Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with fold...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 11; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2018127118 |
Cover
Abstract | Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, crosslinking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate themolecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes. |
---|---|
AbstractList | Protein folding and oligomeric complex assembly are essential for protein homeostasis. These processes are orchestrated by a network of host chaperones that interact with nascent and formed polypeptides. We investigated the mechanism by which a ubiquitous, essential, molecular chaperone, TRiC, folds an aggregation-prone protein subunit of a viral capsid. Structural studies, mass spectrometry, and in vitro folding and assembly experiments provided insights into the mechanism by which TRiC, in cooperation with a cochaperone, prefoldin, folds and assembles protein multimers. As the principles of protein folding and assembly are evolutionarily conserved, these findings likely point to common functions for TRiC and prefoldin in assembling a diversity of intracellular protein complexes.
Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes. Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes. Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, crosslinking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate themolecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes. Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes.Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC chaperonin (TCP1-ring complex, also called CCT for cytosolic chaperonin containing TCP1) facilitates folding of a subset of proteins with folding constraints such as complex topologies. To better understand the mechanism of TRiC folding, we investigated the biogenesis of an obligate TRiC substrate, the reovirus σ3 capsid protein. We discovered that the σ3 protein interacts with a network of chaperones, including TRiC and prefoldin. Using a combination of cryoelectron microscopy, cross-linking mass spectrometry, and biochemical approaches, we establish functions for TRiC and prefoldin in folding σ3 and promoting its assembly into higher-order oligomers. These studies illuminate the molecular dynamics of σ3 folding and establish a biological function for TRiC in virus assembly. In addition, our findings provide structural and functional insight into the mechanism by which TRiC and prefoldin participate in the assembly of protein complexes. |
Author | Dermody, Terence S. Frydman, Judith Aebersold, Ruedi Gestaut, Daniel Chiu, Wah Wilson, Gregory J. Prasad, B. V. Venkataram Knowlton, Jonathan J. Leitner, Alexander Ma, Boxue Taylor, Gwen Seven, Alpay Burak Shanker, Sreejesh Yates, Nathan A. |
Author_xml | – sequence: 1 givenname: Jonathan J. surname: Knowlton fullname: Knowlton, Jonathan J. – sequence: 2 givenname: Daniel surname: Gestaut fullname: Gestaut, Daniel – sequence: 3 givenname: Boxue surname: Ma fullname: Ma, Boxue – sequence: 4 givenname: Gwen surname: Taylor fullname: Taylor, Gwen – sequence: 5 givenname: Alpay Burak surname: Seven fullname: Seven, Alpay Burak – sequence: 6 givenname: Alexander surname: Leitner fullname: Leitner, Alexander – sequence: 7 givenname: Gregory J. surname: Wilson fullname: Wilson, Gregory J. – sequence: 8 givenname: Sreejesh surname: Shanker fullname: Shanker, Sreejesh – sequence: 9 givenname: Nathan A. surname: Yates fullname: Yates, Nathan A. – sequence: 10 givenname: B. V. Venkataram surname: Prasad fullname: Prasad, B. V. Venkataram – sequence: 11 givenname: Ruedi surname: Aebersold fullname: Aebersold, Ruedi – sequence: 12 givenname: Wah surname: Chiu fullname: Chiu, Wah – sequence: 13 givenname: Judith surname: Frydman fullname: Frydman, Judith – sequence: 14 givenname: Terence S. surname: Dermody fullname: Dermody, Terence S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33836586$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9rHCEcxaUkNJu0555ahF56maw6OjqXQhn6CwKBdHsWR52s21mdqpN2__u62SRtAznJFz_v8fU9T8GRD94C8Aqjc4x4vZy8SucEYYEJx1g8AwuMWlw1tEVHYIEQ4ZWghJ6A05Q2CKGWCfQcnNS1qBsmmgX4_S3HWec5qhEqb-Awe51d8GU0LiV7O8AwwGjDjYtzglpNyRUwjMb561uRKuC2H3ew38G8tnCK9nBdra5ct-y6FdRrNdlYlofe5l8h_ngBjgc1Jvvy7jwD3z99XHVfqovLz1-7DxeVZqjNVc8HjnVttGG1Ir3lhhmjaG9IjxojuLYMKz5YRkUJZNCNUhwNwraCsgHTpj4D7w--09xvrdHW5_JWOUW3VXEng3Ly_xvv1vI63EjeCkTR3uDdnUEMP2ebsty6pO04Km_DnCRhGJO6bTEt6NtH6CbMsWRZKNoWpGQuCvXm340eVrkvpQDsAOgYUipZSu2y2hdRFnSjxEjuy5f78uXf8otu-Uh3b_204vVBsUk5xAec8PJxGoLrPzXzvnw |
CitedBy_id | crossref_primary_10_3390_cells13020123 crossref_primary_10_3390_ijms23052485 crossref_primary_10_1371_journal_ppat_1010641 crossref_primary_10_1042_BST20220591 crossref_primary_10_1016_j_csbj_2024_10_030 crossref_primary_10_1021_acsomega_4c00409 crossref_primary_10_1016_j_vetmic_2022_109574 crossref_primary_10_1016_j_cell_2022_11_014 crossref_primary_10_1016_j_xpro_2024_103116 crossref_primary_10_3389_fcell_2021_816214 crossref_primary_10_1016_j_virusres_2022_199032 crossref_primary_10_1186_s13046_024_03169_7 crossref_primary_10_1146_annurev_biophys_082521_113418 crossref_primary_10_1016_j_cell_2023_06_016 crossref_primary_10_1126_sciadv_ade1207 crossref_primary_10_1016_j_cell_2022_03_005 crossref_primary_10_1091_mbc_E22_07_0262 crossref_primary_10_1371_journal_ppat_1010398 crossref_primary_10_1007_s10735_023_10119_8 crossref_primary_10_1371_journal_pbio_3001543 crossref_primary_10_1016_j_sbi_2025_102999 crossref_primary_10_1038_s41594_022_00755_1 crossref_primary_10_1038_s42003_023_04915_x crossref_primary_10_1128_mbio_00499_24 crossref_primary_10_3389_fmicb_2024_1346894 |
Cites_doi | 10.1073/pnas.0913774107 10.1016/j.cell.2010.12.017 10.1038/nsmb.1700 10.1128/mcb.13.4.2478-2485.1993 10.1126/science.aah5298 10.1038/nsmb.1515 10.1002/cpps.51 10.1128/MCB.23.9.3141-3151.2003 10.1038/s41467-019-10781-1 10.1016/j.molcel.2006.08.017 10.1128/JVI.75.14.6625-6634.2001 10.1016/j.celrep.2012.08.036 10.1093/emboj/cdf640 10.1016/0092-8674(92)90622-J 10.1016/j.cell.2014.10.042 10.1128/JVI.76.19.9920-9933.2002 10.1073/pnas.1406459111 10.1016/j.cell.2019.03.012 10.1016/S1097-2765(03)00244-2 10.1016/0042-6822(76)90282-8 10.1128/JVI.73.4.2963-2973.1999 10.1016/j.virol.2010.10.026 10.1016/j.jmb.2004.10.026 10.1016/S1097-2765(00)80233-6 10.1038/s41598-017-18962-y 10.1021/bi992110s 10.1016/j.jmb.2010.06.037 10.1128/JVI.75.6.2526-2534.2001 10.1038/s41564-018-0122-x 10.1016/S0092-8674(03)00307-6 10.1073/pnas.1419595112 10.1016/j.str.2012.03.007 10.1016/j.molcel.2013.05.002 10.1016/S0092-8674(00)81446-4 10.1016/S0092-8674(00)00165-3 10.1016/j.sbi.2019.03.002 10.1128/JVI.73.5.3941-3950.1999 10.1073/pnas.90.22.10549 10.1128/jvi.65.12.6772-6781.1991 10.1093/emboj/18.1.85 10.1128/jvi.71.7.4921-4928.1997 10.1038/nsmb.3309 10.1126/science.aac4354 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 16, 2021 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 16, 2021 – notice: 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2018127118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12 |
ExternalDocumentID | PMC7980406 33836586 10_1073_pnas_2018127118 27027621 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P01 NS092525 – fundername: NIGMS NIH HHS grantid: F32 GM103124 – fundername: NIGMS NIH HHS grantid: R01 GM056433 – fundername: NIAID NIH HHS grantid: R01 AI032539 – fundername: NIAID NIH HHS grantid: R01 AI127447 – fundername: NIGMS NIH HHS grantid: P41 GM103832 – fundername: NIGMS NIH HHS grantid: T32 GM007347 – fundername: NIH HHS grantid: S10 OD021600 – fundername: NCATS NIH HHS grantid: UL1 TR000445 – fundername: NIGMS NIH HHS grantid: R01 GM074074 – fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) grantid: AdvG # 233226 – fundername: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: NS092525 – fundername: HHS | NIH | NIH Office of the Director (OD) grantid: S10OD021600 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM103124 – fundername: HHS | NIH | National Center for Advancing Translational Sciences (NCATS) grantid: UL1TR000445 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: AI032539 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM103832 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM074074 – fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) grantid: AdvG #670821 – fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS) grantid: GM007347 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-b7f71c3dcd53a2be7d5dda4bd2b06d87ce51a7fe548107fc6aa70f8e9845f1463 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:18:32 EDT 2025 Thu Sep 04 21:25:55 EDT 2025 Mon Jun 30 10:05:58 EDT 2025 Tue Jul 22 01:41:59 EDT 2025 Thu Apr 24 23:12:41 EDT 2025 Tue Jul 01 01:02:52 EDT 2025 Thu May 29 08:51:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | prefoldin protein folding virus assembly molecular chaperones TRiC |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-b7f71c3dcd53a2be7d5dda4bd2b06d87ce51a7fe548107fc6aa70f8e9845f1463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 2B.M. and G.T. contributed equally to this work. Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved January 24, 2021 (received for review August 28, 2020) 1J.J.K. and D.G. contributed equally to this work. Author contributions: J.J.K., D.G., B.M., G.T., A.B.S., A.L., G.J.W., S.S., N.A.Y., R.A., W.C., J.F., and T.S.D. designed research; J.J.K., D.G., B.M., G.T., A.B.S., A.L., and S.S. performed research; J.J.K., D.G., B.M., G.T., A.B.S., A.L., G.J.W., S.S., N.A.Y., B.V.V.P., W.C., J.F., and T.S.D. contributed new reagents/analytic tools; J.J.K., D.G., B.M., G.T., A.B.S., A.L., S.S., N.A.Y., B.V.V.P., R.A., W.C., J.F., and T.S.D. analyzed data; J.J.K., D.G., B.M., G.T., A.B.S., A.L., W.C., J.F., and T.S.D. wrote the paper; and J.J.K., D.G., R.A., W.C., J.F., and T.S.D. acquired funding and edited the paper. |
ORCID | 0000-0001-6212-9908 0000-0003-1853-8741 0000-0002-2456-8392 0000-0003-4126-0725 0000-0002-8910-3078 0000-0002-9276-087X 0000-0002-9576-3267 0000-0003-2302-6943 0000-0002-1630-8734 0000-0003-1446-0107 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7980406 |
PMID | 33836586 |
PQID | 2499916588 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980406 proquest_miscellaneous_2511239914 proquest_journals_2499916588 pubmed_primary_33836586 crossref_citationtrail_10_1073_pnas_2018127118 crossref_primary_10_1073_pnas_2018127118 jstor_primary_27027621 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-16 |
PublicationDateYYYYMMDD | 2021-03-16 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 Kashuba E. (e_1_3_4_23_2) 1999; 2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_32_2 doi: 10.1073/pnas.0913774107 – ident: e_1_3_4_13_2 doi: 10.1016/j.cell.2010.12.017 – ident: e_1_3_4_6_2 doi: 10.1038/nsmb.1700 – ident: e_1_3_4_3_2 doi: 10.1128/mcb.13.4.2478-2485.1993 – ident: e_1_3_4_27_2 doi: 10.1126/science.aah5298 – ident: e_1_3_4_1_2 doi: 10.1038/nsmb.1515 – ident: e_1_3_4_30_2 doi: 10.1002/cpps.51 – ident: e_1_3_4_17_2 doi: 10.1128/MCB.23.9.3141-3151.2003 – ident: e_1_3_4_41_2 doi: 10.1038/s41467-019-10781-1 – ident: e_1_3_4_7_2 doi: 10.1016/j.molcel.2006.08.017 – ident: e_1_3_4_44_2 doi: 10.1128/JVI.75.14.6625-6634.2001 – ident: e_1_3_4_15_2 doi: 10.1016/j.celrep.2012.08.036 – ident: e_1_3_4_21_2 doi: 10.1093/emboj/cdf640 – ident: e_1_3_4_2_2 doi: 10.1016/0092-8674(92)90622-J – ident: e_1_3_4_14_2 doi: 10.1016/j.cell.2014.10.042 – ident: e_1_3_4_35_2 doi: 10.1128/JVI.76.19.9920-9933.2002 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.1406459111 – ident: e_1_3_4_22_2 doi: 10.1016/j.cell.2019.03.012 – ident: e_1_3_4_42_2 doi: 10.1016/S1097-2765(03)00244-2 – ident: e_1_3_4_28_2 doi: 10.1016/0042-6822(76)90282-8 – ident: e_1_3_4_33_2 doi: 10.1128/JVI.73.4.2963-2973.1999 – ident: e_1_3_4_25_2 doi: 10.1016/j.virol.2010.10.026 – ident: e_1_3_4_36_2 doi: 10.1016/j.jmb.2004.10.026 – ident: e_1_3_4_4_2 doi: 10.1016/S1097-2765(00)80233-6 – volume: 2 start-page: 33 year: 1999 ident: e_1_3_4_23_2 article-title: Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex publication-title: J. Hum. Virol. – ident: e_1_3_4_9_2 doi: 10.1038/s41598-017-18962-y – ident: e_1_3_4_39_2 doi: 10.1021/bi992110s – ident: e_1_3_4_16_2 doi: 10.1016/j.jmb.2010.06.037 – ident: e_1_3_4_24_2 doi: 10.1128/JVI.75.6.2526-2534.2001 – ident: e_1_3_4_26_2 doi: 10.1038/s41564-018-0122-x – ident: e_1_3_4_31_2 doi: 10.1016/S0092-8674(03)00307-6 – ident: e_1_3_4_40_2 doi: 10.1073/pnas.1419595112 – ident: e_1_3_4_8_2 doi: 10.1016/j.str.2012.03.007 – ident: e_1_3_4_5_2 doi: 10.1016/j.molcel.2013.05.002 – ident: e_1_3_4_18_2 doi: 10.1016/S0092-8674(00)81446-4 – ident: e_1_3_4_20_2 doi: 10.1016/S0092-8674(00)00165-3 – ident: e_1_3_4_11_2 doi: 10.1016/j.sbi.2019.03.002 – ident: e_1_3_4_34_2 doi: 10.1128/JVI.73.5.3941-3950.1999 – ident: e_1_3_4_37_2 doi: 10.1073/pnas.90.22.10549 – ident: e_1_3_4_43_2 doi: 10.1128/jvi.65.12.6772-6781.1991 – ident: e_1_3_4_10_2 doi: 10.1093/emboj/18.1.85 – ident: e_1_3_4_38_2 doi: 10.1128/jvi.71.7.4921-4928.1997 – ident: e_1_3_4_12_2 doi: 10.1038/nsmb.3309 – ident: e_1_3_4_19_2 doi: 10.1126/science.aac4354 |
SSID | ssj0009580 |
Score | 2.4931543 |
Snippet | Intracellular protein homeostasis is maintained by a network of chaperones that function to fold proteins into their native conformation. The eukaryotic TRiC... Protein folding and oligomeric complex assembly are essential for protein homeostasis. These processes are orchestrated by a network of host chaperones that... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Assembly Biological Sciences Capsid protein Capsid Proteins - chemistry Capsid Proteins - metabolism Chaperones Chaperonin Containing TCP-1 - chemistry Chaperonin Containing TCP-1 - metabolism Crosslinking Cryoelectron Microscopy Folding Homeostasis Mass Spectrometry Mass spectroscopy Molecular Chaperones - chemistry Molecular Chaperones - metabolism Molecular dynamics Oligomers Protein Conformation Protein Folding Proteins Proteostasis Reoviridae - metabolism Structure-function relationships Substrates Topology |
Title | Structural and functional dissection of reovirus capsid folding and assembly by the prefoldin-TRiC/CCT chaperone network |
URI | https://www.jstor.org/stable/27027621 https://www.ncbi.nlm.nih.gov/pubmed/33836586 https://www.proquest.com/docview/2499916588 https://www.proquest.com/docview/2511239914 https://pubmed.ncbi.nlm.nih.gov/PMC7980406 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxV6ZpPu49TtXVCo0yQSn2LYscRlUY6bQ1s_Gv8c5y_4mQqCHipqsR2Ld-v57vz3c8IvWVpPOFUcuwnlPsxT5nPCJOXmdEwFmRSEkW7-GGeni7i98tkORj87GQtNRs24j-21pX8j1ThGchVVsn-g2TbQeEBfAf5widIGD7_SsafFfmrIs6Q8W-5R5nQnjpm59YavBLrb6urRvJQX8Ish5U-ctJErdDwK7u4VXaoKpsS-rWffVpNJX3uNJPlwZJQHAzSWqeNd23a83YPvLYZB3MbYjxyBStGi1wP_eH53F1_rO7dNjn8NpTvzqpmsGkVzcYVw7sIukLm-qZpkemCD7PvpsDNhDNClc-lqy27bOBb59fV4yHsrbGuvh4JrbrB8vEBeeOebnfKvbEFLkZVB1s3ENB48tbjupBU7tL6IXaIHlX3_GN-sjg7y7PjZXYP3Q8JUTkCs2XQYXymuv7JTNXySpHo8M7wPZNIZ8Vu83fupu127KDsEXpoHBh8pNG4iwaifox27eLhA8Nj_u4JunHwxIA07OCJHTzxusIWnljDExt4qk4WnpjdYkAW7sPzEMCJW3BiA86naHFynE1PfXPRh8_BXt2AdqhIwKOSl0lUhEyQMinLImZlyMZpSQkXSVCQSoB3DetX8bQoyLiiYkLjpIKtPtpDOzX8zHOEoypmIXg1YIPBopclpbRiUQl2MA8nSSQ8NLJrnXPDgi8vY7nIVTYGiXIpnNwJx0MHbYdLTQDz-6Z7SnhtO1nrCcZG4KF9K83cqA_oFyvfLKHQ7037GpS7PLErarFuoI10h8CFCGIPPdPCbweXsSXonXqI9GDRNpDE8f039eqLIpAnEwp7d_riz9N6iR64P-g-2gHMiFdggW_Ya4X0X93m4lM |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+functional+dissection+of+reovirus+capsid+folding+and+assembly+by+the+prefoldin-TRiC%2FCCT+chaperone+network&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Knowlton%2C+Jonathan+J&rft.au=Gestaut%2C+Daniel&rft.au=Ma%2C+Boxue&rft.au=Taylor%2C+Gwen&rft.date=2021-03-16&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=118&rft.issue=11&rft.spage=1&rft_id=info:doi/10.1073%2Fpnas.2018127118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |