Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC

Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 37; pp. E7697 - E7706
Main Authors Satoh, Kiyotoshi, Yachida, Shinichi, Sugimoto, Masahiro, Oshima, Minoru, Nakagawa, Toshitaka, Akamoto, Shintaro, Tabata, Sho, Saitoh, Kaori, Kato, Keiko, Sato, Saya, Igarashi, Kaori, Aizawa, Yumi, Kajino-Sakamoto, Rie, Kojima, Yasushi, Fujishita, Teruaki, Enomoto, Ayame, Hirayama, Akiyoshi, Ishikawa, Takamasa, Taketo, Makoto Mark, Kushida, Yoshio, Haba, Reiji, Okano, Keiichi, Tomita, Masaru, Suzuki, Yasuyuki, Fukuda, Shinji, Aoki, Masahiro, Soga, Tomoyoshi
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.09.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.
AbstractList Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.
Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.
Metabolic reprogramming is one of the hallmarks of cancer. However, the underlying mechanisms that regulate cancer metabolism are poorly understood. Here we performed multiomics-based analysis of paired normal–tumor tissues from patients with colorectal cancer, which revealed that the protooncogene protein MYC regulated global metabolic reprogramming of colorectal cancer by modulating 215 metabolic reactions. Importantly, this metabolic reprogramming occurred in a manner not associated with specific gene mutations in colorectal carcinogenesis. For many years, small-molecule or biologic inhibitors of MYC have been required. Here we demonstrate that knockdown of MYC downstream pyrimidine synthesis genes contributes to the suppression of colorectal cancer cell proliferation similar to MYC, and thus pyrimidine synthesis pathways could be potential targets for colorectal cancer therapy. Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD , UMPS , and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.
Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as , , and blocked cell growth, and thus are potential targets for colorectal cancer therapy.
Author Soga, Tomoyoshi
Igarashi, Kaori
Aizawa, Yumi
Fujishita, Teruaki
Kushida, Yoshio
Sato, Saya
Saitoh, Kaori
Ishikawa, Takamasa
Taketo, Makoto Mark
Hirayama, Akiyoshi
Fukuda, Shinji
Yachida, Shinichi
Oshima, Minoru
Sugimoto, Masahiro
Enomoto, Ayame
Suzuki, Yasuyuki
Haba, Reiji
Akamoto, Shintaro
Nakagawa, Toshitaka
Kajino-Sakamoto, Rie
Satoh, Kiyotoshi
Tomita, Masaru
Aoki, Masahiro
Kojima, Yasushi
Kato, Keiko
Tabata, Sho
Okano, Keiichi
Author_xml – sequence: 1
  givenname: Kiyotoshi
  surname: Satoh
  fullname: Satoh, Kiyotoshi
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 2
  givenname: Shinichi
  surname: Yachida
  fullname: Yachida, Shinichi
  organization: National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
– sequence: 3
  givenname: Masahiro
  surname: Sugimoto
  fullname: Sugimoto, Masahiro
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 4
  givenname: Minoru
  surname: Oshima
  fullname: Oshima, Minoru
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 5
  givenname: Toshitaka
  surname: Nakagawa
  fullname: Nakagawa, Toshitaka
  organization: Life Science Center, Kagawa University, Kagawa 761-0793, Japan
– sequence: 6
  givenname: Shintaro
  surname: Akamoto
  fullname: Akamoto, Shintaro
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 7
  givenname: Sho
  surname: Tabata
  fullname: Tabata, Sho
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 8
  givenname: Kaori
  surname: Saitoh
  fullname: Saitoh, Kaori
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 9
  givenname: Keiko
  surname: Kato
  fullname: Kato, Keiko
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 10
  givenname: Saya
  surname: Sato
  fullname: Sato, Saya
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 11
  givenname: Kaori
  surname: Igarashi
  fullname: Igarashi, Kaori
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 12
  givenname: Yumi
  surname: Aizawa
  fullname: Aizawa, Yumi
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 13
  givenname: Rie
  surname: Kajino-Sakamoto
  fullname: Kajino-Sakamoto, Rie
  organization: Division of Molecular Pathology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan
– sequence: 14
  givenname: Yasushi
  surname: Kojima
  fullname: Kojima, Yasushi
  organization: Division of Molecular Pathology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan
– sequence: 15
  givenname: Teruaki
  surname: Fujishita
  fullname: Fujishita, Teruaki
  organization: Division of Molecular Pathology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan
– sequence: 16
  givenname: Ayame
  surname: Enomoto
  fullname: Enomoto, Ayame
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 17
  givenname: Akiyoshi
  surname: Hirayama
  fullname: Hirayama, Akiyoshi
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 18
  givenname: Takamasa
  surname: Ishikawa
  fullname: Ishikawa, Takamasa
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 19
  givenname: Makoto Mark
  surname: Taketo
  fullname: Taketo, Makoto Mark
  organization: Department of Pharmacology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 20
  givenname: Yoshio
  surname: Kushida
  fullname: Kushida, Yoshio
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 21
  givenname: Reiji
  surname: Haba
  fullname: Haba, Reiji
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 22
  givenname: Keiichi
  surname: Okano
  fullname: Okano, Keiichi
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 23
  givenname: Masaru
  surname: Tomita
  fullname: Tomita, Masaru
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 24
  givenname: Yasuyuki
  surname: Suzuki
  fullname: Suzuki, Yasuyuki
  organization: Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
– sequence: 25
  givenname: Shinji
  surname: Fukuda
  fullname: Fukuda, Shinji
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
– sequence: 26
  givenname: Masahiro
  surname: Aoki
  fullname: Aoki, Masahiro
  organization: Division of Molecular Pathology, Aichi Cancer Center Research Institute, Chikusa-Ku, Nagoya, Aichi 464-8681, Japan
– sequence: 27
  givenname: Tomoyoshi
  surname: Soga
  fullname: Soga, Tomoyoshi
  organization: Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28847964$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1vFDEQxS2UiFwCNRXIEg3NJv72ukGKThCQEqWBgsqa9XoPn3btw_Yi5b9nT5cQiJRqivm9pzfzTtFRTNEj9IaSc0o0v9hFKOdUU8KVolS8QCtKDG2UMOQIrQhhumkFEyfotJQtIcTIlrxEJ6xthTZKrBBcjamDEU--QpfG4HD2u5w2GaYpxA1OA3ZpTNm7ulAOovMZJ-fmXDBUDL2PaQJcKmw8htjjUHCI_ex8j7s7fPNj_QodDzAW__p-nqHvnz99W39prm-vvq4vrxsnialNB0ZSwagclJOCejowB0LAQATv-XIfMDl4INK1rmey7z1XnepAMcYVB8fP0MeD727uJt87H2uG0e5ymCDf2QTB_r-J4afdpN9WKiII14vBh3uDnH7NvlQ7heL8OEL0aS6WGs6lkVqYBX3_BN2mOcflvIUSStCWGLVQ7_5N9DfKw_cXQB4Al1Mp2Q_WhQo1pH3AMFpK7L5lu2_ZPra86C6e6B6sn1e8PSi2pab8mESJVmuq-R9Y_bRj
CitedBy_id crossref_primary_10_3389_fonc_2021_682773
crossref_primary_10_1097_MD_0000000000036615
crossref_primary_10_1186_s12964_019_0444_1
crossref_primary_10_1016_j_bbadis_2023_166644
crossref_primary_10_1016_j_csbj_2019_01_007
crossref_primary_10_1038_s42255_023_00817_8
crossref_primary_10_1002_advs_202412551
crossref_primary_10_1038_s41420_022_00824_w
crossref_primary_10_1007_s12032_020_01448_9
crossref_primary_10_1002_1873_3468_14296
crossref_primary_10_1111_cas_14244
crossref_primary_10_1080_10715762_2022_2038789
crossref_primary_10_1038_s42003_022_03363_3
crossref_primary_10_1136_gutjnl_2020_322780
crossref_primary_10_1186_s13046_020_01711_x
crossref_primary_10_7717_peerj_9847
crossref_primary_10_1016_j_semcdb_2019_05_018
crossref_primary_10_1007_s10565_023_09837_2
crossref_primary_10_1186_s12935_024_03434_x
crossref_primary_10_1016_j_ebiom_2022_104345
crossref_primary_10_3390_ijms242216102
crossref_primary_10_1002_ctm2_1164
crossref_primary_10_1111_febs_15831
crossref_primary_10_3390_ijms23126510
crossref_primary_10_34014_2227_1848_2024_4_112_121
crossref_primary_10_3390_metabo12010059
crossref_primary_10_1016_j_ccell_2018_02_004
crossref_primary_10_1158_0008_5472_CAN_22_2370
crossref_primary_10_1002_jcp_28163
crossref_primary_10_1016_j_biopha_2023_115690
crossref_primary_10_1038_s41416_020_0773_2
crossref_primary_10_1016_j_devcel_2019_07_022
crossref_primary_10_1111_gtc_12742
crossref_primary_10_1158_1940_6207_CAPR_18_0380
crossref_primary_10_1038_s42003_023_05331_x
crossref_primary_10_3390_metabo11100671
crossref_primary_10_1038_s41598_022_23463_8
crossref_primary_10_3390_metabo11100672
crossref_primary_10_1111_cas_15472
crossref_primary_10_1186_s12935_024_03503_1
crossref_primary_10_1016_j_ejca_2022_11_025
crossref_primary_10_3389_fonc_2021_620945
crossref_primary_10_3390_ijms20133344
crossref_primary_10_3389_fonc_2021_684961
crossref_primary_10_3390_cells12020340
crossref_primary_10_1021_acs_analchem_0c04179
crossref_primary_10_3389_fendo_2018_00177
crossref_primary_10_1038_s41418_021_00760_9
crossref_primary_10_1080_08830185_2021_1954638
crossref_primary_10_3390_cancers13081980
crossref_primary_10_1111_jcmm_16436
crossref_primary_10_1038_s41598_019_55296_3
crossref_primary_10_1007_s00432_022_04212_w
crossref_primary_10_1038_s41467_024_47399_x
crossref_primary_10_1111_cas_16430
crossref_primary_10_4254_wjh_v13_i11_1512
crossref_primary_10_1186_s12944_019_0977_8
crossref_primary_10_1590_0102_672020200004e1568
crossref_primary_10_1016_j_cjac_2023_100270
crossref_primary_10_3390_biology10111115
crossref_primary_10_1186_s13578_023_00977_w
crossref_primary_10_1080_15592294_2020_1863117
crossref_primary_10_1080_21655979_2021_1971036
crossref_primary_10_1080_21691401_2020_1825092
crossref_primary_10_1186_s40364_018_0151_x
crossref_primary_10_1038_s41388_023_02803_6
crossref_primary_10_3390_ijms22168527
crossref_primary_10_1038_s41598_021_87698_7
crossref_primary_10_3390_biomedicines9101401
crossref_primary_10_1038_s41568_022_00485_y
crossref_primary_10_1186_s13046_018_0835_y
crossref_primary_10_1016_j_jep_2024_118541
crossref_primary_10_1038_s41392_020_00446_7
crossref_primary_10_1007_s13402_022_00740_2
crossref_primary_10_1016_j_isci_2024_109229
crossref_primary_10_3892_ol_2020_11838
crossref_primary_10_3390_ijerph18115564
crossref_primary_10_1172_jci_insight_152611
crossref_primary_10_1186_s12964_020_0513_5
crossref_primary_10_1016_j_yexcr_2022_113155
crossref_primary_10_1111_jog_15834
crossref_primary_10_3389_fphar_2023_1275000
crossref_primary_10_1016_j_bbalip_2019_158579
crossref_primary_10_1371_journal_pone_0262364
crossref_primary_10_1042_BSR20202915
crossref_primary_10_3390_cancers11040511
crossref_primary_10_1101_gad_320127_118
crossref_primary_10_1016_j_jphs_2024_02_012
crossref_primary_10_1016_j_molmet_2024_102037
crossref_primary_10_1038_s42255_019_0156_2
crossref_primary_10_1038_s41467_018_03899_1
crossref_primary_10_1158_1078_0432_CCR_18_0260
crossref_primary_10_31083_j_fbl2812328
crossref_primary_10_1055_s_0042_1746204
crossref_primary_10_3390_ijms25158175
crossref_primary_10_62347_EUKS9325
crossref_primary_10_1016_j_bbcan_2021_188643
crossref_primary_10_1016_j_bbrc_2021_07_084
crossref_primary_10_1186_s12967_023_04335_9
crossref_primary_10_1016_j_chroma_2021_462355
crossref_primary_10_1016_j_phrs_2018_03_019
crossref_primary_10_1021_acsomega_1c01183
crossref_primary_10_3390_cancers11050688
crossref_primary_10_1002_jcp_27154
crossref_primary_10_1186_s13046_025_03325_7
crossref_primary_10_1186_s12859_021_04297_z
crossref_primary_10_3390_biology10090847
crossref_primary_10_1002_elps_201800323
crossref_primary_10_1242_jcs_213579
crossref_primary_10_1016_j_coisb_2017_12_002
crossref_primary_10_3390_cancers12040772
crossref_primary_10_1038_s41598_024_63993_x
crossref_primary_10_3390_diagnostics11030561
crossref_primary_10_1016_j_jbc_2022_102837
crossref_primary_10_3892_mmr_2023_13106
crossref_primary_10_1002_2211_5463_13860
crossref_primary_10_1080_19490976_2023_2245562
crossref_primary_10_1021_acs_analchem_0c01767
crossref_primary_10_3390_ph16050683
crossref_primary_10_1007_s11888_018_0420_y
crossref_primary_10_1186_s12885_024_11964_w
crossref_primary_10_2139_ssrn_4130574
crossref_primary_10_1002_1878_0261_70010
crossref_primary_10_1038_s41598_019_55211_w
crossref_primary_10_1155_2020_5934821
crossref_primary_10_1016_j_bbadis_2021_166210
crossref_primary_10_1021_acs_analchem_4c01171
crossref_primary_10_1038_s41416_023_02256_4
crossref_primary_10_1245_s10434_019_07780_3
crossref_primary_10_1002_ijc_34486
crossref_primary_10_3390_ijms22126262
crossref_primary_10_1186_s12935_024_03337_x
crossref_primary_10_1038_s41598_024_72938_3
crossref_primary_10_1016_j_jnutbio_2021_108922
crossref_primary_10_1038_s42255_020_0195_8
crossref_primary_10_3389_fonc_2022_823696
crossref_primary_10_34175_jno202004001
crossref_primary_10_1038_s41467_025_57402_8
crossref_primary_10_1002_jor_25023
crossref_primary_10_1126_sciadv_ads4985
crossref_primary_10_1038_s42003_021_02323_7
crossref_primary_10_3389_fimmu_2022_903564
crossref_primary_10_1038_s41467_023_41952_w
crossref_primary_10_1177_03000605211059936
crossref_primary_10_18632_oncotarget_28436
crossref_primary_10_3390_ijms20082042
crossref_primary_10_1158_1078_0432_CCR_18_1040
crossref_primary_10_1016_j_gendis_2020_04_008
crossref_primary_10_3389_fonc_2021_645623
crossref_primary_10_1016_j_jss_2020_07_001
crossref_primary_10_1038_s41389_021_00376_1
crossref_primary_10_1186_s40360_022_00551_z
crossref_primary_10_1016_j_isci_2023_106045
crossref_primary_10_1016_j_bbrc_2022_08_019
crossref_primary_10_1007_s12032_022_01661_8
crossref_primary_10_1038_s41598_019_57146_8
crossref_primary_10_1016_j_gendis_2020_08_001
crossref_primary_10_1038_s41598_022_19245_x
crossref_primary_10_1016_j_biopha_2022_113619
crossref_primary_10_1093_fqsafe_fyac038
crossref_primary_10_1002_jcla_23333
crossref_primary_10_1158_0008_5472_CAN_21_1707
crossref_primary_10_3390_metabo11040215
crossref_primary_10_1016_j_ccell_2020_06_001
crossref_primary_10_1146_annurev_pathmechdis_031521_041113
crossref_primary_10_1080_1061186X_2022_2071909
crossref_primary_10_1097_MD_0000000000032877
crossref_primary_10_3390_cells9092081
crossref_primary_10_3390_cancers12092491
crossref_primary_10_1016_j_chroma_2020_460914
crossref_primary_10_1007_s10549_019_05330_9
crossref_primary_10_1186_s12967_024_05127_5
crossref_primary_10_1021_acsnano_1c00364
crossref_primary_10_1371_journal_pone_0299827
crossref_primary_10_1002_cac2_12374
crossref_primary_10_1038_s41419_020_2523_z
crossref_primary_10_7717_peerj_12338
crossref_primary_10_1007_s00210_023_02403_x
crossref_primary_10_1093_jb_mvaa085
crossref_primary_10_1186_s13046_019_1214_z
crossref_primary_10_1371_journal_pone_0208584
crossref_primary_10_1590_0102_672020210002e1585
crossref_primary_10_1038_s41540_020_00144_8
crossref_primary_10_3389_fphar_2021_768861
crossref_primary_10_1038_s41598_021_00820_7
crossref_primary_10_1111_cas_15182
crossref_primary_10_1038_s42255_023_00857_0
crossref_primary_10_3389_fmolb_2020_613918
crossref_primary_10_1016_j_gendis_2019_10_013
crossref_primary_10_1016_j_heliyon_2023_e22814
crossref_primary_10_1038_s41467_019_11447_8
crossref_primary_10_1186_s12885_021_07879_5
crossref_primary_10_1038_s41598_018_32532_w
crossref_primary_10_1096_fba_2022_00017
crossref_primary_10_1002_jcp_26917
crossref_primary_10_3390_cancers13051011
crossref_primary_10_3390_cancers12071731
crossref_primary_10_1021_acs_jmedchem_2c01505
crossref_primary_10_3390_pharmaceutics14020238
crossref_primary_10_1021_acssynbio_0c00612
crossref_primary_10_1002_path_5818
crossref_primary_10_3390_biom10050701
crossref_primary_10_1016_j_colsurfb_2020_110969
crossref_primary_10_1007_s00018_022_04535_4
crossref_primary_10_1038_s41598_020_78038_2
crossref_primary_10_3390_medicina58101498
crossref_primary_10_1016_j_cca_2020_07_039
crossref_primary_10_3390_ijms24032998
crossref_primary_10_1136_gutjnl_2024_332381
crossref_primary_10_1093_carcin_bgae037
crossref_primary_10_1021_acs_jproteome_9b00119
crossref_primary_10_1111_jcmm_15322
crossref_primary_10_1016_j_semcancer_2022_10_001
crossref_primary_10_1007_s10555_021_10006_2
crossref_primary_10_3389_fimmu_2022_955476
crossref_primary_10_3390_cancers13030541
crossref_primary_10_1016_j_canlet_2024_217091
crossref_primary_10_1038_s41419_020_2517_x
crossref_primary_10_1038_s41419_021_04247_w
crossref_primary_10_3390_molecules28114293
crossref_primary_10_1016_j_bbcan_2018_04_009
crossref_primary_10_1038_s41388_023_02632_7
crossref_primary_10_1038_s41421_019_0098_6
crossref_primary_10_1016_j_cbi_2019_02_030
crossref_primary_10_3389_fcell_2020_586479
crossref_primary_10_1021_acs_analchem_0c01258
crossref_primary_10_1016_j_semcancer_2019_09_023
crossref_primary_10_18632_oncotarget_22152
crossref_primary_10_1016_j_celrep_2019_08_087
crossref_primary_10_3389_fphar_2023_1201401
crossref_primary_10_1021_jacs_9b08698
crossref_primary_10_1016_j_bbrc_2024_149977
crossref_primary_10_3390_cancers13071641
crossref_primary_10_1186_s12935_019_0964_1
crossref_primary_10_1016_j_bbcan_2022_188797
crossref_primary_10_1016_j_gene_2023_147263
crossref_primary_10_1038_s41568_021_00375_9
crossref_primary_10_3390_ijms22126434
crossref_primary_10_1002_adma_202404880
crossref_primary_10_1016_j_cub_2021_04_078
crossref_primary_10_3390_jcm11030721
crossref_primary_10_1371_journal_pone_0247169
crossref_primary_10_1038_s41416_019_0663_7
crossref_primary_10_1016_j_yexcr_2021_112838
crossref_primary_10_3390_metabo11040198
crossref_primary_10_1093_jjco_hyac074
crossref_primary_10_1016_j_celrep_2022_111727
crossref_primary_10_3389_fimmu_2022_961805
crossref_primary_10_3390_ijms21020488
crossref_primary_10_1186_s12957_023_03206_3
crossref_primary_10_1016_j_drup_2023_100963
Cites_doi 10.1038/nrc3557
10.1038/ng1997
10.1016/S0959-8049(00)00285-9
10.1016/j.cmet.2015.08.015
10.1038/nature13473
10.1073/pnas.92.10.4482
10.1158/2159-8290.CD-15-0507
10.1038/ncb3039
10.1126/science.123.3191.309
10.1038/nature07823
10.1021/pr034020m
10.1128/MCB.15.5.2527
10.1016/j.cell.2012.03.003
10.1016/j.cell.2011.02.013
10.1073/pnas.1406199111
10.1073/pnas.94.13.6658
10.1016/j.cmet.2006.04.013
10.1016/S0021-9258(19)68900-3
10.1371/journal.pone.0002722
10.1016/j.ccr.2007.04.001
10.1126/science.1160809
10.1007/s00109-011-0730-x
10.1038/nrc2231
10.1093/hmg/1.4.229
10.1073/pnas.0404727101
10.1074/jbc.M601876200
10.1016/j.cell.2008.08.021
10.1053/j.gastro.2010.01.058
10.1073/pnas.0705070104
10.1371/journal.pone.0106788
10.1038/nature10602
10.1073/pnas.1016354108
10.7150/jca.3619
10.1016/j.ebiom.2015.11.016
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 12, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 12, 2017
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1710366114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate MYC shifts global metabolism in colon adenoma
EISSN 1091-6490
EndPage E7706
ExternalDocumentID PMC5604037
28847964
10_1073_pnas_1710366114
26487717
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: T.S.
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-ba9514215f6c541e1f2ca44af043d3036a25fea05c8cd25dde36b6ba622363ac3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:50:22 EDT 2025
Fri Jul 11 04:27:10 EDT 2025
Mon Jun 30 08:31:11 EDT 2025
Wed Feb 19 02:43:05 EST 2025
Thu Apr 24 23:02:01 EDT 2025
Tue Jul 01 03:19:41 EDT 2025
Fri May 30 11:47:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords metabolism
colorectal cancer
omics
metabolomics
MYC
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-ba9514215f6c541e1f2ca44af043d3036a25fea05c8cd25dde36b6ba622363ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: K. Satoh, S.Y., S.F., and T.S. designed research; K. Satoh, S.Y., M.O., T.N., S.A., S.T., K. Saitoh, K.K., S.S., K.I., Y.A., R.K.-S., Y. Kojima, T.F., A.H., T.I., Y. Kushida, R.H., K.O., M.T., M.A., and T.S. performed research; M.M.T. and Y.S. contributed new reagents/analytic tools; K. Satoh, S.Y., M.S., A.E., and T.S. analyzed data; and K. Satoh, S.Y., M.S., M.A., and T.S. wrote the paper.
Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, Canada, and approved August 9, 2017 (received for review June 9, 2017)
OpenAccessLink https://www.pnas.org/content/pnas/114/37/E7697.full.pdf
PMID 28847964
PQID 1946418096
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5604037
proquest_miscellaneous_1933595749
proquest_journals_1946418096
pubmed_primary_28847964
crossref_citationtrail_10_1073_pnas_1710366114
crossref_primary_10_1073_pnas_1710366114
jstor_primary_26487717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-12
PublicationDateYYYYMMDD 2017-09-12
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Gao P (e_1_3_4_3_2) 2009; 458
Miyoshi Y (e_1_3_4_13_2) 1992; 1
Miltenberger RJ (e_1_3_4_32_2) 1995; 15
Vander Heiden MG (e_1_3_4_4_2) 2009; 324
Shim H (e_1_3_4_31_2) 1997; 94
Warburg O (e_1_3_4_1_2) 1956; 123
Kitamura T (e_1_3_4_16_2) 2007; 39
Liu YC (e_1_3_4_20_2) 2008; 3
Wang L (e_1_3_4_26_2) 2014; 9
Zhang H (e_1_3_4_29_2) 2007; 11
D’Errico I (e_1_3_4_30_2) 2011; 108
Oshima M (e_1_3_4_34_2) 1995; 92
Terzic J (e_1_3_4_12_2) 2010; 138
Sahin IH (e_1_3_4_14_2) 2013; 4
Stine ZE (e_1_3_4_19_2) 2015; 5
Dang CV (e_1_3_4_7_2) 2011; 89
Jessani N (e_1_3_4_9_2) 2004; 101
Walz S (e_1_3_4_17_2) 2014; 511
Dejea CM (e_1_3_4_27_2) 2014; 111
Gu L (e_1_3_4_33_2) 2015; 2
Lerin C (e_1_3_4_25_2) 2006; 3
Meyer N (e_1_3_4_21_2) 2008; 8
Soga T (e_1_3_4_10_2) 2003; 2
Jäger S (e_1_3_4_23_2) 2007; 104
Locasale JW (e_1_3_4_22_2) 2013; 13
Soong R (e_1_3_4_15_2) 2000; 36
Hanahan D (e_1_3_4_5_2) 2011; 144
Hsu PP (e_1_3_4_8_2) 2008; 134
Dang CV (e_1_3_4_18_2) 2012; 149
Soga T (e_1_3_4_11_2) 2006; 281
Metallo CM (e_1_3_4_2_2) 2011; 481
LeBleu VS (e_1_3_4_24_2) 2014; 16
Sancho P (e_1_3_4_28_2) 2015; 22
Bustamante E (e_1_3_4_6_2) 1981; 256
7263678 - J Biol Chem. 1981 Aug 25;256(16):8699-704
9192621 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6658-63
16608839 - J Biol Chem. 2006 Jun 16;281(24):16768-76
20420949 - Gastroenterology. 2010 Jun;138(6):2101-2114.e5
16753578 - Cell Metab. 2006 Jun;3(6):429-38
23569465 - J Cancer. 2013;4(4):320-2
17482131 - Cancer Cell. 2007 May;11(5):407-20
7753829 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4482-6
23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83
21301795 - J Mol Med (Berl). 2011 Mar;89(3):205-12
26844271 - EBioMedicine. 2015 Nov 10;2(12 ):1923-31
17369830 - Nat Genet. 2007 Apr;39(4):467-75
1338904 - Hum Mol Genet. 1992 Jul;1(4):229-33
22101433 - Nature. 2011 Nov 20;481(7381):380-4
21467224 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6603-8
25489084 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18321-6
21376230 - Cell. 2011 Mar 4;144(5):646-74
18628958 - PLoS One. 2008 Jul 16;3(7):e2722
25043018 - Nature. 2014 Jul 24;511(7510):483-7
17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22
7739536 - Mol Cell Biol. 1995 May;15(5):2527-35
11044641 - Eur J Cancer. 2000 Oct;36(16):2053-60
19219026 - Nature. 2009 Apr 9;458(7239):762-5
13298683 - Science. 1956 Feb 24;123(3191):309-14
19460998 - Science. 2009 May 22;324(5930):1029-33
26382145 - Cancer Discov. 2015 Oct;5(10):1024-39
26365176 - Cell Metab. 2015 Oct 6;22(4):590-605
18775299 - Cell. 2008 Sep 5;134(5):703-7
22464321 - Cell. 2012 Mar 30;149(1):22-35
19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90
25241037 - Nat Cell Biol. 2014 Oct;16(10 ):992-1003, 1-15
14582645 - J Proteome Res. 2003 Sep-Oct;2(5):488-94
15356343 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13756-61
25207815 - PLoS One. 2014 Sep 10;9(9):e106788
References_xml – volume: 13
  start-page: 572
  year: 2013
  ident: e_1_3_4_22_2
  article-title: Serine, glycine and one-carbon units: Cancer metabolism in full circle
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3557
– volume: 39
  start-page: 467
  year: 2007
  ident: e_1_3_4_16_2
  article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion
  publication-title: Nat Genet
  doi: 10.1038/ng1997
– volume: 36
  start-page: 2053
  year: 2000
  ident: e_1_3_4_15_2
  article-title: Prognostic significance of TP53 gene mutation in 995 cases of colorectal carcinoma. Influence of tumour site, stage, adjuvant chemotherapy and type of mutation
  publication-title: Eur J Cancer
  doi: 10.1016/S0959-8049(00)00285-9
– volume: 22
  start-page: 590
  year: 2015
  ident: e_1_3_4_28_2
  article-title: MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.08.015
– volume: 511
  start-page: 483
  year: 2014
  ident: e_1_3_4_17_2
  article-title: Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles
  publication-title: Nature
  doi: 10.1038/nature13473
– volume: 92
  start-page: 4482
  year: 1995
  ident: e_1_3_4_34_2
  article-title: Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.92.10.4482
– volume: 5
  start-page: 1024
  year: 2015
  ident: e_1_3_4_19_2
  article-title: MYC, metabolism, and cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0507
– volume: 16
  start-page: 992
  year: 2014
  ident: e_1_3_4_24_2
  article-title: PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3039
– volume: 123
  start-page: 309
  year: 1956
  ident: e_1_3_4_1_2
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 458
  start-page: 762
  year: 2009
  ident: e_1_3_4_3_2
  article-title: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
  publication-title: Nature
  doi: 10.1038/nature07823
– volume: 2
  start-page: 488
  year: 2003
  ident: e_1_3_4_10_2
  article-title: Quantitative metabolome analysis using capillary electrophoresis mass spectrometry
  publication-title: J Proteome Res
  doi: 10.1021/pr034020m
– volume: 15
  start-page: 2527
  year: 1995
  ident: e_1_3_4_32_2
  article-title: An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.15.5.2527
– volume: 149
  start-page: 22
  year: 2012
  ident: e_1_3_4_18_2
  article-title: MYC on the path to cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.003
– volume: 144
  start-page: 646
  year: 2011
  ident: e_1_3_4_5_2
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 111
  start-page: 18321
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Microbiota organization is a distinct feature of proximal colorectal cancers
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1406199111
– volume: 94
  start-page: 6658
  year: 1997
  ident: e_1_3_4_31_2
  article-title: c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.94.13.6658
– volume: 3
  start-page: 429
  year: 2006
  ident: e_1_3_4_25_2
  article-title: GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.04.013
– volume: 256
  start-page: 8699
  year: 1981
  ident: e_1_3_4_6_2
  article-title: Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)68900-3
– volume: 3
  start-page: e2722
  year: 2008
  ident: e_1_3_4_20_2
  article-title: Global regulation of nucleotide biosynthetic genes by c-Myc
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002722
– volume: 11
  start-page: 407
  year: 2007
  ident: e_1_3_4_29_2
  article-title: HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.04.001
– volume: 324
  start-page: 1029
  year: 2009
  ident: e_1_3_4_4_2
  article-title: Understanding the Warburg effect: The metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 89
  start-page: 205
  year: 2011
  ident: e_1_3_4_7_2
  article-title: Therapeutic targeting of cancer cell metabolism
  publication-title: J Mol Med (Berl)
  doi: 10.1007/s00109-011-0730-x
– volume: 8
  start-page: 976
  year: 2008
  ident: e_1_3_4_21_2
  article-title: Reflecting on 25 years with MYC
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2231
– volume: 1
  start-page: 229
  year: 1992
  ident: e_1_3_4_13_2
  article-title: Somatic mutations of the APC gene in colorectal tumors: Mutation cluster region in the APC gene
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/1.4.229
– volume: 101
  start-page: 13756
  year: 2004
  ident: e_1_3_4_9_2
  article-title: Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404727101
– volume: 281
  start-page: 16768
  year: 2006
  ident: e_1_3_4_11_2
  article-title: Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601876200
– volume: 134
  start-page: 703
  year: 2008
  ident: e_1_3_4_8_2
  article-title: Cancer cell metabolism: Warburg and beyond
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.021
– volume: 138
  start-page: 2101
  year: 2010
  ident: e_1_3_4_12_2
  article-title: Inflammation and colon cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2010.01.058
– volume: 104
  start-page: 12017
  year: 2007
  ident: e_1_3_4_23_2
  article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705070104
– volume: 9
  start-page: e106788
  year: 2014
  ident: e_1_3_4_26_2
  article-title: Gene expression profiling identifies IRF4-associated molecular signatures in hematological malignancies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106788
– volume: 481
  start-page: 380
  year: 2011
  ident: e_1_3_4_2_2
  article-title: Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
  publication-title: Nature
  doi: 10.1038/nature10602
– volume: 108
  start-page: 6603
  year: 2011
  ident: e_1_3_4_30_2
  article-title: Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1alpha) is a metabolic regulator of intestinal epithelial cell fate
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1016354108
– volume: 4
  start-page: 320
  year: 2013
  ident: e_1_3_4_14_2
  article-title: Rare though not mutually exclusive: A report of three cases of concomitant KRAS and BRAF mutation and a review of the literature
  publication-title: J Cancer
  doi: 10.7150/jca.3619
– volume: 2
  start-page: 1923
  year: 2015
  ident: e_1_3_4_33_2
  article-title: The mechanism by which MYCN amplification confers an enhanced sensitivity to a PCNA-derived cell permeable peptide in neuroblastoma cells
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2015.11.016
– reference: 26365176 - Cell Metab. 2015 Oct 6;22(4):590-605
– reference: 22464321 - Cell. 2012 Mar 30;149(1):22-35
– reference: 7753829 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4482-6
– reference: 25241037 - Nat Cell Biol. 2014 Oct;16(10 ):992-1003, 1-15
– reference: 20420949 - Gastroenterology. 2010 Jun;138(6):2101-2114.e5
– reference: 25489084 - Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18321-6
– reference: 26844271 - EBioMedicine. 2015 Nov 10;2(12 ):1923-31
– reference: 19219026 - Nature. 2009 Apr 9;458(7239):762-5
– reference: 23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83
– reference: 1338904 - Hum Mol Genet. 1992 Jul;1(4):229-33
– reference: 21467224 - Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6603-8
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 21301795 - J Mol Med (Berl). 2011 Mar;89(3):205-12
– reference: 14582645 - J Proteome Res. 2003 Sep-Oct;2(5):488-94
– reference: 9192621 - Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6658-63
– reference: 22101433 - Nature. 2011 Nov 20;481(7381):380-4
– reference: 7739536 - Mol Cell Biol. 1995 May;15(5):2527-35
– reference: 16608839 - J Biol Chem. 2006 Jun 16;281(24):16768-76
– reference: 17369830 - Nat Genet. 2007 Apr;39(4):467-75
– reference: 23569465 - J Cancer. 2013;4(4):320-2
– reference: 19029958 - Nat Rev Cancer. 2008 Dec;8(12):976-90
– reference: 25043018 - Nature. 2014 Jul 24;511(7510):483-7
– reference: 11044641 - Eur J Cancer. 2000 Oct;36(16):2053-60
– reference: 15356343 - Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13756-61
– reference: 17482131 - Cancer Cell. 2007 May;11(5):407-20
– reference: 18628958 - PLoS One. 2008 Jul 16;3(7):e2722
– reference: 25207815 - PLoS One. 2014 Sep 10;9(9):e106788
– reference: 18775299 - Cell. 2008 Sep 5;134(5):703-7
– reference: 17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 26382145 - Cancer Discov. 2015 Oct;5(10):1024-39
– reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14
– reference: 7263678 - J Biol Chem. 1981 Aug 25;256(16):8699-704
– reference: 16753578 - Cell Metab. 2006 Jun;3(6):429-38
SSID ssj0009580
Score 2.6372104
Snippet Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are...
Metabolic reprogramming is one of the hallmarks of cancer. However, the underlying mechanisms that regulate cancer metabolism are poorly understood. Here we...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E7697
SubjectTerms Aberration
Adenoma
Biological Sciences
Cancer
Cancer therapies
Carcinogenesis
Carcinogens
Colorectal cancer
Colorectal carcinoma
Deoxyribonucleic acid
DNA
DNA methylation
Evolution
Gene expression
Genes
Macromolecules
Metabolism
Mitochondria
Mutation
Myc protein
PNAS Plus
Studies
Tumors
Title Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC
URI https://www.jstor.org/stable/26487717
https://www.ncbi.nlm.nih.gov/pubmed/28847964
https://www.proquest.com/docview/1946418096
https://www.proquest.com/docview/1933595749
https://pubmed.ncbi.nlm.nih.gov/PMC5604037
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbKuHBBDBhkDGQkDkNVShs7dnvgMFVFE6hVpW7SOFWOk66V2mRqksP41_wD3osdpx0DwS5RldhOm_f1vc_Oe58J-bBQUai7YuAHYcR9juKzSjHlJ1Imse7Ffa6wwHk8EeeX_OtVeNVq_dzJWiqLqKN_3FtX8hCrwjmwK1bJ_odl3aBwAj6DfeEIFobjP9nYCPbjLtBgynUlxmzzrTY2mRk1qdGnoQoI2nfbzrQutznWMCpwOdlG4WrCtX2JgMlZcakNKx1_H-5S16kLdXmdWDCpVxLPmroU6yzytt-eTppdjmcwua9WcL6tbrMiy5cr528wnTOuOOxsiWWazaVZeY1QykxRUa6Wq23mVoVhiI0ymf9pti2Ne0TZ5vwz3rg9Xe-vaUCcrPZkaFI-_vLtd515AAGWmxLsTmL8N9AfX3CzA6lz8KZM1SLZaMxYfz2SwqQH2-A_krISQPg9soArxO2QU5V3esDKGPAaM-wOzm42FdCCPoT8geBNiHWJj9PxECgm7zL5iDwOYGbD6gUmpxPdN1VT9rfValSSfbpzb5Sxtjfa41Qmrfa-CdPdvN8dInXxjDy1MyB6ZuB8SFpJ-pwc1g-enloh9I8viDL4pg7fdA_fNFvQBt_U4JsafFNVUItvWuGbAr7pKqcW3zS6pYDvl-Tyy-hieO7bLUF8Dcy28CMFMwIONHUhdMh7SW8RaMXBn3Q5i5GNqSBcJKob6r6OgxBiNxORiJQAFiyY0uyIHKRZmrwmVPVjBeQ2AcaacCZCJWDyLqCX6EKPYOGRTv1Q59rq5eO2Let5lbch2RwNMm8M4pFT1-HGSMX8uelRZSXXDvNMpexJj5zUZptbRwP9Blxw1NkTHnnvLkMYwHd7Kk2yEtswLLGXfOCRV8bKzeAWJh6Re_Z3DVBifv9KulpWUvMWrMcP7vmGPGn-4CfkoNiWyVug8UX0rgL-L27T9xA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+metabolic+reprogramming+of+colorectal+cancer+occurs+at+adenoma+stage+and+is+induced+by+MYC&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Satoh%2C+Kiyotoshi&rft.au=Yachida%2C+Shinichi&rft.au=Sugimoto%2C+Masahiro&rft.au=Oshima%2C+Minoru&rft.series=PNAS+Plus&rft.date=2017-09-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=37&rft.spage=E7697&rft.epage=E7706&rft_id=info:doi/10.1073%2Fpnas.1710366114&rft_id=info%3Apmid%2F28847964&rft.externalDocID=PMC5604037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon