Mathematical discoveries from program search with large language models
Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements 1...
Saved in:
Published in | Nature (London) Vol. 625; no. 7995; pp. 468 - 475 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.01.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements
1
,
2
. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches
3
. Applying FunSearch to a central problem in extremal combinatorics—the cap set problem—we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications.
FunSearch makes discoveries in established open problems using large language models by searching for programs describing how to solve a problem, rather than what the solution is. |
---|---|
AbstractList | Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements
1
,
2
. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches
3
. Applying FunSearch to a central problem in extremal combinatorics—the cap set problem—we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications.
FunSearch makes discoveries in established open problems using large language models by searching for programs describing how to solve a problem, rather than what the solution is. Large Language Models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations) which can result in them making plausible but incorrect statements [1,2]. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pre-trained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best known results in important problems, pushing the boundary of existing LLM-based approaches [3]. Applying FunSearch to a central problem in extremal combinatorics - the cap set problem - we discover new constructions of large cap sets going beyond the best known ones, both in finite dimensional and asymptotic cases. This represents the first discoveries made for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve upon widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications. Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements1,2. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches3. Applying FunSearch to a central problem in extremal combinatorics-the cap set problem-we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications.Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements1,2. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches3. Applying FunSearch to a central problem in extremal combinatorics-the cap set problem-we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications. Abstract Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches. Applying FunSearch to a central problem in extremal combinatorics—the cap set problem—we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications. Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements 1,2 . This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches 3 . Applying FunSearch to a central problem in extremal combinatorics—the cap set problem—we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications. Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language. However, LLMs sometimes suffer from confabulations (or hallucinations), which can result in them making plausible but incorrect statements1,2. This hinders the use of current large models in scientific discovery. Here we introduce FunSearch (short for searching in the function space), an evolutionary procedure based on pairing a pretrained LLM with a systematic evaluator. We demonstrate the effectiveness of this approach to surpass the best-known results in important problems, pushing the boundary of existing LLM-based approaches3. Applying FunSearch to a central problem in extremal combinatorics-the cap set problem-we discover new constructions of large cap sets going beyond the best-known ones, both in finite dimensional and asymptotic cases. This shows that it is possible to make discoveries for established open problems using LLMs. We showcase the generality of FunSearch by applying it to an algorithmic problem, online bin packing, finding new heuristics that improve on widely used baselines. In contrast to most computer search approaches, FunSearch searches for programs that describe how to solve a problem, rather than what the solution is. Beyond being an effective and scalable strategy, discovered programs tend to be more interpretable than raw solutions, enabling feedback loops between domain experts and FunSearch, and the deployment of such programs in real-world applications. |
Author | Balog, Matej Kumar, M. Pawan Dupont, Emilien Ruiz, Francisco J. R. Fawzi, Alhussein Ellenberg, Jordan S. Wang, Pengming Fawzi, Omar Barekatain, Mohammadamin Romera-Paredes, Bernardino Kohli, Pushmeet Novikov, Alexander |
Author_xml | – sequence: 1 givenname: Bernardino orcidid: 0000-0003-3604-3590 surname: Romera-Paredes fullname: Romera-Paredes, Bernardino email: brp@google.com organization: Google DeepMind – sequence: 2 givenname: Mohammadamin orcidid: 0000-0002-8470-8203 surname: Barekatain fullname: Barekatain, Mohammadamin organization: Google DeepMind – sequence: 3 givenname: Alexander surname: Novikov fullname: Novikov, Alexander organization: Google DeepMind – sequence: 4 givenname: Matej orcidid: 0000-0002-5552-9855 surname: Balog fullname: Balog, Matej organization: Google DeepMind – sequence: 5 givenname: M. Pawan surname: Kumar fullname: Kumar, M. Pawan organization: Google DeepMind – sequence: 6 givenname: Emilien surname: Dupont fullname: Dupont, Emilien organization: Google DeepMind – sequence: 7 givenname: Francisco J. R. orcidid: 0000-0002-2200-901X surname: Ruiz fullname: Ruiz, Francisco J. R. organization: Google DeepMind – sequence: 8 givenname: Jordan S. surname: Ellenberg fullname: Ellenberg, Jordan S. organization: Department of Mathematics, University of Wisconsin-Madison – sequence: 9 givenname: Pengming orcidid: 0009-0009-4976-4267 surname: Wang fullname: Wang, Pengming organization: Google DeepMind – sequence: 10 givenname: Omar surname: Fawzi fullname: Fawzi, Omar organization: Laboratoire de l’Informatique du Parallélisme, University of Lyon (Inria, ENS Lyon, UCBL, LIP) – sequence: 11 givenname: Pushmeet orcidid: 0000-0002-7466-7997 surname: Kohli fullname: Kohli, Pushmeet email: pushmeet@google.com organization: Google DeepMind – sequence: 12 givenname: Alhussein orcidid: 0000-0001-7341-1917 surname: Fawzi fullname: Fawzi, Alhussein email: afawzi@google.com organization: Google DeepMind |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38096900$$D View this record in MEDLINE/PubMed https://hal.science/hal-04682926$$DView record in HAL |
BookMark | eNp9kUFv1DAQhS1URLelf4ADisQFDoGxndjOCVUVbZG26gXOluMdJ6mSeLGTrfj3eJuWwh56sS37e288807I0ehHJOQdhc8UuPoSC1oqkQPjOYiKFbl4RVa0kCIvhJJHZAXAVA6Ki2NyEuMdAJRUFm_IMVdQiQpgRa5uzNTiYKbOmj7bdNH6HYYOY-aCH7Jt8E0wQxbRBNtm993UZr0JDaZ1bGaTDoPfYB_fktfO9BHPHvdT8vPy24-L63x9e_X94nyd2xKqKa-lFJQ7MGCYcooZsBKQ12itdKaURU0NN3WJlircgMTUjkNKnZMVdaXjp-Tr4rud6wE3FscpmF5vQzeY8Ft70-n_X8au1Y3faQqyKmhRJodPi0N7oLs-X-v9HaTpsYqJHU3sx8dqwf-aMU56SBPCPjWPfo6aVcCqsoSCJ_TDAXrn5zCmWSSKSs4ZYypR7__9_t_6T4EkQC2ADT7GgE7bbkrp-H03XZ_a0Pvs9ZK9Ttnrh-y1SFJ2IH1yf1HEF1FM8NhgeP72C6o_JO7BLg |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2024_101844 crossref_primary_10_1016_j_swevo_2024_101780 crossref_primary_10_1038_s41562_024_01991_9 crossref_primary_10_1145_3678165 crossref_primary_10_1016_j_rcim_2024_102883 crossref_primary_10_1063_5_0224297 crossref_primary_10_1021_acs_chemrestox_4c00134 crossref_primary_10_1016_j_future_2024_107481 crossref_primary_10_17726_philIT_2024_1_3 crossref_primary_10_1038_d41586_023_03998_0 crossref_primary_10_1039_D4DD00074A crossref_primary_10_1007_s10479_024_06127_w crossref_primary_10_2478_jdis_2024_0011 crossref_primary_10_1016_j_jsmc_2024_10_001 crossref_primary_10_2139_ssrn_4761694 crossref_primary_10_1088_2632_2153_ad743e crossref_primary_10_1038_s41467_025_57427_z crossref_primary_10_3390_app15042241 crossref_primary_10_1016_j_isci_2024_109550 crossref_primary_10_1109_TCYB_2024_3412997 crossref_primary_10_1016_j_procs_2024_11_094 crossref_primary_10_1038_s43588_024_00593_9 crossref_primary_10_1016_j_disc_2024_114334 crossref_primary_10_1007_s11390_024_5036_x crossref_primary_10_1109_TBDATA_2024_3423677 crossref_primary_10_1007_s41965_024_00172_x crossref_primary_10_1038_s42254_024_00740_1 crossref_primary_10_1007_s10998_024_00617_x crossref_primary_10_1016_j_mattod_2024_08_028 crossref_primary_10_1126_sciadv_adr4173 crossref_primary_10_1145_3694791 crossref_primary_10_3390_sym16101388 crossref_primary_10_1021_acs_jcim_3c01726 crossref_primary_10_17726_philIT_2024_1_6 crossref_primary_10_1145_3696412 crossref_primary_10_4196_kjpp_2024_28_5_393 crossref_primary_10_1007_s10515_024_00436_x crossref_primary_10_1007_s11704_024_40490_y crossref_primary_10_1056_AIoa2400555 crossref_primary_10_34133_research_0442 crossref_primary_10_1063_5_0247759 crossref_primary_10_1515_revce_2024_0060 crossref_primary_10_1016_j_infoandorg_2025_100560 crossref_primary_10_1016_j_swevo_2024_101741 crossref_primary_10_1142_S201032472440006X |
Cites_doi | 10.1145/3583131.3590481 10.1038/s41586-023-06004-9 10.1109/CEC.2010.5586388 10.1145/585265.585269 10.1145/321356.321363 10.1126/science.abq1158 10.24963/ijcai.2022/635 10.1017/CBO9780511755149 10.1007/978-3-7091-4338-4_3 10.1007/BF01388452 10.1126/science.1165893 10.1090/bull/1648 10.1126/sciadv.abq0279 10.1007/978-1-4419-7997-1_35 10.1162/evco.1997.5.2.123 10.1038/s41586-022-05172-4 10.1145/2490301.2451150 10.1145/3828.3833 10.1016/0196-6774(89)90031-X 10.1155/2021/6593438 10.1023/A:1011216716700 10.1007/978-0-387-49820-1 10.1145/3638529.3654017 10.1007/978-981-99-3814-8_11 10.1007/BF00175355 10.21203/rs.3.rs-2895792/v1 10.1145/3694791 10.1007/978-3-642-33558-7_17 10.19086/da.91076 10.4007/annals.2017.185.1.7 10.1016/0166-218X(90)90094-S 10.1109/TEVC.2014.2362729 10.1038/sj/jors/0411109 10.1017/fms.2017.12 10.1016/S0019-9958(64)90223-2 10.1023/A:1027365901231 10.1137/1.9781611973730.94 10.1109/CEC.2009.4983077 10.1007/11844297_87 10.1007/s10710-010-9113-2 10.1109/TEVC.2005.863127 10.1109/CEC.2007.4424789 10.1145/3586183.3606763 10.3389/frobt.2016.00040 10.1057/jors.2013.71 10.1145/1276958.1277273 10.4007/annals.2017.185.1.8 10.1017/CBO9780511623714 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Jan 18, 2024 2023. The Author(s). Attribution |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Jan 18, 2024 – notice: 2023. The Author(s). – notice: Attribution |
DBID | C6C AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES 5PM |
DOI | 10.1038/s41586-023-06924-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics Computer Science |
EISSN | 1476-4687 |
EndPage | 475 |
ExternalDocumentID | PMC10794145 oai_HAL_hal_04682926v1 38096900 10_1038_s41586_023_06924_6 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LGEZI LK5 LK8 LOTEE LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NADUK NAPCQ NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PV9 PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 0WA NPM PJZUB PPXIY PQGLB 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK AFKWF C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI TUS 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c509t-b77613f0a0a28f82a0c70e3becc7fa574b1a3ab5ec18ed07e147fe11ff791f5f3 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:35:42 EDT 2025 Fri May 09 12:23:59 EDT 2025 Fri Jul 11 09:47:48 EDT 2025 Sat Aug 23 12:28:44 EDT 2025 Mon Jul 21 06:08:57 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Tue Jul 01 02:58:49 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7995 |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Limited. Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-b77613f0a0a28f82a0c70e3becc7fa574b1a3ab5ec18ed07e147fe11ff791f5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-4976-4267 0000-0002-7466-7997 0000-0001-7341-1917 0000-0003-3604-3590 0000-0002-5552-9855 0000-0002-8470-8203 0000-0002-2200-901X |
OpenAccessLink | https://www.nature.com/articles/s41586-023-06924-6 |
PMID | 38096900 |
PQID | 2917332228 |
PQPubID | 40569 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10794145 hal_primary_oai_HAL_hal_04682926v1 proquest_miscellaneous_2902955043 proquest_journals_2917332228 pubmed_primary_38096900 crossref_citationtrail_10_1038_s41586_023_06924_6 crossref_primary_10_1038_s41586_023_06924_6 springer_journals_10_1038_s41586_023_06924_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-18 |
PublicationDateYYYYMMDD | 2024-01-18 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Millidge, B. Scaffolded LLMs as natural language computers. Beren’s Bloghttps://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers (2023). Ni, A. et al. Lever: learning to verify language-to-code generation with execution. In Proc.International Conference on Machine Learning 26106–26128 (PMLR, 2023). RamananPBrownDJLeeC-CLeeD-TOn-line bin packing in linear timeJ. Algorithm.198910305326100698810.1016/0196-6774(89)90031-X Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: An Introduction: On The Automatic Evolution of Computer Programs and its Applications (Morgan Kaufmann, 1998). Polu, S. & Sutskever, I. Generative language modeling for automated theorem proving. Preprint at https://arxiv.org/abs/2009.03393 (2020). Code models overview. Vertex AI, Google Cloudhttps://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview (2023). Nye, M. et al. Show your work: scratchpads for intermediate computation with language models. In Deep Learning for Code Workshop, International Conference on Learning Representations (2022). Zhou, S., Alon, U., Xu, F. F., Jiang, Z. & Neubig, G. Docprompting: generating code by retrieving the docs. In Proc.International Conference on Learning Representations (2022). Burke, E. K., Hyde, M. R. & Kendall, G. Providing a memory mechanism to enhance the evolutionary design of heuristics. In Proc.IEEE Congress on Evolutionary Computation 1–8 (IEEE, 2010). PughJKSorosLBStanleyKOQuality diversity: a new frontier for evolutionary computationFront. Robotics AI201634010.3389/frobt.2016.00040 KozaJRGenetic programming as a means for programming computers by natural selectionStat. Comput.199448711210.1007/BF00175355 Coffman, E. G., Garey, M. R. & Johnson, D. S. in Algorithm Design for Computer System Design (eds Ausiello, G. et al.) 49–106 (Springer, 1984). Mouret, J.-B. & Doncieux, S. Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In Proc. 2009 IEEE Congress on Evolutionary Computation 1161–1168 (IEEE, 2009). Nasir, M. U., Earle, S., Togelius, J., James, S. & Cleghorn, C. LLMatic: neural architecture search via large language models and quality-diversity optimization. Preprint at https://arxiv.org/abs/2306.01102 (2023). Naslund, E. & Sawin, W. Upper bounds for sunflower-free sets. Forum Math. Sigma5, e15 (2017). GrochowJNew applications of the polynomial method: the cap set conjecture and beyondBull. Am. Math. Soc.20195629642019CMaPh.366...29G388614310.1090/bull/1648 de la Maza, M. An analysis of selection procedures with particular attention paid to proportional and Boltzmann selection. In Proc. Fifth International Conference on Genetic Algorithms (Morgan Kaufmann, 1993). Croot, E., Lev, V. F. & Pach, P. P. Progression-free sets in are exponentially small. Ann. Math.185, 331–337 (2017). MankowitzDJFaster sorting algorithms discovered using deep reinforcement learningNature20236182572632023Natur.618..257M1:CAS:528:DC%2BB3sXhtFOksrjK10.1038/s41586-023-06004-93728664910247365 Fried, D. et al. Incoder: a generative model for code infilling and synthesis. In Proc. International Conference on Learning Representations (2022). Coffman, E. G., Csirik, J., Galambos, G., Martello, S. & Vigo, D. in Handbook of Combinatorial Optimization (eds Pardalos, P. M. et al.) 455–531 (Springer, 2013). Bang, Y. et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. Preprint at https://arxiv.org/abs/2302.04023 (2023). Cameron, P. J. & Van Lint, J. H. Designs, Graphs, Codes and Their Links Vol. 3 (Cambridge Univ. Press, 1991). Haluptzok, P., Bowers, M. & Kalai, A. T. Language models can teach themselves to program better. In International Conference on Learning Representations (2023). Burke, E. K., Hyde, M. R., Kendall, G. & Woodward, J. Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In Proc. 9th Annual Conference on Genetic and Evolutionary Computation 1559–1565 (ACM, 2007). EdelYBierbrauerJLarge caps in small spacesDes. Codes Cryptogr.200123197212183094110.1023/A:1011216716700 Wu, J. et al. Recursively summarizing books with human feedback. Preprint at https://arxiv.org/abs/2109.10862 (2021). HelmuthTSpectorLMathesonJSolving uncompromising problems with lexicase selectionIEEE Trans. Evol. Comput.20151963064310.1109/TEVC.2014.2362729 LiYCompetition-level code generation with alphacodeScience2022378109210972022Sci...378.1092L1:CAS:528:DC%2BB38XjtVyhtrrJ10.1126/science.abq115836480631 Schick, T. et al. Toolformer: language models can teach themselves to use tools. Preprint at https://arxiv.org/abs/2302.04761 (2023). Langdon, W. B. & Poli, R. Foundations of Genetic Programming (Springer Science & Business Media, 2013). MaHNarayanaswamyARileyPLiLEvolving symbolic density functionalsSci. Adv.20228eabq02792022SciA....8..279M10.1126/sciadv.abq0279360839069462698 Beasley, J. E. OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc.41, 1069–1072 (1990). Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D. & Haber, N. Parsel: a (de-) compositional framework for algorithmic reasoning with language models. Preprint at https://arxiv.org/abs/2212.10561 (2023). OpenAI, GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023). Borji, A. A. categorical archive of ChatGPT failures. Preprint at https://arxiv.org/abs/2302.03494 (2023). Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc.International Conference on Learning Representations (2022). ChaitinGJOn the length of programs for computing finite binary sequencesJ. ACM19661354756921052010.1145/321356.321363 HutterMLeggSFitness uniform optimizationIEEE Trans. Evol. Comput.20061056858910.1109/TEVC.2005.863127 Cantú-PazEA survey of parallel genetic algorithmsCalculateurs Paralleles, Reseaux et Systemes Repartis199810141171 Li, M. et al. An Introduction to Kolmogorov Complexity and its Applications Vol. 3 (Springer, 2008). Yao, S. et al. ReAct: dynergizing reasoning and acting in language models. In Proc.International Conference on Learning Representations (2023). SolomonoffRJA formal theory of inductive inference. Part IInf. Control1964712217274510.1016/S0019-9958(64)90223-2 O’NeillMVanneschiLGustafsonSBanzhafWOpen issues in genetic programmingGenet. Program. Evolvable Mach.20101133936310.1007/s10710-010-9113-2 Polu, S. et al. Formal mathematics statement curriculum learning. In International Conference on Learning Representations (2023). Chen, M. et al. Evaluating large language models trained on code. Preprint at https://arxiv.org/abs/2107.03374 (2021). Yin, P. et al. Natural language to code generation in interactive data science notebooks. Preprint at https://arxiv.org/abs/2212.09248 (2022). Chen, X., Lin, M., Schärli, N. & Zhou, D. Teaching large language models to self-debug. Preprint at https://arxiv.org/abs/2304.05128 (2023). SchmidtMLipsonHDistilling free-form natural laws from experimental dataScience200932481852009Sci...324...81S1:CAS:528:DC%2BD1MXjvVajsbw%3D10.1126/science.116589319342586 JiangAQTHOR: wielding hammers to integrate language models and automated theorem proversAdv. Neural Info. Process. Syst.20223583608373 Yang, F. et al. Launchpad: a programming model for distributed machine learning research. Preprint at https://arxiv.org/abs/2106.04516 (2021). Tao, T. Open question: best bounds for cap sets. WordPress Bloghttps://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/ (2009). SeidenSSOn the online bin packing problemJ. ACM200249640671214709510.1145/585265.585269 Burke, E. K., Hyde, M., Kendall, G. & Woodward, J. R. The scalability of evolved on line bin packing heuristics. In Proc.2007 IEEE Congress on Evolutionary Computation 2530–2537 (IEEE, 2007). SchkufzaESharmaRAikenAStochastic superoptimizationACM SIGARCH Comp. Archit. News20134130531610.1145/2490301.2451150 Meyerson, E. et al. Language model crossover: variation through few-shot prompting. Preprint at https://arxiv.org/abs/2302.12170 (2023). Balogh, J., Békési, J., Dósa, G., Sgall, J. & Stee, R. V. The optimal absolute ratio for online bin packing. In Proc. Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (ed. Chekuri, C.) 1425–1438 (SIAM, 2014). Tyrrell, F. New lower bounds for cap sets. Discrete Analysishttps://doi.org/10.19086/da.91076 (2023). Shypula, A. et al. Learning to superoptimize real-world programs. In Proc. Deep Learning for Code Workshop (ICLR 2022 Workshop) (2022). FawziADiscovering faster matrix multiplication algorithms with reinforcement learningNature202261047532022Natur.610...47F1:CAS:528:DC%2BB38XisFygurfK10.1038/s41586-022-05172-4361987809534758 EdelYExtensions of generalized product capsDes. Codes Cryptogr.200431514203169410.1023/A:1027365901231 Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs (MIT, 1994). Ellenberg, J. S., Gijswijt, D. On large subsets of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{q}^{n}$$\end{document} with no three-term arithmetic progression. Ann. Math.185, 339–343 (2017). HillROn the largest size of cap in S5,3Rend Lincei. Sci. Fis. Mat. Nat.197354378384363951 ZelikmanEWuYMuJGoodmanNStar: bootstrapping reasoning with reasoningAdv. Neural Info. Process. Syst.2022351547615488 Lehman, J. et al. in Handbook of Evolutionary Machine Learning (eds Banzhaf, W. et al.) 331–366 (Springer, 2023). Anil, R. et al. Palm 2 technical report. Preprint at https://arxiv.org/abs/2305.10403 (2023). Chen, X. et al. Symbolic discovery of optimization algorithms. Preprint at https://arxiv.org/abs/2302.06675 (2023). BurkeEKHyper-heuristics: a survey of the state of the artJ. Oper. Res. Soc.2013641695172410.1057/jors.2013.71 Goldberg, D. E. Genetic Algorithms in Search, Optimization and SS Seiden (6924_CR42) 2002; 49 6924_CR60 6924_CR61 6924_CR62 6924_CR63 6924_CR20 GJ Chaitin (6924_CR48) 1966; 13 6924_CR64 6924_CR65 6924_CR22 6924_CR66 6924_CR23 6924_CR24 JK Pugh (6924_CR56) 2016; 3 6924_CR68 6924_CR25 6924_CR69 6924_CR26 6924_CR27 6924_CR29 EK Burke (6924_CR81) 2013; 64 A Fawzi (6924_CR89) 2022; 610 Y Edel (6924_CR33) 2001; 23 RJ Solomonoff (6924_CR50) 1964; 7 6924_CR91 J Grochow (6924_CR21) 2019; 56 6924_CR52 6924_CR53 6924_CR10 CC Lee (6924_CR40) 1985; 32 Y Edel (6924_CR34) 2004; 31 6924_CR55 6924_CR12 6924_CR13 6924_CR14 6924_CR9 6924_CR59 6924_CR16 6924_CR17 M Schmidt (6924_CR75) 2009; 324 6924_CR6 6924_CR18 P Ramanan (6924_CR41) 1989; 10 6924_CR5 6924_CR19 6924_CR8 6924_CR7 6924_CR2 6924_CR1 E Cantú-Paz (6924_CR28) 1998; 10 6924_CR4 6924_CR3 6924_CR80 S Martello (6924_CR46) 1990; 28 6924_CR82 6924_CR83 M Hutter (6924_CR58) 2006; 10 6924_CR84 6924_CR85 R Hill (6924_CR35) 1973; 54 6924_CR86 DJ Mankowitz (6924_CR90) 2023; 618 6924_CR43 6924_CR44 6924_CR88 6924_CR45 R Salustowicz (6924_CR78) 1997; 5 6924_CR47 6924_CR49 T Helmuth (6924_CR57) 2015; 19 AR Calderbank (6924_CR37) 1994; 4 E Schkufza (6924_CR87) 2013; 41 Y Li (6924_CR11) 2022; 378 H Ma (6924_CR74) 2022; 8 6924_CR70 6924_CR71 M O’Neill (6924_CR51) 2010; 11 6924_CR72 6924_CR73 6924_CR30 6924_CR31 6924_CR32 6924_CR76 AQ Jiang (6924_CR54) 2022; 35 6924_CR77 E Zelikman (6924_CR67) 2022; 35 6924_CR79 6924_CR36 6924_CR38 6924_CR39 JR Koza (6924_CR15) 1994; 4 |
References_xml | – reference: Tao, T. & Vu, V. H. Additive Combinatorics Vol. 105 (Cambridge Univ. Press, 2006). – reference: Beasley, J. E. OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc.41, 1069–1072 (1990). – reference: JiangAQTHOR: wielding hammers to integrate language models and automated theorem proversAdv. Neural Info. Process. Syst.20223583608373 – reference: Zhou, S., Alon, U., Xu, F. F., Jiang, Z. & Neubig, G. Docprompting: generating code by retrieving the docs. In Proc.International Conference on Learning Representations (2022). – reference: MankowitzDJFaster sorting algorithms discovered using deep reinforcement learningNature20236182572632023Natur.618..257M1:CAS:528:DC%2BB3sXhtFOksrjK10.1038/s41586-023-06004-93728664910247365 – reference: Cantú-PazEA survey of parallel genetic algorithmsCalculateurs Paralleles, Reseaux et Systemes Repartis199810141171 – reference: Croot, E., Lev, V. F. & Pach, P. P. Progression-free sets in are exponentially small. Ann. Math.185, 331–337 (2017). – reference: Park, J. S. et al. Generative agents: interactive simulacra of human behavior. In Proc. 36th Annual ACM Symposium on User Interface Software and Technology1–22 (ACM, 2023). – reference: SchmidtMLipsonHDistilling free-form natural laws from experimental dataScience200932481852009Sci...324...81S1:CAS:528:DC%2BD1MXjvVajsbw%3D10.1126/science.116589319342586 – reference: Lehman, J. et al. in Handbook of Evolutionary Machine Learning (eds Banzhaf, W. et al.) 331–366 (Springer, 2023). – reference: BurkeEKHyper-heuristics: a survey of the state of the artJ. Oper. Res. Soc.2013641695172410.1057/jors.2013.71 – reference: Shypula, A. et al. Learning to superoptimize real-world programs. In Proc. Deep Learning for Code Workshop (ICLR 2022 Workshop) (2022). – reference: Chen, A., Dohan, D. M. & So, D. R. EvoPrompting: language models for code-level neural architecture search. Preprint at https://arxiv.org/abs/2302.14838 (2023). – reference: SeidenSSOn the online bin packing problemJ. ACM200249640671214709510.1145/585265.585269 – reference: FawziADiscovering faster matrix multiplication algorithms with reinforcement learningNature202261047532022Natur.610...47F1:CAS:528:DC%2BB38XisFygurfK10.1038/s41586-022-05172-4361987809534758 – reference: Balogh, J., Békési, J., Dósa, G., Epstein, L. & Levin, A. A new and improved algorithm for online bin packing. In Proc.26th Annual European Symposium on Algorithms (ESA 2018) 5:1–5:14 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018). – reference: Ni, A. et al. Lever: learning to verify language-to-code generation with execution. In Proc.International Conference on Machine Learning 26106–26128 (PMLR, 2023). – reference: Coffman, E. G., Csirik, J., Galambos, G., Martello, S. & Vigo, D. in Handbook of Combinatorial Optimization (eds Pardalos, P. M. et al.) 455–531 (Springer, 2013). – reference: Mouret, J.-B. & Doncieux, S. Overcoming the bootstrap problem in evolutionary robotics using behavioral diversity. In Proc. 2009 IEEE Congress on Evolutionary Computation 1161–1168 (IEEE, 2009). – reference: Nijkamp, E. et al. CodeGen: an open large language model for code with multi-turn program synthesis. In Proc.International Conference on Learning Representations (2022). – reference: Chen, X. et al. Symbolic discovery of optimization algorithms. Preprint at https://arxiv.org/abs/2302.06675 (2023). – reference: Schick, T. et al. Toolformer: language models can teach themselves to use tools. Preprint at https://arxiv.org/abs/2302.04761 (2023). – reference: Li, R. et al. StarCoder: may the source be with you! Preprint at https://arxiv.org/abs/2305.06161 (2023). – reference: CalderbankARFishburnPCMaximal three-independent subsets of {0, 1, 2} nDes. Codes Cryptogr.19944203211127794010.1007/BF01388452 – reference: Koza, J. R. Genetic Programming II: Automatic Discovery of Reusable Programs (MIT, 1994). – reference: SalustowiczRSchmidhuberJProbabilistic incremental program evolutionEvol. Comput.199751231411:STN:280:DC%2BC2sfnvVamtg%3D%3D10.1162/evco.1997.5.2.12310021756 – reference: Bang, Y. et al. A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. Preprint at https://arxiv.org/abs/2302.04023 (2023). – reference: Chen, M. et al. Evaluating large language models trained on code. Preprint at https://arxiv.org/abs/2107.03374 (2021). – reference: Angelopoulos, S., Kamali, S. & Shadkami, K. Online bin packing with predictions. J. Artif. Intell.Res.36, 4574–4580 (2022). – reference: KozaJRGenetic programming as a means for programming computers by natural selectionStat. Comput.199448711210.1007/BF00175355 – reference: Tao, T. Open question: best bounds for cap sets. WordPress Bloghttps://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/ (2009). – reference: Fried, D. et al. Incoder: a generative model for code infilling and synthesis. In Proc. International Conference on Learning Representations (2022). – reference: MartelloSTothPLower bounds and reduction procedures for the bin packing problemDiscrete Appl. Math.1990285970106483110.1016/0166-218X(90)90094-S – reference: Yang, F. et al. Launchpad: a programming model for distributed machine learning research. Preprint at https://arxiv.org/abs/2106.04516 (2021). – reference: Tanese, R. Distributed Genetic Algorithms for Function Optimization. PhD thesis, Univ. Michigan (1989). – reference: Ross, P. in Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (eds Burke, E. K. & Kendall, G.) 529–556 (Springer, 2005). – reference: RamananPBrownDJLeeC-CLeeD-TOn-line bin packing in linear timeJ. Algorithm.198910305326100698810.1016/0196-6774(89)90031-X – reference: SchkufzaESharmaRAikenAStochastic superoptimizationACM SIGARCH Comp. Archit. News20134130531610.1145/2490301.2451150 – reference: Castiñeiras, I., De Cauwer, M. & O’Sullivan, B. Weibull-based benchmarks for bin packing. In Proc.International Conference on Principles and Practice of Constraint Programming 207–222 (Springer, 2012). – reference: Liventsev, V., Grishina, A., Härmä, A. & Moonen, L. Fully autonomous programming with large language models. Preprint at https://arxiv.org/abs/2304.10423 (2023). – reference: HillROn the largest size of cap in S5,3Rend Lincei. Sci. Fis. Mat. Nat.197354378384363951 – reference: Cameron, P. J. & Van Lint, J. H. Designs, Graphs, Codes and Their Links Vol. 3 (Cambridge Univ. Press, 1991). – reference: Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D. & Haber, N. Parsel: a (de-) compositional framework for algorithmic reasoning with language models. Preprint at https://arxiv.org/abs/2212.10561 (2023). – reference: LeeCCLeeDTA simple on-line bin-packing algorithmJ. ACM19853256257279620110.1145/3828.3833 – reference: Burke, E. K., Hyde, M. R. & Kendall, G. Evolving bin packing heuristics with genetic programming. In Proc.International Conference on Parallel Problem Solving from Nature 860–869 (Springer, 2006). – reference: Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989). – reference: Coffman, E. G., Garey, M. R. & Johnson, D. S. in Algorithm Design for Computer System Design (eds Ausiello, G. et al.) 49–106 (Springer, 1984). – reference: MaHNarayanaswamyARileyPLiLEvolving symbolic density functionalsSci. Adv.20228eabq02792022SciA....8..279M10.1126/sciadv.abq0279360839069462698 – reference: GrochowJNew applications of the polynomial method: the cap set conjecture and beyondBull. Am. Math. Soc.20195629642019CMaPh.366...29G388614310.1090/bull/1648 – reference: Ellenberg, J. S., Gijswijt, D. On large subsets of Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F}_{q}^{n}$$\end{document} with no three-term arithmetic progression. Ann. Math.185, 339–343 (2017). – reference: Madaan, A. et al. Learning performance-improving code edits. Preprint at https://arxiv.org/abs/2302.07867 (2023). – reference: PughJKSorosLBStanleyKOQuality diversity: a new frontier for evolutionary computationFront. Robotics AI201634010.3389/frobt.2016.00040 – reference: Nye, M. et al. Show your work: scratchpads for intermediate computation with language models. In Deep Learning for Code Workshop, International Conference on Learning Representations (2022). – reference: Burke, E. et al. in Handbook of Metaheuristics (eds Glover, F. & Kochenberger, G. A.) 457–474 (Springer, 2003). – reference: LiYCompetition-level code generation with alphacodeScience2022378109210972022Sci...378.1092L1:CAS:528:DC%2BB38XjtVyhtrrJ10.1126/science.abq115836480631 – reference: Borji, A. A. categorical archive of ChatGPT failures. Preprint at https://arxiv.org/abs/2302.03494 (2023). – reference: O’NeillMVanneschiLGustafsonSBanzhafWOpen issues in genetic programmingGenet. Program. Evolvable Mach.20101133936310.1007/s10710-010-9113-2 – reference: Haluptzok, P., Bowers, M. & Kalai, A. T. Language models can teach themselves to program better. In International Conference on Learning Representations (2023). – reference: Nasir, M. U., Earle, S., Togelius, J., James, S. & Cleghorn, C. LLMatic: neural architecture search via large language models and quality-diversity optimization. Preprint at https://arxiv.org/abs/2306.01102 (2023). – reference: SolomonoffRJA formal theory of inductive inference. Part IInf. Control1964712217274510.1016/S0019-9958(64)90223-2 – reference: Polu, S. et al. Formal mathematics statement curriculum learning. In International Conference on Learning Representations (2023). – reference: HelmuthTSpectorLMathesonJSolving uncompromising problems with lexicase selectionIEEE Trans. Evol. Comput.20151963064310.1109/TEVC.2014.2362729 – reference: Polu, S. & Sutskever, I. Generative language modeling for automated theorem proving. Preprint at https://arxiv.org/abs/2009.03393 (2020). – reference: Burke, E. K., Hyde, M. R., Kendall, G. & Woodward, J. Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In Proc. 9th Annual Conference on Genetic and Evolutionary Computation 1559–1565 (ACM, 2007). – reference: Tyrrell, F. New lower bounds for cap sets. Discrete Analysishttps://doi.org/10.19086/da.91076 (2023). – reference: Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. Genetic Programming: An Introduction: On The Automatic Evolution of Computer Programs and its Applications (Morgan Kaufmann, 1998). – reference: EdelYExtensions of generalized product capsDes. Codes Cryptogr.200431514203169410.1023/A:1027365901231 – reference: Burke, E. K., Hyde, M., Kendall, G. & Woodward, J. R. The scalability of evolved on line bin packing heuristics. In Proc.2007 IEEE Congress on Evolutionary Computation 2530–2537 (IEEE, 2007). – reference: OpenAI, GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023). – reference: Zheng, M. et al. Can GPT-4 perform neural architecture search? Preprint at https://arxiv.org/abs/2304.10970 (2023). – reference: Wang, G. et al. Voyager: an open-ended embodied agent with large language models. Preprint at https://arxiv.org/abs/2305.16291 (2023). – reference: ZelikmanEWuYMuJGoodmanNStar: bootstrapping reasoning with reasoningAdv. Neural Info. Process. Syst.2022351547615488 – reference: HutterMLeggSFitness uniform optimizationIEEE Trans. Evol. Comput.20061056858910.1109/TEVC.2005.863127 – reference: Naslund, E. & Sawin, W. Upper bounds for sunflower-free sets. Forum Math. Sigma5, e15 (2017). – reference: Wu, J. et al. Recursively summarizing books with human feedback. Preprint at https://arxiv.org/abs/2109.10862 (2021). – reference: Balogh, J., Békési, J., Dósa, G., Sgall, J. & Stee, R. V. The optimal absolute ratio for online bin packing. In Proc. Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (ed. Chekuri, C.) 1425–1438 (SIAM, 2014). – reference: Li, M. et al. An Introduction to Kolmogorov Complexity and its Applications Vol. 3 (Springer, 2008). – reference: Code models overview. Vertex AI, Google Cloudhttps://cloud.google.com/vertex-ai/docs/generative-ai/code/code-models-overview (2023). – reference: Burke, E. K., Hyde, M. R. & Kendall, G. Providing a memory mechanism to enhance the evolutionary design of heuristics. In Proc.IEEE Congress on Evolutionary Computation 1–8 (IEEE, 2010). – reference: Meyerson, E. et al. Language model crossover: variation through few-shot prompting. Preprint at https://arxiv.org/abs/2302.12170 (2023). – reference: Chen, X., Lin, M., Schärli, N. & Zhou, D. Teaching large language models to self-debug. Preprint at https://arxiv.org/abs/2304.05128 (2023). – reference: Bunel, R., Desmaison, A., Kohli, P., Torr, P. H. & Kumar, M. P. Learning to superoptimize programs. In Proc.International Conference on Learning Representations (2017). – reference: Langdon, W. B. & Poli, R. Foundations of Genetic Programming (Springer Science & Business Media, 2013). – reference: Anil, R. et al. Palm 2 technical report. Preprint at https://arxiv.org/abs/2305.10403 (2023). – reference: de la Maza, M. An analysis of selection procedures with particular attention paid to proportional and Boltzmann selection. In Proc. Fifth International Conference on Genetic Algorithms (Morgan Kaufmann, 1993). – reference: ChaitinGJOn the length of programs for computing finite binary sequencesJ. ACM19661354756921052010.1145/321356.321363 – reference: Millidge, B. Scaffolded LLMs as natural language computers. Beren’s Bloghttps://www.beren.io/2023-04-11-Scaffolded-LLMs-natural-language-computers (2023). – reference: Yao, S. et al. ReAct: dynergizing reasoning and acting in language models. In Proc.International Conference on Learning Representations (2023). – reference: EdelYBierbrauerJLarge caps in small spacesDes. Codes Cryptogr.200123197212183094110.1023/A:1011216716700 – reference: Austin, J. et al. Program synthesis with large language models. Preprint at https://arxiv.org/abs/2108.07732 (2021). – reference: Yin, P. et al. Natural language to code generation in interactive data science notebooks. Preprint at https://arxiv.org/abs/2212.09248 (2022). – ident: 6924_CR10 doi: 10.1145/3583131.3590481 – volume: 618 start-page: 257 year: 2023 ident: 6924_CR90 publication-title: Nature doi: 10.1038/s41586-023-06004-9 – ident: 6924_CR29 – ident: 6924_CR60 – ident: 6924_CR25 – ident: 6924_CR84 doi: 10.1109/CEC.2010.5586388 – ident: 6924_CR77 – volume: 49 start-page: 640 year: 2002 ident: 6924_CR42 publication-title: J. ACM doi: 10.1145/585265.585269 – volume: 13 start-page: 547 year: 1966 ident: 6924_CR48 publication-title: J. ACM doi: 10.1145/321356.321363 – volume: 378 start-page: 1092 year: 2022 ident: 6924_CR11 publication-title: Science doi: 10.1126/science.abq1158 – ident: 6924_CR47 doi: 10.24963/ijcai.2022/635 – ident: 6924_CR68 – ident: 6924_CR22 doi: 10.1017/CBO9780511755149 – ident: 6924_CR39 doi: 10.1007/978-3-7091-4338-4_3 – ident: 6924_CR73 – ident: 6924_CR64 – volume: 4 start-page: 203 year: 1994 ident: 6924_CR37 publication-title: Des. Codes Cryptogr. doi: 10.1007/BF01388452 – volume: 324 start-page: 81 year: 2009 ident: 6924_CR75 publication-title: Science doi: 10.1126/science.1165893 – ident: 6924_CR12 – volume: 56 start-page: 29 year: 2019 ident: 6924_CR21 publication-title: Bull. Am. Math. Soc. doi: 10.1090/bull/1648 – volume: 8 start-page: eabq0279 year: 2022 ident: 6924_CR74 publication-title: Sci. Adv. doi: 10.1126/sciadv.abq0279 – ident: 6924_CR9 – ident: 6924_CR59 – ident: 6924_CR45 doi: 10.1007/978-1-4419-7997-1_35 – volume: 5 start-page: 123 year: 1997 ident: 6924_CR78 publication-title: Evol. Comput. doi: 10.1162/evco.1997.5.2.123 – volume: 610 start-page: 47 year: 2022 ident: 6924_CR89 publication-title: Nature doi: 10.1038/s41586-022-05172-4 – ident: 6924_CR61 – volume: 41 start-page: 305 year: 2013 ident: 6924_CR87 publication-title: ACM SIGARCH Comp. Archit. News doi: 10.1145/2490301.2451150 – ident: 6924_CR76 – volume: 32 start-page: 562 year: 1985 ident: 6924_CR40 publication-title: J. ACM doi: 10.1145/3828.3833 – volume: 10 start-page: 305 year: 1989 ident: 6924_CR41 publication-title: J. Algorithm. doi: 10.1016/0196-6774(89)90031-X – ident: 6924_CR91 doi: 10.1155/2021/6593438 – volume: 10 start-page: 141 year: 1998 ident: 6924_CR28 publication-title: Calculateurs Paralleles, Reseaux et Systemes Repartis – volume: 23 start-page: 197 year: 2001 ident: 6924_CR33 publication-title: Des. Codes Cryptogr. doi: 10.1023/A:1011216716700 – ident: 6924_CR69 – ident: 6924_CR17 – ident: 6924_CR49 doi: 10.1007/978-0-387-49820-1 – ident: 6924_CR72 – ident: 6924_CR65 – ident: 6924_CR44 – ident: 6924_CR19 doi: 10.1145/3638529.3654017 – ident: 6924_CR13 – ident: 6924_CR86 – ident: 6924_CR6 – ident: 6924_CR3 doi: 10.1007/978-981-99-3814-8_11 – ident: 6924_CR8 – volume: 4 start-page: 87 year: 1994 ident: 6924_CR15 publication-title: Stat. Comput. doi: 10.1007/BF00175355 – ident: 6924_CR79 – ident: 6924_CR2 doi: 10.21203/rs.3.rs-2895792/v1 – ident: 6924_CR27 – ident: 6924_CR52 – ident: 6924_CR16 doi: 10.1145/3694791 – ident: 6924_CR24 doi: 10.1007/978-3-642-33558-7_17 – ident: 6924_CR38 doi: 10.19086/da.91076 – ident: 6924_CR62 – ident: 6924_CR30 doi: 10.4007/annals.2017.185.1.7 – volume: 28 start-page: 59 year: 1990 ident: 6924_CR46 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(90)90094-S – volume: 35 start-page: 8360 year: 2022 ident: 6924_CR54 publication-title: Adv. Neural Info. Process. Syst. – volume: 19 start-page: 630 year: 2015 ident: 6924_CR57 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2362729 – ident: 6924_CR23 doi: 10.1038/sj/jors/0411109 – ident: 6924_CR20 – ident: 6924_CR66 – ident: 6924_CR32 doi: 10.1017/fms.2017.12 – ident: 6924_CR18 – ident: 6924_CR71 – volume: 35 start-page: 15476 year: 2022 ident: 6924_CR67 publication-title: Adv. Neural Info. Process. Syst. – ident: 6924_CR14 – ident: 6924_CR1 – volume: 7 start-page: 1 year: 1964 ident: 6924_CR50 publication-title: Inf. Control doi: 10.1016/S0019-9958(64)90223-2 – ident: 6924_CR5 – ident: 6924_CR7 – volume: 31 start-page: 5 year: 2004 ident: 6924_CR34 publication-title: Des. Codes Cryptogr. doi: 10.1023/A:1027365901231 – ident: 6924_CR43 doi: 10.1137/1.9781611973730.94 – ident: 6924_CR80 – volume: 54 start-page: 378 year: 1973 ident: 6924_CR35 publication-title: Rend Lincei. Sci. Fis. Mat. Nat. – ident: 6924_CR53 – ident: 6924_CR26 – ident: 6924_CR55 doi: 10.1109/CEC.2009.4983077 – ident: 6924_CR82 doi: 10.1007/11844297_87 – volume: 11 start-page: 339 year: 2010 ident: 6924_CR51 publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-010-9113-2 – volume: 10 start-page: 568 year: 2006 ident: 6924_CR58 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.863127 – ident: 6924_CR85 doi: 10.1109/CEC.2007.4424789 – ident: 6924_CR63 doi: 10.1145/3586183.3606763 – ident: 6924_CR70 – volume: 3 start-page: 40 year: 2016 ident: 6924_CR56 publication-title: Front. Robotics AI doi: 10.3389/frobt.2016.00040 – volume: 64 start-page: 1695 year: 2013 ident: 6924_CR81 publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2013.71 – ident: 6924_CR88 – ident: 6924_CR83 doi: 10.1145/1276958.1277273 – ident: 6924_CR31 doi: 10.4007/annals.2017.185.1.8 – ident: 6924_CR36 doi: 10.1017/CBO9780511623714 – ident: 6924_CR4 |
SSID | ssj0005174 |
Score | 2.748454 |
Snippet | Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language.... Large Language Models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural language.... Abstract Large language models (LLMs) have demonstrated tremendous capabilities in solving complex tasks, from quantitative reasoning to understanding natural... |
SourceID | pubmedcentral hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 468 |
SubjectTerms | 639/705/1045 639/705/117 Algorithms Applications programs Artificial Intelligence Combinatorial analysis Combinatorics Computer Science Design specifications Feedback loops Function space Humanities and Social Sciences Language Large language models Mathematical models multidisciplinary Natural language (computers) Neural networks Science Science (multidisciplinary) Subject specialists Task complexity |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIiQuiJZXoCCDOIAgqh3HiX1CFWK7QpQTlXqzHMdWK1XZQrb8fmYSJ6ttRa-Jozj5PJ7X5xmA91EE3bom5k6amFPBrlwjzLlonTHRKyEdnUY--VktT8vvZ-osBdz6RKuc9sRho25XnmLkhwX6FZLSAvrL1e-cukZRdjW10NiB-wI1DVG69OJ4Q_G4UYU5HZrhUh_2qLg00W-ptwH6IHm1pZh2zokWedvmvE2dvJE_HdTS4jE8SvYkOxoXwB7cC90-PBh4nb7fh70kuz37kApMf3wCxydzrVZ8lM7lEo8TXWZGh01YomyxUQgYRWrZJRHG2RTcZEP_nP4pnC6-_fq6zFNDhdyjXbDOm7pG7R25467QUReO-5oHSTDW0am6bIRDbFTwQoeW10GUdQxCxFgbEVWUz2C3W3XhBTAfRdMaXsXGuzLKqnE-OFN45akPqtIZiOlvWp-qjVPTi0s7ZL2ltiMCFhGwAwK2yuDT_MzVWGvjztHvEKR5IJXJXh79sHQNfX5dmKL6KzI4mDC0STh7u1lKGbydb6NYUa7EdWF1TWN4YRSVd8vg-Qj5_Cqp0e8znGegtxbD1ly273QX50PpbnS2TSlKlcHnad1s5vX_b31592e8gocF2loUGRL6AHbXf67Da7SV1s2bQSD-Ae78D-k priority: 102 providerName: ProQuest |
Title | Mathematical discoveries from program search with large language models |
URI | https://link.springer.com/article/10.1038/s41586-023-06924-6 https://www.ncbi.nlm.nih.gov/pubmed/38096900 https://www.proquest.com/docview/2917332228 https://www.proquest.com/docview/2902955043 https://hal.science/hal-04682926 https://pubmed.ncbi.nlm.nih.gov/PMC10794145 |
Volume | 625 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51WyFxQbS8UsrKIA4giGrnZftYVt2uEK0QotLeLMdrq0hVipotv58Z51FtC0hcckjsxMlnxzP2N98AvA3Cq5WtQ2pzHVIS7EoVwpyKldU6uFLklqKRT8-qxXnxeVkutyAbYmEiaT9KWsbf9MAOO2xxolFEl6VcBOgzpNUEdki6nRyuWTW7pXXcUV7uA2V4rv5wj43JaHJBVMj7duZ9uuSdPdM4Fc0fw6PehmRHXat3Ycs3e_Agcjlduwe7_Xht2bteVPr9Ezg5HfVZsSrF4hJ3E91kRgEmrKdpsa7jM1qdZZdEEmfDgiaLOXPap3A-P_4-W6R9EoXUoS2wTmspccYO3HKbqaAyy53kPifoZLClLGphEY_SO6H8iksvChm8ECFILUIZ8mew3Vw1_gUwF0S90rwKtbNFyKvaOm915kpHuU9LlYAYvqZxvcI4Jbq4NHGnO1emQ8AgAiYiYKoEPox1fnb6Gv8s_QZBGguSNPbi6Iuhc-jnq0xn1S-RwMGAoekHZGsydEtz2lXCVr4eL-NQov0R2_irGyrDM12SpFsCzzvIx0flCn09zXkCaqMzbLRl80rz4yLKdaODrQtRlAl8HPrNbbv-_q77_1f8JTzM0N6i1SGhDmB7fX3jX6G9tK6nMJFLiUc1E3Scn0xh59Px2ddv0zh0fgPu0RH3 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RQguiJZXoIBBIIEgqh952AeEKmC7pbs9tVJvxnFstVKVbckWxJ_iN-LJa7Wt6K3XjZO1PWOPx_PNNwBvPHOyNIWPjVA-RsKuWAYxx6w0SnmbMmEwG3m6n40Pk-9H6dEK_O1zYRBW2e-JzUZdzizekW_x4FcIDAvIz2fnMVaNwuhqX0KjVYs99-d3cNnqT7tfg3zfcj76dvBlHHdVBWIbjOM8LvLguQtPDTVceskNtTl1AseSe5PmScFM6GDqLJOupLljSe4dY97nivnUi_DdVbiViGDJMTN9tLOAlFxife6SdKiQW3UwlBLhvlhLIfg8cbZkCFePEYZ59Yx7Fap5KV7bmMHRfbjXnV_Jdqtw67Diqg243eBIbb0B691eUZN3HaH1-wewMx24YcOrmAeMuNHgohNMbiEdRIy0s0vwZpicIkCd9JeppKnXUz-EwxuZ6kewVs0q9wSI9awoFc18YU3iRVYY64ziNrVYdzWVEbB-NrXt2M2xyMapbqLsQupWAjpIQDcS0FkEH4Z3zlpuj2tbvw5CGhoiLfd4e6LxN5pkkiue_WIRbPYy1N1mUOuF6kbwangcljHGZkzlZhfYhnKVIp1cBI9bkQ9_JWTwMxWlEcglZVjqy_KT6uS4oQoPzr1KWJJG8LHXm0W__j_Wp9cP4yXcGR9MJ3qyu7_3DO7ycM7DWykmN2Ft_vPCPQ_ntHnxolkcBH7c9Gr8BwhBTls |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RSAuiJZXoIBBIIEgWj_ysA8IVS3Llj7EgUq9Bcdrq0hVtpAtiL_Gr2Mmr7Kt6K3XjZO1PTO2x_PNNwAvgvB6assQW2VCTIRdsUYxx2JqjQkuFcpSNvLefjY5SD4dpodL8KfPhSFYZb8mNgv1dObojnwk0a9QFBbQo9DBIj5vjd-ffI-pghRFWvtyGq2K7Pjfv9B9q99tb6GsX0o5_vBlcxJ3FQZihxvlPC5z9OJV4JZbqYOWlruce0XjyoNN86QUFjubeie0n_LciyQPXogQciNCGhR-dxmu5SrXZGN68x94yTkG6C5hhys9qnHT1AT9pboK6P_E2cKmuHxEkMyL592LsM1zsdtmSxzfhlvdWZZttMq3Cku-WoPrDabU1Wuw2q0bNXvVkVu_vgMf9waeWHyVcoIJQ4ruOqNEF9bBxVg7u4xuidkxgdVZf7HKmto99V04uJKpvgcr1azyD4C5IMqp4VkonU2CykrrvDXSpY5qsKY6AtHPZuE6pnMquHFcNBF3pYtWAgVKoGgkUGQRvBneOWl5Pi5t_RyFNDQkiu7Jxm5Bv_Ek09LI7KeIYL2XYdEtDHVxpsYRPBseo0lTnMZWfnZKbbg0KVHLRXC_FfnwV0qjz2k4j0AvKMNCXxafVN-OGtpwdPRNIpI0gre93pz16_9jfXj5MJ7CDbTDYnd7f-cR3JR45KMLKqHXYWX-49Q_xiPbvHzS2AaDr1dtjH8BQiJSXA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+discoveries+from+program+search+with+large+language+models&rft.jtitle=Nature+%28London%29&rft.au=Romera-Paredes%2C+Bernardino&rft.au=Barekatain%2C+Mohammadamin&rft.au=Novikov%2C+Alexander&rft.au=Balog%2C+Matej&rft.date=2024-01-18&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=625&rft.issue=7995&rft.spage=468&rft.epage=475&rft_id=info:doi/10.1038%2Fs41586-023-06924-6&rft_id=info%3Apmid%2F38096900&rft.externalDocID=PMC10794145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |