Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria

Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megate...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 19; pp. E4340 - E4349
Main Authors Moore, Simon J., MacDonald, James T., Wienecke, Sarah, Ishwarbhai, Alka, Tsipa, Argyro, Aw, Rochelle, Kylilis, Nicolas, Bell, David J., McClymont, David W., Jensen, Kirsten, Polizzi, Karen M., Biedendieck, Rebekka, Freemont, Paul S.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 08.05.2018
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
AbstractList Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, , is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Significance Nonmodel bacteria have essential roles to play in the future development of biotechnology by providing new sources of biocatalysts, antibiotics, hosts for bioproduction, and engineered “living therapies.” The characterization of such hosts can be challenging, as many are not tractable to standard molecular biology techniques. This paper presents a rapid and automated methodology for characterizing new DNA parts from a nonmodel bacterium using cell-free transcription–translation. Data analysis was performed with Bayesian parameter inference to provide an understanding of gene-expression dynamics and resource sharing. We suggest that our integrated approach is expandable to a whole range of nonmodel bacteria for the characterization of new DNA parts within a native cell-free background for new biotechnology applications. Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium , is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Nonmodel bacteria have essential roles to play in the future development of biotechnology by providing new sources of biocatalysts, antibiotics, hosts for bioproduction, and engineered “living therapies.” The characterization of such hosts can be challenging, as many are not tractable to standard molecular biology techniques. This paper presents a rapid and automated methodology for characterizing new DNA parts from a nonmodel bacterium using cell-free transcription–translation. Data analysis was performed with Bayesian parameter inference to provide an understanding of gene-expression dynamics and resource sharing. We suggest that our integrated approach is expandable to a whole range of nonmodel bacteria for the characterization of new DNA parts within a native cell-free background for new biotechnology applications. Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium , is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Author McClymont, David W.
Kylilis, Nicolas
Aw, Rochelle
Wienecke, Sarah
Tsipa, Argyro
Polizzi, Karen M.
Bell, David J.
Freemont, Paul S.
Jensen, Kirsten
Biedendieck, Rebekka
MacDonald, James T.
Moore, Simon J.
Ishwarbhai, Alka
Author_xml – sequence: 1
  givenname: Simon J.
  surname: Moore
  fullname: Moore, Simon J.
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 2
  givenname: James T.
  surname: MacDonald
  fullname: MacDonald, James T.
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 3
  givenname: Sarah
  surname: Wienecke
  fullname: Wienecke, Sarah
  organization: Braunschweig Integrated Centre of Systems Biology, Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
– sequence: 4
  givenname: Alka
  surname: Ishwarbhai
  fullname: Ishwarbhai, Alka
  organization: London DNA Foundry, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 5
  givenname: Argyro
  surname: Tsipa
  fullname: Tsipa, Argyro
  organization: London DNA Foundry, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 6
  givenname: Rochelle
  surname: Aw
  fullname: Aw, Rochelle
  organization: Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 7
  givenname: Nicolas
  surname: Kylilis
  fullname: Kylilis, Nicolas
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 8
  givenname: David J.
  surname: Bell
  fullname: Bell, David J.
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 9
  givenname: David W.
  surname: McClymont
  fullname: McClymont, David W.
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 10
  givenname: Kirsten
  surname: Jensen
  fullname: Jensen, Kirsten
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 11
  givenname: Karen M.
  surname: Polizzi
  fullname: Polizzi, Karen M.
  organization: Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
– sequence: 12
  givenname: Rebekka
  surname: Biedendieck
  fullname: Biedendieck, Rebekka
  organization: Braunschweig Integrated Centre of Systems Biology, Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
– sequence: 13
  givenname: Paul S.
  surname: Freemont
  fullname: Freemont, Paul S.
  organization: Section for Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29666238$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1u1TAQhS1URG8La1agSGzYpB3nxz8bJFRBi1SpUtWurYljg68SO7UTpO54B96QJ8G5t7TAyh7PN0fjc47IgQ_eEPKawgkFXp9OHtMJ5bQVwChtn5ENBUlL1kg4IBuAipeiqZpDcpTSFgBkBl-Qw0oyxqpabMh8jZPrC9R3i0tudsEX6PtiDL0Zyg6TyT2Pw31yqQi20GYYShuNKeaIPunopnXm14-fu3rAnUI0qNdLKmwMY5F33ukVXX420eFL8tzikMyrh_OY3H7-dHN2UV5enX85-3hZ6hbkXHadsFa2GoxttOSMMwRqoAPLoG2Q1o0VFRiBCJ1oG9lz7LGmawHW6ro-Jh_2utPSjabXxuctBzVFN2K8VwGd-rfj3Tf1NXxXrWyEbHkWeP8gEMPdYtKsRpdWD9CbsCRVZYOBCVm1GX33H7oNS8zWZYoClZwyvgqe7ikdQ0rR2MdlKKg1UbUmqp4SzRNv__7DI_8nwgy82QPbNIf41GfZQwZ1_RsTIqyd
CitedBy_id crossref_primary_10_1021_acssynbio_9b00347
crossref_primary_10_1021_acssynbio_0c00402
crossref_primary_10_1021_acssynbio_8b00252
crossref_primary_10_3389_fbioe_2020_00213
crossref_primary_10_1038_s44259_023_00018_z
crossref_primary_10_1007_s00354_024_00259_0
crossref_primary_10_1089_hs_2018_0067
crossref_primary_10_1002_cpps_115
crossref_primary_10_1049_enb2_12024
crossref_primary_10_1146_annurev_bioeng_092019_111110
crossref_primary_10_3390_biology11040571
crossref_primary_10_1016_j_trac_2023_117015
crossref_primary_10_1016_j_synbio_2020_07_006
crossref_primary_10_1093_synbio_ysac015
crossref_primary_10_1016_j_copbio_2021_01_010
crossref_primary_10_1038_s41576_019_0186_3
crossref_primary_10_1016_j_cels_2021_10_008
crossref_primary_10_1093_nar_gkac838
crossref_primary_10_1093_synbio_ysac011
crossref_primary_10_1073_pnas_1816591116
crossref_primary_10_1021_acssynbio_3c00468
crossref_primary_10_1038_s41598_019_48468_8
crossref_primary_10_1021_acssynbio_3c00223
crossref_primary_10_1016_j_ymben_2020_12_001
crossref_primary_10_1016_j_biotechadv_2023_108199
crossref_primary_10_3390_mps2010024
crossref_primary_10_3389_fbioe_2018_00182
crossref_primary_10_1073_pnas_2220358120
crossref_primary_10_2139_ssrn_3259136
crossref_primary_10_1021_acssynbio_1c00448
crossref_primary_10_34133_2022_9847014
crossref_primary_10_1016_j_coisb_2020_09_006
crossref_primary_10_1038_s41467_020_15798_5
crossref_primary_10_1038_s41467_023_38098_0
crossref_primary_10_3390_ph15101302
crossref_primary_10_1002_cmtd_202000061
crossref_primary_10_1021_acssynbio_8b00276
crossref_primary_10_1021_acssynbio_8b00430
crossref_primary_10_1093_synbio_ysac008
crossref_primary_10_1146_annurev_chembioeng_120120_021122
crossref_primary_10_1021_acs_biomac_1c00546
crossref_primary_10_3389_fbioe_2020_00312
crossref_primary_10_1021_acssynbio_0c00386
crossref_primary_10_1016_j_coisb_2023_100488
crossref_primary_10_3389_fntpr_2024_1353362
crossref_primary_10_1002_bit_28326
crossref_primary_10_3389_fbioe_2020_00399
crossref_primary_10_34133_2021_2968181
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1021_acssynbio_3c00412
crossref_primary_10_1038_s41598_024_61376_w
crossref_primary_10_1021_acssynbio_9b00160
crossref_primary_10_3390_life11040271
crossref_primary_10_1080_07388551_2022_2090314
crossref_primary_10_1080_10409238_2021_1937928
crossref_primary_10_1093_synbio_ysab029
crossref_primary_10_1021_acssynbio_9b00437
crossref_primary_10_3389_fbioe_2022_992708
crossref_primary_10_1016_j_tibtech_2019_09_007
crossref_primary_10_1021_acsbiomaterials_1c00894
crossref_primary_10_1021_acssynbio_0c00277
crossref_primary_10_1002_advs_202001616
crossref_primary_10_3389_fmicb_2018_02152
crossref_primary_10_1021_acssynbio_3c00003
crossref_primary_10_1002_smll_201901780
crossref_primary_10_1021_acssynbio_1c00148
crossref_primary_10_3389_fbioe_2024_1359768
crossref_primary_10_1093_synbio_ysab017
crossref_primary_10_1109_LCSYS_2018_2871128
crossref_primary_10_1021_acssynbio_8b00450
crossref_primary_10_1016_j_bej_2018_07_008
crossref_primary_10_1016_j_copbio_2018_10_007
crossref_primary_10_1016_j_copbio_2018_10_006
crossref_primary_10_1016_j_copbio_2019_09_009
crossref_primary_10_1016_j_biotechadv_2021_107753
crossref_primary_10_1021_acssynbio_1c00136
crossref_primary_10_3390_microorganisms10122477
crossref_primary_10_1093_synbio_ysab007
crossref_primary_10_1042_BST20200017
crossref_primary_10_3389_fbioe_2020_584178
crossref_primary_10_1093_nar_gkz1011
crossref_primary_10_3389_fbioe_2020_00788
crossref_primary_10_3389_fbioe_2020_00942
crossref_primary_10_1002_adma_202203433
crossref_primary_10_1371_journal_pcbi_1009987
crossref_primary_10_1021_acssynbio_1c00641
crossref_primary_10_1093_nar_gkad451
crossref_primary_10_1007_s00253_021_11424_6
crossref_primary_10_1002_syst_202000016
crossref_primary_10_1002_bit_26901
crossref_primary_10_15252_msb_20198875
crossref_primary_10_1021_jacs_3c01238
crossref_primary_10_3390_pr8060675
crossref_primary_10_1021_acssynbio_0c00581
crossref_primary_10_1038_s41467_019_11889_0
crossref_primary_10_3389_fbioe_2020_00072
crossref_primary_10_1016_j_bej_2021_108124
crossref_primary_10_1016_j_ymben_2020_06_004
crossref_primary_10_1038_s41598_021_91243_x
crossref_primary_10_1016_j_synbio_2020_06_003
crossref_primary_10_1021_acssynbio_0c00634
crossref_primary_10_1002_biot_202200096
crossref_primary_10_1186_s12915_019_0685_x
crossref_primary_10_1021_acssynbio_9b00238
crossref_primary_10_1093_synbio_ysaa019
crossref_primary_10_3389_fbioe_2022_918659
crossref_primary_10_1038_s41467_022_31306_3
crossref_primary_10_1186_s40643_021_00413_2
crossref_primary_10_1016_j_csbj_2023_05_025
crossref_primary_10_1038_s41467_018_05110_x
crossref_primary_10_1021_acssynbio_2c00050
Cites_doi 10.1073/pnas.1206011109
10.1007/s002530000403
10.1016/j.ymben.2016.09.008
10.1021/sb400203p
10.1038/nature21689
10.1007/s00253-012-4567-1
10.1073/pnas.2135496100
10.1073/pnas.1522985113
10.1093/nar/22.23.4953
10.1021/sb300104f
10.1128/JB.186.6.1769-1784.2004
10.1038/nbt0809-731
10.1038/nature11234
10.1016/j.biochi.2013.11.025
10.1016/j.cell.2016.04.059
10.1016/j.jbiotec.2012.06.018
10.4161/mabs.28172
10.1021/sb400131a
10.1007/BF00191184
10.1002/bit.23103
10.1128/JB.01394-09
10.1103/PhysRevLett.106.048104
10.1002/bit.20026
10.1126/science.aac7341
10.1128/jb.108.1.105-110.1971
10.1073/pnas.062526999
10.1038/nbt.2401
10.1038/nbt.3879
10.1038/nmeth.3339
10.1128/ecosal.5.2.3
10.1093/nar/gkt052
10.1128/mr.59.1.1-30.1995
10.1128/AEM.00431-10
10.1214/ss/1177011136
10.1073/pnas.1017972108
10.1016/B978-0-12-404634-4.00014-0
10.1016/B978-0-12-385120-8.00002-4
10.1002/bit.21145
10.1109/CDC.2016.7798775
10.1021/acssynbio.5b00296
10.1021/sb400206c
10.1186/1475-2859-5-36
10.1128/AEM.00807-15
10.1007/s00253-001-0902-7
10.1016/j.ymben.2016.03.002
10.1093/nar/gku233
10.1016/j.ymben.2012.10.006
10.1016/j.ab.2011.03.036
10.1109/CDC.2013.6760079
10.1186/1471-2180-8-192
10.1038/531401a
10.1128/jb.174.9.3049-3055.1992
10.1073/pnas.1308098110
10.1038/nprot.2015.082
10.1007/BF00169622
10.1021/acssynbio.6b00031
10.1023/A:1013325627378
10.1038/nature13901
10.1002/biot.201600678
10.1128/JB.00449-11
10.1074/jbc.M112.422535
10.1007/BF00245346
10.1038/nature14098
10.1371/journal.pone.0106232
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences May 8, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences May 8, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1715806115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E4349
ExternalDocumentID 10_1073_pnas_1715806115
29666238
26509603
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F017324/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M025632/1
– fundername: German Research Foundation (GRF) priority program
  grantid: SPP1617
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/K038648/1
– fundername: BBSRC Case Studentship
  grantid: DTG BB/F017324/1
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/L011573/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-c509t-bb8ff95c0ef4c97676a01e0b0f6054a134f820e8aa0b8549d7ada310b850ffc33
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:12 EDT 2024
Fri Aug 16 07:04:42 EDT 2024
Thu Oct 10 18:36:09 EDT 2024
Fri Aug 23 01:45:43 EDT 2024
Sat Sep 28 08:22:33 EDT 2024
Fri Feb 02 07:49:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords automation
modeling
in vitro transcription–translation
cell-free synthetic biology
Bacillus
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-bb8ff95c0ef4c97676a01e0b0f6054a134f820e8aa0b8549d7ada310b850ffc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1S.J.M. and J.T.M. contributed equally to this work.
Author contributions: S.J.M., J.T.M., D.W.M., K.J., K.M.P., R.B., and P.S.F. designed research; S.J.M., J.T.M., S.W., A.I., A.T., R.A., N.K., D.J.B., D.W.M., and K.J. performed research; J.T.M. contributed new reagents/analytic tools; S.J.M., J.T.M., S.W., A.T., D.J.B., D.W.M., and R.B. analyzed data; and S.J.M., J.T.M., D.W.M., K.J., K.M.P., R.B., and P.S.F. wrote the paper.
Edited by James J. Collins, Massachusetts Institute of Technology, Boston, MA, and approved March 26, 2018 (received for review September 7, 2017)
ORCID 0000-0001-5435-2667
0000-0002-5658-8486
0000-0001-9675-4429
0000-0002-1968-206X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948957/
PMID 29666238
PQID 2101971677
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5948957
proquest_miscellaneous_2027068925
proquest_journals_2101971677
crossref_primary_10_1073_pnas_1715806115
pubmed_primary_29666238
jstor_primary_26509603
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Ling LL (e_1_3_4_12_2) 2015; 517
Payne KAP (e_1_3_4_29_2) 2015; 517
Gomez-Escribano JP (e_1_3_4_13_2) 2012; 517
Yang Y (e_1_3_4_19_2) 2006; 5
Eisenstein M (e_1_3_4_10_2) 2016; 531
Kelwick R (e_1_3_4_36_2) 2016; 38
Kim J (e_1_3_4_66_2) 2014; 42
Barnes CP (e_1_3_4_65_2) 2011; 108
Pardee K (e_1_3_4_7_2) 2016; 165
Tuza ZA (e_1_3_4_15_2) 2013
Salis HM (e_1_3_4_54_2) 2011; 498
Krömer JO (e_1_3_4_59_2) 2004; 186
Münch KM (e_1_3_4_63_2) 2015; 81
Iizuka R (e_1_3_4_46_2) 2011; 414
Jewett MC (e_1_3_4_2_2) 2004; 86
Biedendieck R (e_1_3_4_27_2) 2007; 96
Sun ZZ (e_1_3_4_16_2) 2014; 3
Nielsen AAK (e_1_3_4_32_2) 2016; 352
Groff D (e_1_3_4_8_2) 2014; 6
Haldenwang WG (e_1_3_4_49_2) 1995; 59
Guiziou S (e_1_3_4_53_2) 2016; 44
Eppinger M (e_1_3_4_68_2) 2011; 193
Bridwell-Rabb J (e_1_3_4_30_2) 2017; 544
Chappell J (e_1_3_4_17_2) 2013; 41
Chen H (e_1_3_4_52_2) 1994; 22
Rygus T (e_1_3_4_43_2) 1991; 155
Lou C (e_1_3_4_50_2) 2012; 30
Riglar DT (e_1_3_4_61_2) 2017; 35
Korneli C (e_1_3_4_25_2) 2013; 97
Moore SJ (e_1_3_4_35_2) 2017; 12
Li J (e_1_3_4_40_2) 2014; 9
Bremer H (e_1_3_4_37_2) 2008; 3
Moore SJ (e_1_3_4_21_2) 2013; 110
Kuruma Y (e_1_3_4_4_2) 2015; 10
Verkhusha VV (e_1_3_4_48_2) 2001; 66
Noireaux V (e_1_3_4_62_2) 2003; 100
Moore SJ (e_1_3_4_28_2) 2013; 288
Tojo S (e_1_3_4_33_2) 2010; 192
Moore SJ (e_1_3_4_51_2) 2016; 5
Calhoun KA (e_1_3_4_67_2) 2007
Ceroni F (e_1_3_4_64_2) 2015; 12
Takahashi MK (e_1_3_4_5_2) 2015; 4
Liu DV (e_1_3_4_57_2) 2005; 21
Niederholtmeyer H (e_1_3_4_31_2) 2013; 2
Parekh S (e_1_3_4_60_2) 2000; 54
Karim AS (e_1_3_4_56_2) 2016; 36
Seo SW (e_1_3_4_55_2) 2013; 15
Caschera F (e_1_3_4_38_2) 2014; 99
Huttenhower C (e_1_3_4_14_2) 2012; 486
Varricchio F (e_1_3_4_41_2) 1971; 108
Rygus T (e_1_3_4_42_2) 1991; 35
Swartz JR (e_1_3_4_3_2) 2009; 27
Siegal-Gaskins D (e_1_3_4_6_2) 2014; 3
Yang G (e_1_3_4_23_2) 2008; 8
Akashi H (e_1_3_4_39_2) 2002; 99
Gelman A (e_1_3_4_44_2) 1992; 7
Geertz M (e_1_3_4_9_2) 2012; 109
Karzbrun E (e_1_3_4_45_2) 2011; 106
Martens JH (e_1_3_4_20_2) 2002; 58
Wittchen KD (e_1_3_4_24_2) 1995; 42
Florea M (e_1_3_4_11_2) 2016; 113
Gyorgy A (e_1_3_4_47_2) 2016
Garamella J (e_1_3_4_1_2) 2016; 5
Rygus T (e_1_3_4_26_2) 1992; 174
Sun ZZ (e_1_3_4_34_2) 2013
Korneli C (e_1_3_4_18_2) 2013; 163
Stammen S (e_1_3_4_22_2) 2010; 76
Zawada JF (e_1_3_4_58_2) 2011; 108
References_xml – start-page: e50762
  year: 2013
  ident: e_1_3_4_34_2
  article-title: Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology
  publication-title: J Vis Exp
  contributor:
    fullname: Sun ZZ
– volume: 109
  start-page: 16540
  year: 2012
  ident: e_1_3_4_9_2
  article-title: Massively parallel measurements of molecular interaction kinetics on a microfluidic platform
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1206011109
  contributor:
    fullname: Geertz M
– volume: 54
  start-page: 287
  year: 2000
  ident: e_1_3_4_60_2
  article-title: Improvement of microbial strains and fermentation processes
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530000403
  contributor:
    fullname: Parekh S
– volume: 38
  start-page: 370
  year: 2016
  ident: e_1_3_4_36_2
  article-title: Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2016.09.008
  contributor:
    fullname: Kelwick R
– volume: 3
  start-page: 416
  year: 2014
  ident: e_1_3_4_6_2
  article-title: Gene circuit performance characterization and resource usage in a cell-free “breadboard”
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400203p
  contributor:
    fullname: Siegal-Gaskins D
– volume: 544
  start-page: 322
  year: 2017
  ident: e_1_3_4_30_2
  article-title: A B12-dependent radical SAM enzyme involved in oxetanocin A biosynthesis
  publication-title: Nature
  doi: 10.1038/nature21689
  contributor:
    fullname: Bridwell-Rabb J
– volume: 97
  start-page: 3343
  year: 2013
  ident: e_1_3_4_25_2
  article-title: High yield production of extracellular recombinant levansucrase by Bacillus megaterium
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4567-1
  contributor:
    fullname: Korneli C
– volume: 100
  start-page: 12672
  year: 2003
  ident: e_1_3_4_62_2
  article-title: Principles of cell-free genetic circuit assembly
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2135496100
  contributor:
    fullname: Noireaux V
– volume: 113
  start-page: E3431
  year: 2016
  ident: e_1_3_4_11_2
  article-title: Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1522985113
  contributor:
    fullname: Florea M
– volume: 22
  start-page: 4953
  year: 1994
  ident: e_1_3_4_52_2
  article-title: Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/22.23.4953
  contributor:
    fullname: Chen H
– volume: 21
  start-page: 460
  year: 2005
  ident: e_1_3_4_57_2
  article-title: Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis
  publication-title: Biotechnol Prog
  contributor:
    fullname: Liu DV
– volume: 2
  start-page: 411
  year: 2013
  ident: e_1_3_4_31_2
  article-title: Real-time mRNA measurement during an in vitro transcription and translation reaction using binary probes
  publication-title: ACS Synth Biol
  doi: 10.1021/sb300104f
  contributor:
    fullname: Niederholtmeyer H
– volume: 186
  start-page: 1769
  year: 2004
  ident: e_1_3_4_59_2
  article-title: In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.6.1769-1784.2004
  contributor:
    fullname: Krömer JO
– volume: 27
  start-page: 731
  year: 2009
  ident: e_1_3_4_3_2
  article-title: Universal cell-free protein synthesis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0809-731
  contributor:
    fullname: Swartz JR
– volume: 486
  start-page: 207
  year: 2012
  ident: e_1_3_4_14_2
  article-title: Structure, function and diversity of the healthy human microbiome
  publication-title: Nature
  doi: 10.1038/nature11234
  contributor:
    fullname: Huttenhower C
– volume: 99
  start-page: 162
  year: 2014
  ident: e_1_3_4_38_2
  article-title: Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2013.11.025
  contributor:
    fullname: Caschera F
– volume: 165
  start-page: 1255
  year: 2016
  ident: e_1_3_4_7_2
  article-title: Rapid, low-cost detection of Zika virus using programmable biomolecular components
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.059
  contributor:
    fullname: Pardee K
– volume: 163
  start-page: 87
  year: 2013
  ident: e_1_3_4_18_2
  article-title: Getting the big beast to work—Systems biotechnology of Bacillus megaterium for novel high-value proteins
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2012.06.018
  contributor:
    fullname: Korneli C
– volume: 44
  start-page: 7495
  year: 2016
  ident: e_1_3_4_53_2
  article-title: A part toolbox to tune genetic expression in Bacillus subtilis
  publication-title: Nucleic Acids Res
  contributor:
    fullname: Guiziou S
– volume: 6
  start-page: 671
  year: 2014
  ident: e_1_3_4_8_2
  article-title: Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins
  publication-title: MAbs
  doi: 10.4161/mabs.28172
  contributor:
    fullname: Groff D
– volume: 3
  start-page: 387
  year: 2014
  ident: e_1_3_4_16_2
  article-title: Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400131a
  contributor:
    fullname: Sun ZZ
– volume: 42
  start-page: 871
  year: 1995
  ident: e_1_3_4_24_2
  article-title: Inactivation of the major extracellular protease from Bacillus megaterium DSM319 by gene replacement
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00191184
  contributor:
    fullname: Wittchen KD
– volume: 108
  start-page: 1570
  year: 2011
  ident: e_1_3_4_58_2
  article-title: Microscale to manufacturing scale-up of cell-free cytokine production—A new approach for shortening protein production development timelines
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.23103
  contributor:
    fullname: Zawada JF
– volume: 192
  start-page: 1573
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis
  publication-title: J Bacteriol
  doi: 10.1128/JB.01394-09
  contributor:
    fullname: Tojo S
– volume: 106
  start-page: 048104
  year: 2011
  ident: e_1_3_4_45_2
  article-title: Coarse-grained dynamics of protein synthesis in a cell-free system
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.048104
  contributor:
    fullname: Karzbrun E
– volume: 86
  start-page: 19
  year: 2004
  ident: e_1_3_4_2_2
  article-title: Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20026
  contributor:
    fullname: Jewett MC
– volume: 352
  start-page: aac7341
  year: 2016
  ident: e_1_3_4_32_2
  article-title: Genetic circuit design automation
  publication-title: Science
  doi: 10.1126/science.aac7341
  contributor:
    fullname: Nielsen AAK
– volume: 108
  start-page: 105
  year: 1971
  ident: e_1_3_4_41_2
  article-title: Ribosome patterns in Escherichia coli growing at various rates
  publication-title: J Bacteriol
  doi: 10.1128/jb.108.1.105-110.1971
  contributor:
    fullname: Varricchio F
– volume: 99
  start-page: 3695
  year: 2002
  ident: e_1_3_4_39_2
  article-title: Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.062526999
  contributor:
    fullname: Akashi H
– volume: 30
  start-page: 1137
  year: 2012
  ident: e_1_3_4_50_2
  article-title: Ribozyme-based insulator parts buffer synthetic circuits from genetic context
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2401
  contributor:
    fullname: Lou C
– volume: 35
  start-page: 653
  year: 2017
  ident: e_1_3_4_61_2
  article-title: Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3879
  contributor:
    fullname: Riglar DT
– volume: 12
  start-page: 415
  year: 2015
  ident: e_1_3_4_64_2
  article-title: Quantifying cellular capacity identifies gene expression designs with reduced burden
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3339
  contributor:
    fullname: Ceroni F
– volume: 3
  year: 2008
  ident: e_1_3_4_37_2
  article-title: Modulation of chemical composition and other parameters of the cell at different exponential growth rates
  publication-title: EcoSal Plus
  doi: 10.1128/ecosal.5.2.3
  contributor:
    fullname: Bremer H
– volume: 41
  start-page: 3471
  year: 2013
  ident: e_1_3_4_17_2
  article-title: Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt052
  contributor:
    fullname: Chappell J
– volume: 59
  start-page: 1
  year: 1995
  ident: e_1_3_4_49_2
  article-title: The sigma factors of Bacillus subtilis
  publication-title: Microbiol Rev
  doi: 10.1128/mr.59.1.1-30.1995
  contributor:
    fullname: Haldenwang WG
– volume: 76
  start-page: 4037
  year: 2010
  ident: e_1_3_4_22_2
  article-title: High-yield intra- and extracellular protein production using Bacillus megaterium
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00431-10
  contributor:
    fullname: Stammen S
– volume: 7
  start-page: 457
  year: 1992
  ident: e_1_3_4_44_2
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011136
  contributor:
    fullname: Gelman A
– volume: 108
  start-page: 15190
  year: 2011
  ident: e_1_3_4_65_2
  article-title: Bayesian design of synthetic biological systems
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1017972108
  contributor:
    fullname: Barnes CP
– volume: 517
  start-page: 279
  year: 2012
  ident: e_1_3_4_13_2
  article-title: Streptomyces coelicolor as an expression host for heterologous gene clusters
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-404634-4.00014-0
  contributor:
    fullname: Gomez-Escribano JP
– volume: 498
  start-page: 19
  year: 2011
  ident: e_1_3_4_54_2
  article-title: The ribosome binding site calculator
  publication-title: Methods Enzymol
  doi: 10.1016/B978-0-12-385120-8.00002-4
  contributor:
    fullname: Salis HM
– volume: 96
  start-page: 525
  year: 2007
  ident: e_1_3_4_27_2
  article-title: Plasmid system for the intracellular production and purification of affinity-tagged proteins in Bacillus megaterium
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.21145
  contributor:
    fullname: Biedendieck R
– start-page: 3363
  volume-title: 2016 IEEE 55th Conference on Decision and Control (CDC)
  year: 2016
  ident: e_1_3_4_47_2
  doi: 10.1109/CDC.2016.7798775
  contributor:
    fullname: Gyorgy A
– volume: 5
  start-page: 344
  year: 2016
  ident: e_1_3_4_1_2
  article-title: The all E. coli TX-TL Toolbox 2.0: A platform for cell-free synthetic biology
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.5b00296
  contributor:
    fullname: Garamella J
– volume: 4
  start-page: 503
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems
  publication-title: ACS Synth Biol
  doi: 10.1021/sb400206c
  contributor:
    fullname: Takahashi MK
– volume: 5
  start-page: 36
  year: 2006
  ident: e_1_3_4_19_2
  article-title: High yield recombinant penicillin G amidase production and export into the growth medium using Bacillus megaterium
  publication-title: Microb Cell Fact
  doi: 10.1186/1475-2859-5-36
  contributor:
    fullname: Yang Y
– volume: 81
  start-page: 5976
  year: 2015
  ident: e_1_3_4_63_2
  article-title: Polar fixation of plasmids during recombinant protein production in Bacillus megaterium results in population heterogeneity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00807-15
  contributor:
    fullname: Münch KM
– volume: 58
  start-page: 275
  year: 2002
  ident: e_1_3_4_20_2
  article-title: Microbial production of vitamin B12
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-001-0902-7
  contributor:
    fullname: Martens JH
– volume: 36
  start-page: 116
  year: 2016
  ident: e_1_3_4_56_2
  article-title: A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2016.03.002
  contributor:
    fullname: Karim AS
– volume: 42
  start-page: 6078
  year: 2014
  ident: e_1_3_4_66_2
  article-title: Synthetic circuit for exact adaptation and fold-change detection
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku233
  contributor:
    fullname: Kim J
– volume: 15
  start-page: 67
  year: 2013
  ident: e_1_3_4_55_2
  article-title: Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.10.006
  contributor:
    fullname: Seo SW
– start-page: 3
  volume-title: In Vitro Transcription and Translation Protocols
  year: 2007
  ident: e_1_3_4_67_2
  contributor:
    fullname: Calhoun KA
– volume: 414
  start-page: 173
  year: 2011
  ident: e_1_3_4_46_2
  article-title: Kinetic study of de novo chromophore maturation of fluorescent proteins
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2011.03.036
  contributor:
    fullname: Iizuka R
– start-page: 1404
  volume-title: Proceedings of the 52nd IEEE Conference on Decision and Control
  year: 2013
  ident: e_1_3_4_15_2
  doi: 10.1109/CDC.2013.6760079
  contributor:
    fullname: Tuza ZA
– volume: 8
  start-page: 192
  year: 2008
  ident: e_1_3_4_23_2
  article-title: Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-8-192
  contributor:
    fullname: Yang G
– volume: 531
  start-page: 401
  year: 2016
  ident: e_1_3_4_10_2
  article-title: Living factories of the future
  publication-title: Nature
  doi: 10.1038/531401a
  contributor:
    fullname: Eisenstein M
– volume: 174
  start-page: 3049
  year: 1992
  ident: e_1_3_4_26_2
  article-title: Catabolite repression of the xyl operon in Bacillus megaterium
  publication-title: J Bacteriol
  doi: 10.1128/jb.174.9.3049-3055.1992
  contributor:
    fullname: Rygus T
– volume: 110
  start-page: 14906
  year: 2013
  ident: e_1_3_4_21_2
  article-title: Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12)
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1308098110
  contributor:
    fullname: Moore SJ
– volume: 10
  start-page: 1328
  year: 2015
  ident: e_1_3_4_4_2
  article-title: The PURE system for the cell-free synthesis of membrane proteins
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.082
  contributor:
    fullname: Kuruma Y
– volume: 35
  start-page: 594
  year: 1991
  ident: e_1_3_4_42_2
  article-title: Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/BF00169622
  contributor:
    fullname: Rygus T
– volume: 5
  start-page: 1059
  year: 2016
  ident: e_1_3_4_51_2
  article-title: EcoFlex: A multifunctional MoClo kit for E. coli synthetic biology
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.6b00031
  contributor:
    fullname: Moore SJ
– volume: 66
  start-page: 1342
  year: 2001
  ident: e_1_3_4_48_2
  article-title: Kinetic analysis of maturation and denaturation of DsRed, a coral-derived red fluorescent protein
  publication-title: Biochemistry (Mosc)
  doi: 10.1023/A:1013325627378
  contributor:
    fullname: Verkhusha VV
– volume: 517
  start-page: 513
  year: 2015
  ident: e_1_3_4_29_2
  article-title: Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation
  publication-title: Nature
  doi: 10.1038/nature13901
  contributor:
    fullname: Payne KAP
– volume: 12
  start-page: 1600678
  year: 2017
  ident: e_1_3_4_35_2
  article-title: Streptomyces venezuelae TX-TL—A next generation cell-free synthetic biology tool
  publication-title: Biotechnol J
  doi: 10.1002/biot.201600678
  contributor:
    fullname: Moore SJ
– volume: 193
  start-page: 4199
  year: 2011
  ident: e_1_3_4_68_2
  article-title: Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319
  publication-title: J Bacteriol
  doi: 10.1128/JB.00449-11
  contributor:
    fullname: Eppinger M
– volume: 288
  start-page: 297
  year: 2013
  ident: e_1_3_4_28_2
  article-title: Characterization of the enzyme CbiH60 involved in anaerobic ring contraction of the cobalamin (vitamin B12) biosynthetic pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.422535
  contributor:
    fullname: Moore SJ
– volume: 155
  start-page: 535
  year: 1991
  ident: e_1_3_4_43_2
  article-title: Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization
  publication-title: Arch Microbiol
  doi: 10.1007/BF00245346
  contributor:
    fullname: Rygus T
– volume: 517
  start-page: 455
  year: 2015
  ident: e_1_3_4_12_2
  article-title: A new antibiotic kills pathogens without detectable resistance
  publication-title: Nature
  doi: 10.1038/nature14098
  contributor:
    fullname: Ling LL
– volume: 9
  start-page: e106232
  year: 2014
  ident: e_1_3_4_40_2
  article-title: Improved cell-free RNA and protein synthesis system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106232
  contributor:
    fullname: Li J
SSID ssj0009580
Score 2.6211832
Snippet Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene...
Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene...
Significance Nonmodel bacteria have essential roles to play in the future development of biotechnology by providing new sources of biocatalysts, antibiotics,...
Nonmodel bacteria have essential roles to play in the future development of biotechnology by providing new sources of biocatalysts, antibiotics, hosts for...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E4340
SubjectTerms Amino acids
Bacillus megaterium - chemistry
Bacillus megaterium - genetics
Bacillus megaterium - metabolism
Bacteria
Bayesian analysis
Binding sites
Biological Sciences
Biotechnology
Cell culture
Cell-Free System - chemistry
Cell-Free System - metabolism
Competition
Differential equations
Gene expression
Mathematical models
Microorganisms
Modelling
Models, Biological
Nucleotides
PNAS Plus
Promoters
Protein Biosynthesis
Regulatory sequences
Ribonucleic acid
Ribosomes
RNA
Transcription factors
Transcription, Genetic
Translation
Title Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria
URI https://www.jstor.org/stable/26509603
https://www.ncbi.nlm.nih.gov/pubmed/29666238
https://www.proquest.com/docview/2101971677
https://search.proquest.com/docview/2027068925
https://pubmed.ncbi.nlm.nih.gov/PMC5948957
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbanrggChQCBRmJQzlk17Ed2zmiiqpCKkKISr1F4z-xEs1uu9k778Ab9kk6dpItizhxtDxxIs_Y840z85mQ99FWUsd09FYDL6VCXQD4WHrJmYsSLGQmposv6vxSfr6qr_ZIPdXC5KR9Zxez7uf1rFv8yLmVq2s3n_LE5l8vThPFSIOR_D7Z10JMIfqWadcMdScct1_J5cTno8V81cF6VukKJRQioUQEjGgfAYDZ8UpDYuK_IOffmZN_uKKzJ-TxiCHpx-FbD8le6J6Sw3GVrunJSCX94Rnpv8Fq4Sm4m81iSM6i0Hmar78pkwPDvpGVhC4jTaf4ZbwNgfbJhU0byt2v37k9pM1RhJm5GGJNU20K7ZZdHo_agfgZnpPLs0_fT8_L8Z6F0iFc6EtrTYxN7ViI0iE80QpYFZhlEWMdCZWQEXFCMADMGownvQYPCAuxwWJ0QhyRA3xXeEmoVNxH7oKUjZDa1I2xVigPHEKtovMFOZnmuV0NdBpt_g2uRZu00z5opyBHWQ9bOZ7I_hQTBTmeFNOOC27dYuRaJTYsrQvybtuNSyXNHHRhuUEZNAmmTMNx7BeDHh8GHw2hIHpHw1uBRMO924PWmem4R2t89d9PviaPEIaZnEZpjslBf7sJbxDq9PZtNu17VyIBjw
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VcoALUKAQKGAkDuWQ3cRxYueIKqoFuhVCLeotGju2uoJml272wol_4A_5EsZOsmUrLnC0xnHkzNh-Ez8_A7xyOhXS-V9vOfJYFOQLxNrFteCJcQI1BiWm6XExORXvz_KzLciHszCBtG_0bNR8vRg1s_PArVxcmPHAExt_nB54iZGSMvkbcJPGK8-HJH2ttau6kyecJmDBxaDoI7PxosHlKJUp1SgIC3kpYML7BAHUxrrUURP_Bjqvcyf_WIwO78LnoRsdB-XLaNXqkfl-TeHxn_t5D-708JS96cw7sGWb-7DTTwBLtt-rVL9-AO0nXMxqhubbatbxvhg2NQs368R-bSRbL3jC5o75DYLYXVrLWr86DnPVrx8_Q7lj5DFCsOGcxZL5Yy-smTehPaY7TWl8CKeHb08OJnF_hUNsCIm0sdbKuTI3iXXCEPKRBSapTXTiKI0SmGbCEQSxCjHRilLVWmKNhDipkDhnsmwXtuld9jEwUfDacWOFKDMhVV4qrbOiRo42L5ypI9gfHFgtOqWOKuywy6zybq-u3B7BbnDwuh73OoJFkkWwN3i86sfysqKkOPVCW1JG8HJtplHovxw2dr6iOhRrSaFKTm0_6gLkqvE-wiKQG6GzruAVvjctFBBB6bsPgCf__eQLuDU5mR5VR--OPzyF24T2VGBrqj3Ybi9X9hkhqlY_D-PnNxhsI5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLpUBLSgEjcSiHZBPHiZ0jKqzKR6sKUaniEo2_xAqaDd3shRP_gX_IL2HsJNtuxalHyxNHzoztN_HzMyGvnMq4cP7XWwEs5iX6AsC42HCWasdBQVBiOjouD0_5h7Pi7MpVX4G0r9UsaX6cJ83sW-BWtud6MvLEJidHB15ipMJMvjVucpvcwTHLxJior_R2ZX_6hOEkzBkfVX1EPmkbWCSZyNCiRDzk5YAR8yMMkGtrU09P_B_wvM6fvLIgTTfJ17ErPQ_le7LsVKJ_XVN5vFFfH5D7A0ylb3qTLXLLNg_J1jARLOj-oFb9-hHpPkM7MxT0z-Ws539RaAwNN-zEfo3EukH4hM4d9RsFsbuwlnZ-lRznrL-__4Ryz8yjiGTDeYsF9cdfaDNvQntU9drS8JicTt99OTiMh6scYo2IpIuVks5VhU6t4xoRkCghzWyqUofpFIcs5w6hiJUAqZKYshoBBhB5YiF1Tuf5NtnAd9knhPKSGce05bzKuZBFJZXKSwMMbFE6bSKyPzqxbnvFjjrstIu89q6vL10fke3g5JUd83qCZZpHZG_0ej2M6UWNyXHmBbeEiMjLVTWORv_loLHzJdpgvKWlrBi2vdMHyWXjQ5RFRKyFz8rAK32v12BQBMXvIQh2b_zkC3L35O20_vT--ONTcg9BnwykTblHNrqLpX2GwKpTz8MQ-gcYciYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+acquisition+and+model-based+analysis+of+cell-free+transcription-translation+reactions+from+nonmodel+bacteria&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Moore%2C+Simon+J&rft.au=MacDonald%2C+James+T&rft.au=Wienecke%2C+Sarah&rft.au=Ishwarbhai%2C+Alka&rft.date=2018-05-08&rft.eissn=1091-6490&rft.volume=115&rft.issue=19&rft.spage=E4340&rft.epage=E4349&rft_id=info:doi/10.1073%2Fpnas.1715806115&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon