
  ident: ref_3
  article-title: Brain-Computer Interfaces: Beyond Medical Applications
  publication-title: Computer
  doi: 10.1109/MC.2012.107
– volume: 6
  start-page: 046002
  year: 2009
  ident: ref_4
  article-title: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/4/046002
– volume: 19
  start-page: 046028
  year: 2022
  ident: ref_28
  article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac81ee
– ident: ref_34
– volume: 19
  start-page: 056014
  year: 2022
  ident: ref_26
  article-title: An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac8dc5
– volume: 65
  start-page: 104
  year: 2018
  ident: ref_7
  article-title: Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2694818
– volume: 113
  start-page: 767
  year: 2002
  ident: ref_2
  article-title: Brain-computer interfaces for communication and control
  publication-title: Suppl. Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 29
  start-page: 1998
  year: 2021
  ident: ref_33
  article-title: Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3114340
– volume: 15
  start-page: 569
  year: 2021
  ident: ref_6
  article-title: Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-021-09676-z
– volume: 9
  start-page: 252
  year: 2022
  ident: ref_11
  article-title: eldBETA: A Large Eldercare-oriented Benchmark Database of SSVEP-BCI for the Aging Population
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01372-9
– ident: ref_38
  doi: 10.1007/978-1-84996-272-8
– volume: 89
  start-page: 1123
  year: 2001
  ident: ref_52
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 24
  start-page: 1450013
  year: 2014
  ident: ref_47
  article-title: Frequency Recognition in Ssvep-Based Bci Using Multiset Canonical Correlation Analysis
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065714500130
– volume: 31
  start-page: 446
  year: 2023
  ident: ref_46
  article-title: Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-Based BCIs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3225878
– volume: 28
  start-page: 1850028
  year: 2018
  ident: ref_30
  article-title: A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065718500284
– ident: ref_40
  doi: 10.1109/EMBC46164.2021.9630511
– volume: 31
  start-page: 78
  year: 2023
  ident: ref_22
  article-title: Adaptive Window Method Based on FBCCA for Optimal SSVEP Recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3217789
– volume: 31
  start-page: 1405
  year: 2023
  ident: ref_20
  article-title: Enhancing Detection of Control State for High-Speed Asynchronous SSVEP-BCIs Using Frequency-Specific Framework
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3246359
– volume: 112
  start-page: E6058
  year: 2015
  ident: ref_31
  article-title: High-speed spelling with a noninvasive brain-computer interface
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508080112
– volume: 125
  start-page: 1380
  year: 2014
  ident: ref_43
  article-title: An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.11.016
– volume: 19
  start-page: 046027
  year: 2022
  ident: ref_29
  article-title: Bidirectional Siamese correlation analysis method for enhancing the detection of SSVEPs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac823e
– ident: ref_10
  doi: 10.3390/s21041256
– ident: ref_44
  doi: 10.1109/IDAACS.2015.7341393
– ident: ref_12
  doi: 10.1371/journal.pone.0140703
– ident: ref_27
  doi: 10.3390/s22207715
– volume: 70
  start-page: 1775
  year: 2022
  ident: ref_24
  article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces
  publication-title: IEEE Trans. BioMed. Eng.
  doi: 10.1109/TBME.2022.3227036
– volume: 31
  start-page: 1796
  year: 2023
  ident: ref_18
  article-title: Improving AR-SSVEP Recognition Accuracy Under High Ambient Brightness Through Iterative Learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3260842
– volume: 31
  start-page: 1343
  year: 2023
  ident: ref_35
  article-title: Enhancing Detection of Multi-Frequency-Modulated SSVEP Using Phase Difference Constrained Canonical Correlation Analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3243290
– ident: ref_14
  doi: 10.1002/asjc.3050
– volume: 79
  start-page: 104171
  year: 2023
  ident: ref_21
  article-title: A subject-independent SSVEP-based BCI target detection system based on fuzzy ordering of EEG task-related components
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2022.104171
– volume: 17
  start-page: 046026
  year: 2020
  ident: ref_42
  article-title: Optimizing a dual-frequency and phase modulation method for SSVEP-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abaa9b
SSID ssj0023338
Score 2.4264176
Snippet Steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) systems have been extensively researched over the past two decades, and...
Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems have been extensively researched over the past two decades, and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6310
SubjectTerms algorithm
Algorithms
Brain research
Brain-Computer Interfaces
brain–computer interface (BCI)
Codes
Correlation analysis
dataset
Datasets
Electrodes
Electroencephalography - methods
Evoked Potentials, Visual
Humans
Methods
performance testing
Photic Stimulation
Signal to noise ratio
steady-state visual evoked potential (SSVEP)
SummonAdditionalLinks – databaseName: Acceso a contenido Full Text - Doaj
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnuCA-CZQkEFIcIkax17He9y2WxWkokptUW_WxB9tpZJFbfr_mUmyaVYgceGwe1hbWmc84_deEj8DfJIyzX1tZe5NrHMdjclRBp-HFHWiRVlH5FsDR9_N4Zn-dj47nxz1xe-E9fbAfeB2SF_Qv0RdJkvQHSLOvbQ-xChrY4JPvPoS5q3F1CC1FCmv3kdIkajfuSUWo43ibbIT9OlM-v9ciidYtPme5AR4Dp7A44ExikU_0qfwIDbP4NHER_A54D62hEatWI7e3eKoOxpaYBPE4v4htSCOKo7vNwuIU3bZaC7EKomTkx_L43x376vYJ03KmCYW1xerm6v28ucLODtYnu4d5sPZCbknCtDyd8JgLJaBBI3FCilgpfGIlnRoMjM0RQdfhdLUmEwRZnOUnVuMNzaol7DVrJr4GkSlzDxURcBQG12lsla29Kii9IHIjEwZfFnH1PnBWJzPt7h2JDA4_G4MfwYfx66_ejeNv3Xa5YkZO7ABdvcDpYUb0sL9Ky0y-MzT6rhMaTAeh90GdElseOUW1YyoLVvbZLC9nnk31O-tI9BWhNzE3jL4MDZT5fHjFGzi6q7rowv6lDTiV32ijGNWFRFRim0GdiOFNi5qs6W5uuzcvdmxnm3y3vyPMLyFhyVVA9-MlnIbttqbu_iOWFRbv-8K5jeoUR5J
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagXOCAeHehIIOQ4LLqer3xOieUtqkKUlGltig3a9aPFKnslmb7_5lxnE0iEIfsIfZhPJ637W8Y-yhEGNtGi9wq3-SVVyoH4Wzugq8CGuXKA5UGTr-rk8vq22w0SwW3RbpWubKJ0VC7zlKNfB_NqERbiv70y83vnLpG0elqaqFxnz0g6DK60lXP1gmXxPxriSYkMbXfX2AsUylJj2U3fFCE6v_bIG94pO3bkhvu5_gJe5ziRj5ZbvRTds-3z9ijDTTB5wyOoEef1PPpgODNT2ODaA6t45P1UTXHSJWfrZ8M8AvC2mjnvAv8_PzH9Cw_OPzKjzAzJc_GJ9dz5ER_9esFuzyeXhye5KmDQm4xEOjpG8ApDaXDtEZDDV40pbIAGrPRoEagiujEClnhYFCFG41BRMwYq7STL9lO27V-l_FaqrGrCweuUVUdykbq0oL0wjoMaUTI2OcVT41N8OLU5eLaYJpB7DcD-zP2YZh6s8TU-NekA9qYYQLBYMc_utu5SVplMPlEEfRVGTTGdc7D2AptncdVKuUsEvWJttWQsiIxFtKbA1wSwV6ZST3CAJcAbjK2t9p5k7R4YdYyl7H3wzDqHx2qQOu7uzinKvBXIsWvloIy0CxrDEeRtxnTWyK0tajtkfbnVcT4Jtx6Ast7_X-63rCHJco5FZuF2GM7_e2df4tRUt-8i6rwBzw-E9I
  priority: 102
  providerName: ProQuest
Title Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/37514603
https://www.proquest.com/docview/2843128399
https://www.proquest.com/docview/2844084420
https://pubmed.ncbi.nlm.nih.gov/PMC10385518
https://doaj.org/article/156ecce42f8644dea9c18cdee1b66dcf
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwED-NTULjAfFNYFQGIcFLWJy4TvqAULu1DKROFVtR3yLHH92kkkCXSfDfc5cmWSPGQ_IQnyLbd5f7nR3_DuAt526gs4T7WtrMF1ZKX3GjfeOscPhRFlbR0sD0VJ7MxddFf7EDTY3NegKvbk3tqJ7UfL368PvXn0_o8B8p48SU_fAKMYqQER202sOAFJN_TkW7mRBGmIZtSIW64vtwN4oRMMimYlYdlSry_n8_0Vsxqvv_5FZAmjyA-zWSZMON6h_Cjs0fwb0tfsHHoI5ViVGqZOOW05tNq5LRTOWGDW82rxliVza7OUTAzol9I1-ywrGzs-_jmT86-sKOMVelWMeGq2WxviwvfjyB-WR8fnTi1zUVfI3QoKS7U0YmKjSY6CQqVpZnodRKJZifOtlXMqjCWhAJbHQyMP2B4hWLjJaJiZ7Cbl7k9jmwOJIDEwdGmUyK2IVZlIRaRZZrgyCHOw_eN3Oa6ppwnOperFJMPEgTaasJD960oj83LBu3CY1IMa0AEWNXD4r1Mq39LMV0FI3SitAliPSMVQPNE20sjlJKo7FT70itKRkUdkar-hQCDomIsNJh3EfIS5Q3Hhw0mk8bs0wxmEcY0RHVefC6bUaPpG0WldviupIRAV4h9vjZxlDaPjf25kHSMaHOoLot-eVFxfpNTPZEn_fivy99CfshWjutPHN-ALvl-tq-QshUZj24Ey9ivCeTzz3YG41PZ9961fJDr3KVv2R5GUo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWq1-us7QNCaZMqoU1VqSnKbVnvI63U2qVxhfhT_EZm_EoiELce7IN3Zc3OznMf3xDynjGX6ixhvhY28yMrhK-Y0b5xNnJglCOrcGlgcihGJ9HXWW-2QX63d2HwWGVrEytDbQqNa-TbYEY52FLwp18uf_hYNQp3V9sSGrVY7NtfPyFlW3weD2B-P4Th3nC6O_KbqgK-BudY4tspIxIVGgj1ExUry7JQaKUSyNCc6CkRVIY94BE0OhGYXqpYhaOiRWI4_PcWuQ3UBKhR8WyZ4HHI92r0Is7TYHsBsVMkOF7OXfF5VWmAvx3AigdcP5254u72HpD7TZxK-7VgPSQbNn9E7q2gFz4maqBK8IElHXaI4XRSFaSmKje0v9wapxAZ06PlFQU6RWyPfE4LR4-Pvw2P_J3dMR1AJoyelPbP58D58vTiCTm5Ed4-JZt5kdvnhMZcpCYOjDKZiGIXZjwJteKWaQMhFHMe-dTyVOoGzhyrapxLSGuQ_bJjv0fedV0vawyPf3XawYnpOiDsdvWhuJrLRoslJLsg8jYKXQJxpLEq1SzRxsIohTAaiPqI0yrROAAxWjV3HGBICLMl-3EPAmoE1PHIVjvzsrEaC7mUcY-87ZpB33ETR-W2uK76RAE8IVD8rBaUjmYeQ_gLvPVIsiZCa4Nab8nPTitMccTJR3C-F_-n6w25M5pODuTB-HD_JbkbgszjQjdjW2SzvLq2ryBCK7PXlVpQ8v2m9fAPwZNPoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIiE4IN64FFgQCC5WvF57bR8QSptEDaVVpLYot-16HylSa5fGFeKv8euYcWwnEYhbD_bBu7JmZ-e5j28IeceYy3SeMl8Lm_uRFcJXzGjfOBs5MMqRVbg0cHAo9k6iL9N4ukF-t3dh8FhlaxNrQ21KjWvkPTCjHGwp-NOea45FTAajz5c_fKwghTutbTmNhYjs218_IX2bfxoPYK7fh-FoeLy75zcVBnwNjrLCt1NGpCo0EPanKlGW5aHQSqWQrTkRKxHURj7gETQ6EZg4U6zGVNEiNRz-e4vcTnjMUMeS6TLZ45D7LZCMOM-C3hziqEhwvKi74v_qMgF_O4MVb7h-UnPF9Y0ekPtNzEr7CyF7SDZs8YjcW0EyfEzUQFXgDys67NDD6UFdnJqqwtD-cpucQpRMJ8vrCvQYcT6KGS0dPTr6Npz4O7tjOoCsGL0q7Z_PgPPV2cUTcnIjvH1KNouysM8JTbjITBIYZXIRJS7MeRpqxS3TBsIp5jzyseWp1A20OVbYOJeQ4iD7Zcd-j7ztul4u8Dz-1WkHJ6brgBDc9YfyaiYbjZaQ-IL42yh0KcSUxqpMs1QbC6MUwmgg6gNOq0RDAcRo1dx3gCEh5JbsJzEE1wiu45HtduZlY0HmcinvHnnTNYPu44aOKmx5XfeJAnhCoPjZQlA6mnkCoTDw1iPpmgitDWq9pfh-VuOLI2Y-AvVt_Z-u1-QOaKD8Oj7cf0HuhiDyuObN2DbZrK6u7UsI1qr8Va0VlJzetBr-AVR_U9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+Evaluation+Method+and+Application+for+Performance+Testing+of+SSVEP-BCI+Decoding+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liang%2C+Liyan&rft.au=Zhang%2C+Qian&rft.au=Zhou%2C+Jie&rft.au=Li%2C+Wenyu&rft.date=2023-07-11&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft_id=info:doi/10.3390%2Fs23146310&rft_id=info%3Apmid%2F37514603&rft.externalDocID=37514603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon