NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage

Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show i...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 46; pp. 12315 - 12320
Main Authors Casas, Ana I., Geuss, Eva, Kleikers, Pamela W. M., Mencl, Stine, Herrmann, Alexander M., Buendia, Izaskun, Egea, Javier, Meuth, Sven G., Lopez, Manuela G., Kleinschnitz, Christoph, Schmidt, Harald H. H. W.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 14.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood–brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
AbstractList Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
Significance Why the brain is uniquely sensitive to hypoxia and which cells are involved is incompletely understood. Here we identify that, upon ischemic stroke, in endothelial cells and neurons the reactive oxygen-forming NADPH oxidase 4 (NOX4) causes breakdown of the BBB and neuronal cell death. This mechanism is unique to the brain and not found in other forms of ischemia in the body. Genetic deletion of either cell type (endothelial or neuronal) or pharmacological inhibition of NOX4 leads to a significant reduction of infarct volume and direct neuroprotection. This mechanism explains the unique vulnerability of the hypoxic brain compared with other organs and provides a clear rationale for first-in-class neuroprotective therapies in stroke. Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood–brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
Why the brain is uniquely sensitive to hypoxia and which cells are involved is incompletely understood. Here we identify that, upon ischemic stroke, in endothelial cells and neurons the reactive oxygen-forming NADPH oxidase 4 (NOX4) causes breakdown of the BBB and neuronal cell death. This mechanism is unique to the brain and not found in other forms of ischemia in the body. Genetic deletion of either cell type (endothelial or neuronal) or pharmacological inhibition of NOX4 leads to a significant reduction of infarct volume and direct neuroprotection. This mechanism explains the unique vulnerability of the hypoxic brain compared with other organs and provides a clear rationale for first-in-class neuroprotective therapies in stroke. Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood–brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke.
Author Herrmann, Alexander M.
Egea, Javier
Casas, Ana I.
Kleinschnitz, Christoph
Kleikers, Pamela W. M.
Geuss, Eva
Schmidt, Harald H. H. W.
Buendia, Izaskun
Meuth, Sven G.
Lopez, Manuela G.
Mencl, Stine
Author_xml – sequence: 1
  givenname: Ana I.
  surname: Casas
  fullname: Casas, Ana I.
  organization: Department of Pharmacology and Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
– sequence: 2
  givenname: Eva
  surname: Geuss
  fullname: Geuss, Eva
  organization: Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
– sequence: 3
  givenname: Pamela W. M.
  surname: Kleikers
  fullname: Kleikers, Pamela W. M.
  organization: Department of Pharmacology and Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
– sequence: 4
  givenname: Stine
  surname: Mencl
  fullname: Mencl, Stine
  organization: Department of Neurology, University Clinics Essen, D-45147 Essen, Germany
– sequence: 5
  givenname: Alexander M.
  surname: Herrmann
  fullname: Herrmann, Alexander M.
  organization: Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
– sequence: 6
  givenname: Izaskun
  surname: Buendia
  fullname: Buendia, Izaskun
  organization: Instituto Teofilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 7
  givenname: Javier
  surname: Egea
  fullname: Egea, Javier
  organization: Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
– sequence: 8
  givenname: Sven G.
  surname: Meuth
  fullname: Meuth, Sven G.
  organization: Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
– sequence: 9
  givenname: Manuela G.
  surname: Lopez
  fullname: Lopez, Manuela G.
  organization: Instituto Teofilo Hernando, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
– sequence: 10
  givenname: Christoph
  surname: Kleinschnitz
  fullname: Kleinschnitz, Christoph
  organization: Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany
– sequence: 11
  givenname: Harald H. H. W.
  surname: Schmidt
  fullname: Schmidt, Harald H. H. W.
  organization: Department of Pharmacology and Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29087944$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1v1DAQxS1URLeFMyeQJc5px7GTeC5IbEUBqaKXHrhZtuN0vezawXb68d832y0tnEbW-82bGb8jchBicIS8Z3DCoOOnY9D5hHXQABeMiVdkwQBZ1QqEA7IAqLtKilockqOc1wCAjYQ35LBGkB0KsSC3Py9_iap3owu9C4UGN6UY9IbqqcQS77z15Z7q0NPlcklNcvp3H28DdXfjRvtAy8rRPI0u-ZhodiH74m92LXF41Ex6pCL12a7c1lva662-dm_J60Fvsnv3VI_J1fnXq7Pv1cXltx9nXy4q2wCWynSNk63uWq4NAqt7Y0THTFsPaJwx3DAxv2tpDA6DaZEZzi1aznqL3SD5Mfm8tx0ns3W9nU9MeqPG5Lc63auovfpfCX6lruONalpE4Gw2-PRkkOKfyeWi1nFK8wdlxVACohQoZup0T9kUc05ueJ7AQO2CUrug1EtQc8fHfxd75v8mMwMf9sA6l5he9FbIdl6OPwBRp53L
CitedBy_id crossref_primary_10_3390_jcm8101659
crossref_primary_10_1016_j_redox_2023_102698
crossref_primary_10_1056_NEJMoa1806842
crossref_primary_10_1073_pnas_1820799116
crossref_primary_10_1080_02699052_2022_2158225
crossref_primary_10_1016_j_ijcard_2022_10_172
crossref_primary_10_3390_antiox10121886
crossref_primary_10_1007_s12035_021_02598_1
crossref_primary_10_1016_j_bcp_2024_116186
crossref_primary_10_3389_fnins_2019_01036
crossref_primary_10_3389_fcell_2020_00849
crossref_primary_10_1089_ars_2021_0040
crossref_primary_10_3390_nu13061881
crossref_primary_10_3389_fnins_2019_01436
crossref_primary_10_3390_genes11050567
crossref_primary_10_3390_ijerph182111534
crossref_primary_10_1155_2021_5471347
crossref_primary_10_1080_21655979_2022_2108266
crossref_primary_10_2147_NDT_S251173
crossref_primary_10_1038_s41598_021_91575_8
crossref_primary_10_3390_antiox11101966
crossref_primary_10_1016_j_redox_2019_101272
crossref_primary_10_1097_MD_0000000000017502
crossref_primary_10_1111_jcmm_17171
crossref_primary_10_1038_s41580_020_0230_3
crossref_primary_10_1186_s13148_021_01016_6
crossref_primary_10_7556_jaoa_2020_074
crossref_primary_10_1016_j_freeradbiomed_2020_02_026
crossref_primary_10_2337_db22_0515
crossref_primary_10_1007_s11010_019_03612_w
crossref_primary_10_1016_j_biocel_2020_105794
crossref_primary_10_1016_j_redox_2021_102166
crossref_primary_10_1371_journal_pone_0221039
crossref_primary_10_2174_1570159X21666230308090351
crossref_primary_10_1161_CIRCRESAHA_117_311401
crossref_primary_10_3390_antiox13040489
crossref_primary_10_1016_j_neuroscience_2023_06_012
crossref_primary_10_1111_jcmm_16537
crossref_primary_10_1007_s11936_020_00846_6
crossref_primary_10_1016_j_redox_2023_102926
crossref_primary_10_1155_2021_6631805
crossref_primary_10_1002_jcb_29004
crossref_primary_10_1016_j_neuroscience_2018_11_046
crossref_primary_10_3390_antiox12122103
crossref_primary_10_1016_j_redox_2022_102436
crossref_primary_10_1155_2020_7875396
crossref_primary_10_3389_fneur_2021_680210
crossref_primary_10_1016_j_tips_2021_11_004
crossref_primary_10_1016_j_cca_2021_02_007
crossref_primary_10_1016_j_redox_2021_102178
crossref_primary_10_1016_j_cellsig_2021_110048
crossref_primary_10_1016_j_redox_2021_102210
crossref_primary_10_37349_en_2022_00005
crossref_primary_10_3389_fnins_2020_579953
crossref_primary_10_1007_s00415_024_12263_x
crossref_primary_10_1161_STROKEAHA_118_021380
crossref_primary_10_1016_j_jtcvs_2018_07_095
crossref_primary_10_1016_j_freeradbiomed_2019_12_038
crossref_primary_10_1155_2019_7850154
crossref_primary_10_1002_advs_202101090
crossref_primary_10_1172_JCI124283
crossref_primary_10_1016_j_neuroscience_2021_04_012
crossref_primary_10_3389_fphar_2022_854249
crossref_primary_10_1016_j_jacc_2019_10_052
crossref_primary_10_1016_j_mito_2024_101883
crossref_primary_10_1016_j_neuropharm_2022_109136
crossref_primary_10_3390_biology11020183
crossref_primary_10_1016_j_brainres_2023_148685
crossref_primary_10_1016_j_ymthe_2020_09_006
crossref_primary_10_1007_s12035_024_04039_1
crossref_primary_10_1038_s41598_022_15989_8
crossref_primary_10_1021_acsnano_8b01994
crossref_primary_10_1186_s40001_022_00974_8
crossref_primary_10_3390_pharmaceutics13111779
crossref_primary_10_1016_j_tem_2019_02_006
crossref_primary_10_3389_fncel_2020_578060
crossref_primary_10_1124_pr_120_019422
crossref_primary_10_3389_fonc_2022_968043
crossref_primary_10_1089_ars_2018_7583
crossref_primary_10_1007_s00134_019_05836_2
crossref_primary_10_1155_2022_1148874
crossref_primary_10_1016_j_bbr_2023_114830
crossref_primary_10_3390_ijms25116116
crossref_primary_10_1016_j_bcp_2022_115263
crossref_primary_10_1016_j_redox_2021_101947
crossref_primary_10_3233_JAD_200658
crossref_primary_10_3349_ymj_2022_63_2_187
crossref_primary_10_1016_j_lfs_2020_117917
crossref_primary_10_1111_bph_14703
crossref_primary_10_3390_biom10030422
crossref_primary_10_3390_genes12101627
crossref_primary_10_33549_physiolres_934992
crossref_primary_10_1155_2022_1246267
crossref_primary_10_3390_ijms23169027
Cites_doi 10.1161/CIRCRESAHA.109.213116
10.1016/j.neuroscience.2006.12.036
10.1161/ATVBAHA.115.307012
10.1016/j.yjmcc.2010.12.018
10.4161/auto.5778
10.1038/ncomms1660
10.1038/nm1666
10.1089/neu.2014.3344
10.1016/j.yjmcc.2013.09.007
10.1089/ars.2013.5814
10.1007/s12265-010-9184-8
10.1161/STROKEAHA.108.525386
10.1093/eurheartj/ehv460
10.1371/journal.pmed.0030442
10.1089/ars.2015.6393
10.1073/pnas.1009700107
10.1089/ars.2015.6433
10.1089/ars.2012.4797
10.1089/ars.2010.3292
10.1073/pnas.1002178107
10.1161/CIRCULATIONAHA.111.030775
10.1161/CIRCRESAHA.107.148015
10.1161/CIRCRESAHA.111.300171
10.1089/ars.2009.3014
10.1161/01.STR.17.6.1304
10.1002/gene.1078
10.1371/journal.pbio.1000479
10.1038/srep13428
10.1089/ars.2010.3576
10.1177/0271678X16657094
10.1016/j.vph.2006.08.008
10.3390/ijms130911753
10.1006/dbio.2000.0106
10.1177/0271678X15606456
10.1089/ars.2015.6430
10.1161/01.RES.0000261657.76299.ff
10.4161/auto.3412
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2017 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Nov 14, 2017
Copyright © 2017 the Author(s). Published by PNAS. 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2017 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Nov 14, 2017
– notice: Copyright © 2017 the Author(s). Published by PNAS. 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1705034114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Virology and AIDS Abstracts

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate NOX4 explains brain's sensitivity to ischemia
EISSN 1091-6490
EndPage 12320
ExternalDocumentID 10_1073_pnas_1705034114
29087944
26486569
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: European Research Council
  grantid: 294683
– fundername: Ministerio Economia y Competencia Español
  grantid: SAF2015-63935R
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SFB688
– fundername: Fondo Investigaciones Sanitarias (FIS)
  grantid: CP14/00008; PI6/00735
– fundername: European Research Council. Advanced Investigator Grant
  grantid: 294683 RedMed
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c509t-b75e86a763ab9012dbb471b62f9bebb3b1447128bb9ffb691b33c9c31dc97f83
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:06:27 EDT 2024
Thu Oct 10 16:01:47 EDT 2024
Fri Aug 23 01:45:40 EDT 2024
Sat Sep 28 08:25:31 EDT 2024
Fri Feb 02 08:04:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords endothelium
NOX4
BBB
neurotoxicity
stroke
Language English
License Copyright © 2017 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-b75e86a763ab9012dbb471b62f9bebb3b1447128bb9ffb691b33c9c31dc97f83
Notes 2C.K. and H.H.H.W.S. contributed equally to this work.
Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved October 6, 2017 (received for review March 28, 2017)
1A.I.C. and E.G. contributed equally to this work.
Author contributions: C.K. and H.H.H.W.S. designed research; A.I.C., E.G., P.W.M.K., and S.M. performed research; S.M., A.M.H., I.B., and S.G.M. contributed new reagents/analytic tools; A.I.C., E.G., and S.M. analyzed data; and A.I.C., E.G., P.W.M.K., J.E., M.G.L., C.K., and H.H.H.W.S. wrote the paper.
ORCID 0000-0003-0419-5549
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699031/
PMID 29087944
PQID 1980998494
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699031
proquest_journals_1980998494
crossref_primary_10_1073_pnas_1705034114
pubmed_primary_29087944
jstor_primary_26486569
PublicationCentury 2000
PublicationDate 2017-11-14
PublicationDateYYYYMMDD 2017-11-14
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Krause K-H (e_1_3_3_19_2) 2004; 57
Couffinhal T (e_1_3_3_15_2) 1998; 152
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_34_2
  doi: 10.1161/CIRCRESAHA.109.213116
– ident: e_1_3_3_39_2
  doi: 10.1016/j.neuroscience.2006.12.036
– ident: e_1_3_3_36_2
  doi: 10.1161/ATVBAHA.115.307012
– ident: e_1_3_3_33_2
  doi: 10.1016/j.yjmcc.2010.12.018
– ident: e_1_3_3_20_2
  doi: 10.4161/auto.5778
– ident: e_1_3_3_24_2
  doi: 10.1038/ncomms1660
– ident: e_1_3_3_18_2
  doi: 10.1038/nm1666
– ident: e_1_3_3_28_2
  doi: 10.1089/neu.2014.3344
– ident: e_1_3_3_30_2
  doi: 10.1016/j.yjmcc.2013.09.007
– volume: 57
  start-page: S28
  year: 2004
  ident: e_1_3_3_19_2
  article-title: Tissue distribution and putative physiological function of NOX family NADPH oxidases
  publication-title: Jpn J Infect Dis
  contributor:
    fullname: Krause K-H
– ident: e_1_3_3_23_2
  doi: 10.1089/ars.2013.5814
– ident: e_1_3_3_32_2
  doi: 10.1007/s12265-010-9184-8
– ident: e_1_3_3_22_2
  doi: 10.1161/STROKEAHA.108.525386
– ident: e_1_3_3_37_2
  doi: 10.1093/eurheartj/ehv460
– volume: 152
  start-page: 1667
  year: 1998
  ident: e_1_3_3_15_2
  article-title: Mouse model of angiogenesis
  publication-title: Am J Pathol
  contributor:
    fullname: Couffinhal T
– ident: e_1_3_3_1_2
  doi: 10.1371/journal.pmed.0030442
– ident: e_1_3_3_6_2
  doi: 10.1089/ars.2015.6393
– ident: e_1_3_3_35_2
  doi: 10.1073/pnas.1009700107
– ident: e_1_3_3_4_2
  doi: 10.1089/ars.2015.6433
– ident: e_1_3_3_2_2
  doi: 10.1089/ars.2012.4797
– ident: e_1_3_3_3_2
  doi: 10.1089/ars.2010.3292
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.1002178107
– ident: e_1_3_3_11_2
  doi: 10.1161/CIRCULATIONAHA.111.030775
– ident: e_1_3_3_29_2
  doi: 10.1161/CIRCRESAHA.107.148015
– ident: e_1_3_3_31_2
  doi: 10.1161/CIRCRESAHA.111.300171
– ident: e_1_3_3_8_2
  doi: 10.1089/ars.2009.3014
– ident: e_1_3_3_38_2
  doi: 10.1161/01.STR.17.6.1304
– ident: e_1_3_3_17_2
  doi: 10.1002/gene.1078
– ident: e_1_3_3_9_2
  doi: 10.1371/journal.pbio.1000479
– ident: e_1_3_3_12_2
  doi: 10.1038/srep13428
– ident: e_1_3_3_14_2
  doi: 10.1089/ars.2010.3576
– ident: e_1_3_3_27_2
  doi: 10.1177/0271678X16657094
– ident: e_1_3_3_13_2
  doi: 10.1016/j.vph.2006.08.008
– ident: e_1_3_3_7_2
  doi: 10.3390/ijms130911753
– ident: e_1_3_3_16_2
  doi: 10.1006/dbio.2000.0106
– ident: e_1_3_3_25_2
  doi: 10.1177/0271678X15606456
– ident: e_1_3_3_5_2
  doi: 10.1089/ars.2015.6430
– ident: e_1_3_3_10_2
  doi: 10.1161/01.RES.0000261657.76299.ff
– ident: e_1_3_3_21_2
  doi: 10.4161/auto.3412
SSID ssj0009580
Score 2.600264
Snippet Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to...
Significance Why the brain is uniquely sensitive to hypoxia and which cells are involved is incompletely understood. Here we identify that, upon ischemic...
Why the brain is uniquely sensitive to hypoxia and which cells are involved is incompletely understood. Here we identify that, upon ischemic stroke, in...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12315
SubjectTerms Animal models
Animal tissues
Animals
Benzoxazoles - pharmacology
Biological Sciences
Blood-brain barrier
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - metabolism
Blood-Brain Barrier - pathology
Brain
Brain - drug effects
Brain - enzymology
Brain - pathology
Brain damage
Brain injury
Brain Ischemia - enzymology
Brain Ischemia - genetics
Brain Ischemia - pathology
Brain Ischemia - prevention & control
Endothelial cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelial Cells - pathology
Enzyme Inhibitors - pharmacology
Female
Femoral Artery - injuries
Gene Expression Regulation
Heart
Hindlimb - blood supply
Hindlimb - drug effects
Hindlimb - metabolism
Hindlimb - pathology
Humans
Hypoxia
Ischemia
Male
Mice
Mice, Knockout
Muscles
Myocardial Ischemia - enzymology
Myocardial Ischemia - genetics
Myocardial Ischemia - pathology
Myocardial Ischemia - prevention & control
NAD(P)H oxidase
NADPH Oxidase 4 - antagonists & inhibitors
NADPH Oxidase 4 - genetics
NADPH Oxidase 4 - metabolism
Neurons
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Neuroprotection
Neuroprotective Agents - pharmacology
NOX4 protein
Organ Specificity
Organs
Oxidase
Pharmacology
Pyrazoles - pharmacology
Pyridones - pharmacology
Rats
Reactive oxygen species
Rodents
Sensitivity
Signal Transduction
Smooth muscle
Stroke
Toxicity
Triazoles - pharmacology
Title NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage
URI https://www.jstor.org/stable/26486569
https://www.ncbi.nlm.nih.gov/pubmed/29087944
https://www.proquest.com/docview/1980998494
https://pubmed.ncbi.nlm.nih.gov/PMC5699031
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFLbWnbggxhgUxuQDh3FI29hObB_pxDZN2uAwpN4iP9sREWtStanYz-fZSTqKOO1svyjKe37ve_Hnz4R8Ei7zIvx0z1zYZtQlJEpYSLTTs7IEnTsbzjvf3uXXP8TNIlsckGw4CxNJ-xaqSf2wnNTVz8itXC3tdOCJTb_fXmQ55lCeTkdkJDkfWvSd0q7qzp0wTL-CiUHPR_LpqjabSdCPmWHuTsOVPEzPFEak2KtKHTHxf5DzX-bkX6Xo8hV52WNI-qV71yNy4OvX5KhfpRt63ktJfz4mv---LUQyXHTb0qheGWzNtm3a5rGyCMKpqR2dz-cUu2Pzy2FbTv3j6sFUNUV0SDfbIIbcrOkmcN27yyZoU8YxWMdZDa2wSQ40e-rMEjPUG3J_-fX-4jrpr1pILCKGNgGZeZUbTDYGECEwB4BVC3JWavAAHLDvkljKADR6MNcpcG615amzWpaKn5DDuqn9O0JZ5hwDpx32vhgISntpmZk5iw8E6dWYnA9fulh1ghpF3AiXvAj-KZ78MyYn0RO7eYGNh_hTj8np4JqiX3JopxWiXSU02r3tvPRk2Lt5TOSe_3YTgsj2_gjGXhTb7mPt_bMtP5AXLECBQB0Up-SwXW_9RwQyLZyR0dUiPYvh-wfpyvWW
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nc9MwEN0p5QAXoEAh0IIOHMrBTiLLHzqSTjsBmsAhMLl5tJI9eNrYmcQZOvx6VrKdkk4v5SytZzS7Wr21nt4CfBAmzIT96R4ae80oc_QSodGTRg7yHGVktH3vPJlG4x_iyzyc70HYvYVxpH2NhV9eLfyy-OW4lcuF7nc8sf73yWkYUQ4Nhv0H8JD2Kw-7In2rtZs0L084JWDBRafoEwf9ZanWvlWQGVD2HtqmPFwOEopJsXMuNdTEu0Dnbe7kP4fR-VP42S2j4aBc-psaff3nlsLjvdf5DJ608JR9aoYPYC8rn8NBmwDW7KRVqf74An5Pv82F1_XQrZkTxrS2alNXdXVdaML3TJWGjUYjRoW3ujRU8bPsenmlipIR8GTrjdVZrlZsbWn0TR8LVuVuDFduVsUKqr8tg58ZtaDk9xJm52ez07HXdnHwNIGR2sM4zJJIUR5TSOCDG0Q6EDHiucQMMUAq6WI6JRElBUckhxgEWupgaLSM8yQ4hP2yKrPXwHhoDEcjDZXVFGOJzGLN1cBo-iDGWdKDk86F6bLR6kjdHXscpNbx6Y3je3DoXLydZ4l-BG1lD446n6ftbiY7mRCQToQku1eN-28M2_jpQbwTGNsJVr97d4Tc7XS8W_e--W_L9_BoPJtcpBefp1_fwmNuEYdlKIoj2K9Xm-yY8FKN79zu-AsYqhar
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLbYGWhRZ84FAOSXYdJ46PbNtV-ejSQ5FWXCKPnYio3STazaoVv56xk2y7Faee7YlkzXj8Jn5-Q8gnbqKM25_ukbHXjDIHL-EaPGnkMM9Bxkbb987n0_jsF_82i2b3Wn050r6Gwi-v535Z_HHcynqug54nFlycH0cx5tBwFNQmD56SZ7hnmegL9bXebtK-PmGYhDnjvaqPCIO6VEvfqsgMMYOPbGMeJocJxiXfOJtaeuL_gOdD_uS9A2myTX73S2l5KFf-qgFf_32g8viote6Qlx1MpV_aKbvkSVa-IrtdIljSo06t-vNrcjP9OeNe30u3oU4g09qqVVM11W2hEedTVRo6Ho8pFuDqymDlT7Pb-loVJUUASpcrq7dcLejS0unbfha0yt0YLNysihZYh1smPzVqjknwDbmcnF4en3ldNwdPIyhpPBBRlsQK85kCBCHMAODBCDHLJWQAIWBpJ_C0BJAYJLEcQRhqqcOR0VLkSbhHtsqqzN4SyiJjGBhpsLzGWEtkJjRTQ6PxgyCyZECOejemdavZkbq7dhGm1vnpnfMHZM-5eT3PEv4Q4soBOej9nna7Gu1kgoA64RLt9tsQuDPsYmhAxEZwrCdYHe_NEXS50_PuXPzu0ZYfyfOLk0n64-v0-3vyglngYYmK_IBsNYtVdoiwqYEPboP8A8TTGSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NOX4-dependent+neuronal+autotoxicity+and+BBB+breakdown+explain+the+superior+sensitivity+of+the+brain+to+ischemic+damage&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Casas%2C+Ana+I.&rft.au=Geuss%2C+Eva&rft.au=Kleikers%2C+Pamela+W.+M.&rft.au=Mencl%2C+Stine&rft.date=2017-11-14&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=46&rft.spage=12315&rft.epage=12320&rft_id=info:doi/10.1073%2Fpnas.1705034114&rft.externalDocID=26486569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon