Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network

Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with fold...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 11; pp. 1 - 12
Main Authors Knowlton, Jonathan J., Gestaut, Daniel, Ma, Boxue, Taylor, Gwen, Seven, Alpay Burak, Leitner, Alexander, Wilson, Gregory J., Shanker, Sreejesh, Yates, Nathan A., Prasad, B. V. Venkataram, Aebersold, Ruedi, Chiu, Wah, Frydman, Judith, Dermody, Terence S.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.03.2021
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2018127118

Cover

Abstract Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, crosslinking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate themolecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
AbstractList Protein folding and oligomeric complex assembly are essential for protein homeostasis. These processes are orchestrated by a network of host chaperones that interact with nascent and formed polypeptides. We investigated the mechanism by which a ubiquitous, essential, molecular chaperone, TRiC, folds an aggregation-prone protein subunit of a viral capsid. Structural studies, mass spectrometry, and in vitro folding and assembly experiments provided insights into the mechanism by which TRiC, in cooperation with a cochaperone, prefoldin, folds and assembles protein multimers. As the principles of protein folding and assembly are evolutionarily conserved, these findings likely point to common functions for TRiC and prefoldin in assembling a diversity of intracellular protein complexes. Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, crosslinking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate themolecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.
Author Dermody, Terence S.
Frydman, Judith
Aebersold, Ruedi
Gestaut, Daniel
Chiu, Wah
Wilson, Gregory J.
Prasad, B. V. Venkataram
Knowlton, Jonathan J.
Leitner, Alexander
Ma, Boxue
Taylor, Gwen
Seven, Alpay Burak
Shanker, Sreejesh
Yates, Nathan A.
Author_xml – sequence: 1
  givenname: Jonathan J.
  surname: Knowlton
  fullname: Knowlton, Jonathan J.
– sequence: 2
  givenname: Daniel
  surname: Gestaut
  fullname: Gestaut, Daniel
– sequence: 3
  givenname: Boxue
  surname: Ma
  fullname: Ma, Boxue
– sequence: 4
  givenname: Gwen
  surname: Taylor
  fullname: Taylor, Gwen
– sequence: 5
  givenname: Alpay Burak
  surname: Seven
  fullname: Seven, Alpay Burak
– sequence: 6
  givenname: Alexander
  surname: Leitner
  fullname: Leitner, Alexander
– sequence: 7
  givenname: Gregory J.
  surname: Wilson
  fullname: Wilson, Gregory J.
– sequence: 8
  givenname: Sreejesh
  surname: Shanker
  fullname: Shanker, Sreejesh
– sequence: 9
  givenname: Nathan A.
  surname: Yates
  fullname: Yates, Nathan A.
– sequence: 10
  givenname: B. V. Venkataram
  surname: Prasad
  fullname: Prasad, B. V. Venkataram
– sequence: 11
  givenname: Ruedi
  surname: Aebersold
  fullname: Aebersold, Ruedi
– sequence: 12
  givenname: Wah
  surname: Chiu
  fullname: Chiu, Wah
– sequence: 13
  givenname: Judith
  surname: Frydman
  fullname: Frydman, Judith
– sequence: 14
  givenname: Terence S.
  surname: Dermody
  fullname: Dermody, Terence S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33836586$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9rHCEcxaUkNJu0555ahF56maw6OjqXQhn6CwKBdHsWR52s21mdqpN2__u62SRtAznJFz_v8fU9T8GRD94C8Aqjc4x4vZy8SucEYYEJx1g8AwuMWlw1tEVHYIEQ4ZWghJ6A05Q2CKGWCfQcnNS1qBsmmgX4_S3HWec5qhEqb-Awe51d8GU0LiV7O8AwwGjDjYtzglpNyRUwjMb561uRKuC2H3ew38G8tnCK9nBdra5ct-y6FdRrNdlYlofe5l8h_ngBjgc1Jvvy7jwD3z99XHVfqovLz1-7DxeVZqjNVc8HjnVttGG1Ir3lhhmjaG9IjxojuLYMKz5YRkUJZNCNUhwNwraCsgHTpj4D7w--09xvrdHW5_JWOUW3VXEng3Ly_xvv1vI63EjeCkTR3uDdnUEMP2ebsty6pO04Km_DnCRhGJO6bTEt6NtH6CbMsWRZKNoWpGQuCvXm340eVrkvpQDsAOgYUipZSu2y2hdRFnSjxEjuy5f78uXf8otu-Uh3b_204vVBsUk5xAec8PJxGoLrPzXzvnw
CitedBy_id crossref_primary_10_3390_cells13020123
crossref_primary_10_3390_ijms23052485
crossref_primary_10_1371_journal_ppat_1010641
crossref_primary_10_1042_BST20220591
crossref_primary_10_1016_j_csbj_2024_10_030
crossref_primary_10_1021_acsomega_4c00409
crossref_primary_10_1016_j_vetmic_2022_109574
crossref_primary_10_1016_j_cell_2022_11_014
crossref_primary_10_1016_j_xpro_2024_103116
crossref_primary_10_3389_fcell_2021_816214
crossref_primary_10_1016_j_virusres_2022_199032
crossref_primary_10_1186_s13046_024_03169_7
crossref_primary_10_1146_annurev_biophys_082521_113418
crossref_primary_10_1016_j_cell_2023_06_016
crossref_primary_10_1126_sciadv_ade1207
crossref_primary_10_1016_j_cell_2022_03_005
crossref_primary_10_1091_mbc_E22_07_0262
crossref_primary_10_1371_journal_ppat_1010398
crossref_primary_10_1007_s10735_023_10119_8
crossref_primary_10_1371_journal_pbio_3001543
crossref_primary_10_1016_j_sbi_2025_102999
crossref_primary_10_1038_s41594_022_00755_1
crossref_primary_10_1038_s42003_023_04915_x
crossref_primary_10_1128_mbio_00499_24
crossref_primary_10_3389_fmicb_2024_1346894
Cites_doi 10.1073/pnas.0913774107
10.1016/j.cell.2010.12.017
10.1038/nsmb.1700
10.1128/mcb.13.4.2478-2485.1993
10.1126/science.aah5298
10.1038/nsmb.1515
10.1002/cpps.51
10.1128/MCB.23.9.3141-3151.2003
10.1038/s41467-019-10781-1
10.1016/j.molcel.2006.08.017
10.1128/JVI.75.14.6625-6634.2001
10.1016/j.celrep.2012.08.036
10.1093/emboj/cdf640
10.1016/0092-8674(92)90622-J
10.1016/j.cell.2014.10.042
10.1128/JVI.76.19.9920-9933.2002
10.1073/pnas.1406459111
10.1016/j.cell.2019.03.012
10.1016/S1097-2765(03)00244-2
10.1016/0042-6822(76)90282-8
10.1128/JVI.73.4.2963-2973.1999
10.1016/j.virol.2010.10.026
10.1016/j.jmb.2004.10.026
10.1016/S1097-2765(00)80233-6
10.1038/s41598-017-18962-y
10.1021/bi992110s
10.1016/j.jmb.2010.06.037
10.1128/JVI.75.6.2526-2534.2001
10.1038/s41564-018-0122-x
10.1016/S0092-8674(03)00307-6
10.1073/pnas.1419595112
10.1016/j.str.2012.03.007
10.1016/j.molcel.2013.05.002
10.1016/S0092-8674(00)81446-4
10.1016/S0092-8674(00)00165-3
10.1016/j.sbi.2019.03.002
10.1128/JVI.73.5.3941-3950.1999
10.1073/pnas.90.22.10549
10.1128/jvi.65.12.6772-6781.1991
10.1093/emboj/18.1.85
10.1128/jvi.71.7.4921-4928.1997
10.1038/nsmb.3309
10.1126/science.aac4354
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 16, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Mar 16, 2021
– notice: 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2018127118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12
ExternalDocumentID PMC7980406
33836586
10_1073_pnas_2018127118
27027621
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P01 NS092525
– fundername: NIGMS NIH HHS
  grantid: F32 GM103124
– fundername: NIGMS NIH HHS
  grantid: R01 GM056433
– fundername: NIAID NIH HHS
  grantid: R01 AI032539
– fundername: NIAID NIH HHS
  grantid: R01 AI127447
– fundername: NIGMS NIH HHS
  grantid: P41 GM103832
– fundername: NIGMS NIH HHS
  grantid: T32 GM007347
– fundername: NIH HHS
  grantid: S10 OD021600
– fundername: NCATS NIH HHS
  grantid: UL1 TR000445
– fundername: NIGMS NIH HHS
  grantid: R01 GM074074
– fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: AdvG # 233226
– fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: NS092525
– fundername: HHS | NIH | NIH Office of the Director (OD)
  grantid: S10OD021600
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM103124
– fundername: HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
  grantid: UL1TR000445
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: AI032539
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM103832
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM074074
– fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: AdvG #670821
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM007347
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-b7f71c3dcd53a2be7d5dda4bd2b06d87ce51a7fe548107fc6aa70f8e9845f1463
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:32 EDT 2025
Thu Sep 04 21:25:55 EDT 2025
Mon Jun 30 10:05:58 EDT 2025
Tue Jul 22 01:41:59 EDT 2025
Thu Apr 24 23:12:41 EDT 2025
Tue Jul 01 01:02:52 EDT 2025
Thu May 29 08:51:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords prefoldin
protein folding
virus assembly
molecular chaperones
TRiC
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-b7f71c3dcd53a2be7d5dda4bd2b06d87ce51a7fe548107fc6aa70f8e9845f1463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
2B.M. and G.T. contributed equally to this work.
Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved January 24, 2021 (received for review August 28, 2020)
1J.J.K. and D.G. contributed equally to this work.
Author contributions: J.J.K., D.G., B.M., G.T., A.B.S., A.L., G.J.W., S.S., N.A.Y., R.A., W.C., J.F., and T.S.D. designed research; J.J.K., D.G., B.M., G.T., A.B.S., A.L., and S.S. performed research; J.J.K., D.G., B.M., G.T., A.B.S., A.L., G.J.W., S.S., N.A.Y., B.V.V.P., W.C., J.F., and T.S.D. contributed new reagents/analytic tools; J.J.K., D.G., B.M., G.T., A.B.S., A.L., S.S., N.A.Y., B.V.V.P., R.A., W.C., J.F., and T.S.D. analyzed data; J.J.K., D.G., B.M., G.T., A.B.S., A.L., W.C., J.F., and T.S.D. wrote the paper; and J.J.K., D.G., R.A., W.C., J.F., and T.S.D. acquired funding and edited the paper.
ORCID 0000-0001-6212-9908
0000-0003-1853-8741
0000-0002-2456-8392
0000-0003-4126-0725
0000-0002-8910-3078
0000-0002-9276-087X
0000-0002-9576-3267
0000-0003-2302-6943
0000-0002-1630-8734
0000-0003-1446-0107
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7980406
PMID 33836586
PQID 2499916588
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980406
proquest_miscellaneous_2511239914
proquest_journals_2499916588
pubmed_primary_33836586
crossref_citationtrail_10_1073_pnas_2018127118
crossref_primary_10_1073_pnas_2018127118
jstor_primary_27027621
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-16
PublicationDateYYYYMMDD 2021-03-16
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
Kashuba E. (e_1_3_4_23_2) 1999; 2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_32_2
  doi: 10.1073/pnas.0913774107
– ident: e_1_3_4_13_2
  doi: 10.1016/j.cell.2010.12.017
– ident: e_1_3_4_6_2
  doi: 10.1038/nsmb.1700
– ident: e_1_3_4_3_2
  doi: 10.1128/mcb.13.4.2478-2485.1993
– ident: e_1_3_4_27_2
  doi: 10.1126/science.aah5298
– ident: e_1_3_4_1_2
  doi: 10.1038/nsmb.1515
– ident: e_1_3_4_30_2
  doi: 10.1002/cpps.51
– ident: e_1_3_4_17_2
  doi: 10.1128/MCB.23.9.3141-3151.2003
– ident: e_1_3_4_41_2
  doi: 10.1038/s41467-019-10781-1
– ident: e_1_3_4_7_2
  doi: 10.1016/j.molcel.2006.08.017
– ident: e_1_3_4_44_2
  doi: 10.1128/JVI.75.14.6625-6634.2001
– ident: e_1_3_4_15_2
  doi: 10.1016/j.celrep.2012.08.036
– ident: e_1_3_4_21_2
  doi: 10.1093/emboj/cdf640
– ident: e_1_3_4_2_2
  doi: 10.1016/0092-8674(92)90622-J
– ident: e_1_3_4_14_2
  doi: 10.1016/j.cell.2014.10.042
– ident: e_1_3_4_35_2
  doi: 10.1128/JVI.76.19.9920-9933.2002
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.1406459111
– ident: e_1_3_4_22_2
  doi: 10.1016/j.cell.2019.03.012
– ident: e_1_3_4_42_2
  doi: 10.1016/S1097-2765(03)00244-2
– ident: e_1_3_4_28_2
  doi: 10.1016/0042-6822(76)90282-8
– ident: e_1_3_4_33_2
  doi: 10.1128/JVI.73.4.2963-2973.1999
– ident: e_1_3_4_25_2
  doi: 10.1016/j.virol.2010.10.026
– ident: e_1_3_4_36_2
  doi: 10.1016/j.jmb.2004.10.026
– ident: e_1_3_4_4_2
  doi: 10.1016/S1097-2765(00)80233-6
– volume: 2
  start-page: 33
  year: 1999
  ident: e_1_3_4_23_2
  article-title: Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex
  publication-title: J. Hum. Virol.
– ident: e_1_3_4_9_2
  doi: 10.1038/s41598-017-18962-y
– ident: e_1_3_4_39_2
  doi: 10.1021/bi992110s
– ident: e_1_3_4_16_2
  doi: 10.1016/j.jmb.2010.06.037
– ident: e_1_3_4_24_2
  doi: 10.1128/JVI.75.6.2526-2534.2001
– ident: e_1_3_4_26_2
  doi: 10.1038/s41564-018-0122-x
– ident: e_1_3_4_31_2
  doi: 10.1016/S0092-8674(03)00307-6
– ident: e_1_3_4_40_2
  doi: 10.1073/pnas.1419595112
– ident: e_1_3_4_8_2
  doi: 10.1016/j.str.2012.03.007
– ident: e_1_3_4_5_2
  doi: 10.1016/j.molcel.2013.05.002
– ident: e_1_3_4_18_2
  doi: 10.1016/S0092-8674(00)81446-4
– ident: e_1_3_4_20_2
  doi: 10.1016/S0092-8674(00)00165-3
– ident: e_1_3_4_11_2
  doi: 10.1016/j.sbi.2019.03.002
– ident: e_1_3_4_34_2
  doi: 10.1128/JVI.73.5.3941-3950.1999
– ident: e_1_3_4_37_2
  doi: 10.1073/pnas.90.22.10549
– ident: e_1_3_4_43_2
  doi: 10.1128/jvi.65.12.6772-6781.1991
– ident: e_1_3_4_10_2
  doi: 10.1093/emboj/18.1.85
– ident: e_1_3_4_38_2
  doi: 10.1128/jvi.71.7.4921-4928.1997
– ident: e_1_3_4_12_2
  doi: 10.1038/nsmb.3309
– ident: e_1_3_4_19_2
  doi: 10.1126/science.aac4354
SSID ssj0009580
Score 2.4931543
Snippet Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC...
Protein folding and oligomeric complex assembly are essential for protein homeostasis. These processes are orchestrated by a network of host chaperones that...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Assembly
Biological Sciences
Capsid protein
Capsid Proteins - chemistry
Capsid Proteins - metabolism
Chaperones
Chaperonin Containing TCP-1 - chemistry
Chaperonin Containing TCP-1 - metabolism
Crosslinking
Cryoelectron Microscopy
Folding
Homeostasis
Mass Spectrometry
Mass spectroscopy
Molecular Chaperones - chemistry
Molecular Chaperones - metabolism
Molecular dynamics
Oligomers
Protein Conformation
Protein Folding
Proteins
Proteostasis
Reoviridae - metabolism
Structure-function relationships
Substrates
Topology
Title Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network
URI https://www.jstor.org/stable/27027621
https://www.ncbi.nlm.nih.gov/pubmed/33836586
https://www.proquest.com/docview/2499916588
https://www.proquest.com/docview/2511239914
https://pubmed.ncbi.nlm.nih.gov/PMC7980406
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxV6ZpPu49TtXVCo0yQSn2LYscRlUY6bQ1s_Gv8c5y_4mQqCHipqsR2Ld-v57vz3c8IvWVpPOFUcuwnlPsxT5nPCJOXmdEwFmRSEkW7-GGeni7i98tkORj87GQtNRs24j-21pX8j1ThGchVVsn-g2TbQeEBfAf5widIGD7_SsafFfmrIs6Q8W-5R5nQnjpm59YavBLrb6urRvJQX8Ish5U-ctJErdDwK7u4VXaoKpsS-rWffVpNJX3uNJPlwZJQHAzSWqeNd23a83YPvLYZB3MbYjxyBStGi1wP_eH53F1_rO7dNjn8NpTvzqpmsGkVzcYVw7sIukLm-qZpkemCD7PvpsDNhDNClc-lqy27bOBb59fV4yHsrbGuvh4JrbrB8vEBeeOebnfKvbEFLkZVB1s3ENB48tbjupBU7tL6IXaIHlX3_GN-sjg7y7PjZXYP3Q8JUTkCs2XQYXymuv7JTNXySpHo8M7wPZNIZ8Vu83fupu127KDsEXpoHBh8pNG4iwaifox27eLhA8Nj_u4JunHwxIA07OCJHTzxusIWnljDExt4qk4WnpjdYkAW7sPzEMCJW3BiA86naHFynE1PfXPRh8_BXt2AdqhIwKOSl0lUhEyQMinLImZlyMZpSQkXSVCQSoB3DetX8bQoyLiiYkLjpIKtPtpDOzX8zHOEoypmIXg1YIPBopclpbRiUQl2MA8nSSQ8NLJrnXPDgi8vY7nIVTYGiXIpnNwJx0MHbYdLTQDz-6Z7SnhtO1nrCcZG4KF9K83cqA_oFyvfLKHQ7037GpS7PLErarFuoI10h8CFCGIPPdPCbweXsSXonXqI9GDRNpDE8f039eqLIpAnEwp7d_riz9N6iR64P-g-2gHMiFdggW_Ya4X0X93m4lM
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+functional+dissection+of+reovirus+capsid+folding+and+assembly+by+the+prefoldin-TRiC%2FCCT+chaperone+network&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Knowlton%2C+Jonathan+J&rft.au=Gestaut%2C+Daniel&rft.au=Ma%2C+Boxue&rft.au=Taylor%2C+Gwen&rft.date=2021-03-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=11&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2018127118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon