Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis

Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The se...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 14; pp. 1 - 11
Main Authors Wang, Yicheng, Menon, Anant K., Maki, Yuta, Liu, Yi-Shi, Iwasaki, Yugo, Fujita, Morihisa, Guerrero, Paula A., Silva, Daniel Varó’n, Seeberger, Peter H., Murakami, Yoshiko, Kinoshita, Taroh
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcNPI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
AbstractList Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N -acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcNPI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.
Author Liu, Yi-Shi
Guerrero, Paula A.
Murakami, Yoshiko
Kinoshita, Taroh
Iwasaki, Yugo
Fujita, Morihisa
Menon, Anant K.
Maki, Yuta
Silva, Daniel Varó’n
Wang, Yicheng
Seeberger, Peter H.
Author_xml – sequence: 1
  givenname: Yicheng
  surname: Wang
  fullname: Wang, Yicheng
– sequence: 2
  givenname: Anant K.
  surname: Menon
  fullname: Menon, Anant K.
– sequence: 3
  givenname: Yuta
  surname: Maki
  fullname: Maki, Yuta
– sequence: 4
  givenname: Yi-Shi
  surname: Liu
  fullname: Liu, Yi-Shi
– sequence: 5
  givenname: Yugo
  surname: Iwasaki
  fullname: Iwasaki, Yugo
– sequence: 6
  givenname: Morihisa
  surname: Fujita
  fullname: Fujita, Morihisa
– sequence: 7
  givenname: Paula A.
  surname: Guerrero
  fullname: Guerrero, Paula A.
– sequence: 8
  givenname: Daniel Varó’n
  surname: Silva
  fullname: Silva, Daniel Varó’n
– sequence: 9
  givenname: Peter H.
  surname: Seeberger
  fullname: Seeberger, Peter H.
– sequence: 10
  givenname: Yoshiko
  surname: Murakami
  fullname: Murakami, Yoshiko
– sequence: 11
  givenname: Taroh
  surname: Kinoshita
  fullname: Kinoshita, Taroh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35344438$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFvFCEYxYmpsdvq2ZOGxIuXaWEGmOFiYja2NlljU-uZMMw3XTYMTGGmZm_902WzbdUmnkj4fu_xgHeEDnzwgNBbSk4oqavT0et0UlLKSVNRKl-gBSWSFoJJcoAWhJR10bCSHaKjlDaEEMkb8godVrxijFXNAt2fgw8DFL9sB3h5dfHj8gonEwE8jnAH2iW8XF1ef6MrrBPW2NnRdjtCD63TCTJ1O9sIHe5DxND31ljwE75xWxPS1o3rkMa1nmy3ddaHZKfgcGvzyE9rSDa9Ri_7fAq8eViP0c-zL9fLr8Xq-_nF8vOqMJzIqWhFazhwLgWpwUBPoWqpbFphSFfyjnMqGtJ2JZDKcNYJlje0LkG3TWNAi-oYfdr7jnM7QGdyyKidGqMddNyqoK36d-LtWt2EOyWpkJQ22eDjg0EMtzOkSQ02GXBOewhzUqVgTDJRS5LRD8_QTZijz9fbUbIWhIkyU-__TvQU5fFzMsD3gIkhpQi9MnbKTxl2Aa1TlKhdCdSuBOpPCbLu9Jnu0fr_ind7xSZNIT7hZU05LYmofgOlTsD6
CitedBy_id crossref_primary_10_1042_BST20221455
crossref_primary_10_5650_oleoscience_24_513
crossref_primary_10_1093_glycob_cwae061
crossref_primary_10_1146_annurev_genom_121222_115958
crossref_primary_10_3724_abbs_2024128
crossref_primary_10_1128_mbio_00527_24
crossref_primary_10_1016_j_bbamcr_2024_119700
crossref_primary_10_1016_j_biotechadv_2023_108118
crossref_primary_10_1042_BCJ20240223
crossref_primary_10_1186_s12870_023_04188_w
crossref_primary_10_1038_s41467_024_48999_3
crossref_primary_10_3390_biology12111367
crossref_primary_10_1083_jcb_202207104
crossref_primary_10_1007_s00425_025_04640_1
crossref_primary_10_1083_jcb_202208159
Cites_doi 10.1083/jcb.201706135
10.1158/0008-5472.CAN-13-3176
10.1073/pnas.1822025116
10.1038/ncomms13245
10.1002/j.1460-2075.1990.tb07873.x
10.3390/ijms19082161
10.1038/ncomms6115
10.1073/pnas.1709241114
10.1038/s41467-020-17016-8
10.1002/j.1460-2075.1993.tb05839.x
10.1074/jbc.270.34.19873
10.1006/jmbi.2002.5416
10.1021/acschembio.1c00465
10.1074/jbc.270.16.9147
10.1016/j.neuron.2017.12.038
10.1039/b413196g
10.1038/nature15391
10.1073/pnas.1008322108
10.1016/j.cmet.2021.05.006
10.1016/0005-2736(90)90096-7
10.1016/j.bpj.2016.05.023
10.1083/jcb.127.2.333
10.1074/jbc.RA118.004213
10.1038/415447a
10.1038/nmeth.3047
10.1091/mbc.12.2.487
10.1074/jbc.RA119.007472
10.1002/j.1460-2075.1995.tb07311.x
10.1038/nature07165
10.1038/s41467-019-11753-1
10.1073/pnas.1914677117
10.1074/jbc.272.25.15834
10.1091/mbc.E14-11-1568
10.1038/nature19356
10.1126/science.1231143
10.1038/nature09606
10.1039/b500300h
10.1073/pnas.2014481118
10.1098/rsob.190290
10.1371/journal.pone.0030876
10.1083/jcb.121.5.987
10.1073/pnas.2101562118
10.1038/s41467-020-14678-2
10.1002/ajmg.a.36987
10.1021/cb900163d
10.1083/jcb.202111095
10.1091/mbc.e03-03-0193
10.1074/jbc.M313537200
10.1126/science.aag0839
10.1002/ijc.32012
10.1016/j.cub.2010.12.031
10.1016/S0021-9258(17)46183-7
10.1042/bj2590913
10.1182/blood.V87.9.3600.bloodjournal8793600
10.1093/nar/gkz239
10.1194/jlr.M093526
10.1111/cge.13425
10.1083/jcb.201906127
10.1016/0092-8674(93)90250-T
10.1016/j.jbiosc.2016.02.011
10.1021/bi010627
10.1006/bbrc.2001.4250
10.1083/jcb.202103105
10.1093/molbev/mst010
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Apr 5, 2022
Copyright © 2022 the Author(s). Published by PNAS 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Apr 5, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2115083119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 11
ExternalDocumentID PMC9169118
35344438
10_1073_pnas_2115083119
27151206
Genre Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 17H06422
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 21H02415
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-b6bc5e559607ecef1e3b198b6c0d25d551680bd2e03c54d64516aa2eab88cea63
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:05:15 EDT 2025
Fri Jul 11 13:24:59 EDT 2025
Sat Aug 23 12:43:32 EDT 2025
Wed Feb 19 02:26:31 EST 2025
Tue Jul 01 01:03:14 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Thu May 29 08:49:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords CLPTM1L
glycosylphosphatidylinositol
scramblase
endoplasmic reticulum
glycobiology
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-b6bc5e559607ecef1e3b198b6c0d25d551680bd2e03c54d64516aa2eab88cea63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Stephen Beverley, Washington University in St. Louis School of Medicine, St. Louis, MO; received September 24, 2021; accepted February 22, 2022
Author contributions: Y.W. and T.K. designed research; Y.W., A.K.M., Y. Maki, and Y.-S.L. performed research; Y.I., M.F., P.A.G., D.V.S., P.H.S., and Y. Murakami contributed new reagents/analytic tools; Y.W., A.K.M., Y. Maki, and Y.-S.L. analyzed data; and Y.W., A.K.M., and T.K. wrote the paper.
ORCID 0000-0003-2784-9269
0000-0002-5838-302X
0000-0001-7166-7257
0000-0001-7789-1938
0000-0002-4546-6010
0000-0003-3394-8466
0000-0001-5640-1899
0000-0002-4870-5734
0000-0001-6924-2698
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9169118
PMID 35344438
PQID 2649760462
PQPubID 42026
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169118
proquest_miscellaneous_2644946790
proquest_journals_2649760462
pubmed_primary_35344438
crossref_citationtrail_10_1073_pnas_2115083119
crossref_primary_10_1073_pnas_2115083119
jstor_primary_27151206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-05
PublicationDateYYYYMMDD 2022-04-05
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
Ploier B. (e_1_3_4_64_2) 2016
e_1_3_4_18_2
e_1_3_4_39_2
Sugita Y. (e_1_3_4_60_2) 1994; 82
References_xml – ident: e_1_3_4_39_2
  doi: 10.1083/jcb.201706135
– start-page: 54635
  issue: 115
  year: 2016
  ident: e_1_3_4_64_2
  article-title: A fluorescence-based assay of phospholipid scramblase activity
  publication-title: J. Vis. Exp.
– ident: e_1_3_4_18_2
  doi: 10.1158/0008-5472.CAN-13-3176
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1822025116
– ident: e_1_3_4_22_2
  doi: 10.1038/ncomms13245
– ident: e_1_3_4_46_2
  doi: 10.1002/j.1460-2075.1990.tb07873.x
– ident: e_1_3_4_17_2
  doi: 10.3390/ijms19082161
– ident: e_1_3_4_26_2
  doi: 10.1038/ncomms6115
– ident: e_1_3_4_28_2
  doi: 10.1073/pnas.1709241114
– ident: e_1_3_4_58_2
  doi: 10.1038/s41467-020-17016-8
– ident: e_1_3_4_45_2
  doi: 10.1002/j.1460-2075.1993.tb05839.x
– ident: e_1_3_4_54_2
  doi: 10.1074/jbc.270.34.19873
– ident: e_1_3_4_29_2
  doi: 10.1006/jmbi.2002.5416
– ident: e_1_3_4_11_2
  doi: 10.1021/acschembio.1c00465
– ident: e_1_3_4_14_2
  doi: 10.1074/jbc.270.16.9147
– ident: e_1_3_4_40_2
  doi: 10.1016/j.neuron.2017.12.038
– ident: e_1_3_4_7_2
  doi: 10.1039/b413196g
– ident: e_1_3_4_24_2
  doi: 10.1038/nature15391
– ident: e_1_3_4_63_2
  doi: 10.1073/pnas.1008322108
– ident: e_1_3_4_43_2
  doi: 10.1016/j.cmet.2021.05.006
– ident: e_1_3_4_36_2
  doi: 10.1016/0005-2736(90)90096-7
– ident: e_1_3_4_56_2
  doi: 10.1016/j.bpj.2016.05.023
– ident: e_1_3_4_34_2
  doi: 10.1083/jcb.127.2.333
– ident: e_1_3_4_35_2
  doi: 10.1074/jbc.RA118.004213
– volume: 82
  start-page: 34
  year: 1994
  ident: e_1_3_4_60_2
  article-title: Recombinant soluble CD59 inhibits reactive haemolysis with complement
  publication-title: Immunology
– ident: e_1_3_4_8_2
  doi: 10.1038/415447a
– ident: e_1_3_4_15_2
  doi: 10.1038/nmeth.3047
– ident: e_1_3_4_10_2
  doi: 10.1091/mbc.12.2.487
– ident: e_1_3_4_30_2
  doi: 10.1074/jbc.RA119.007472
– ident: e_1_3_4_50_2
  doi: 10.1002/j.1460-2075.1995.tb07311.x
– ident: e_1_3_4_9_2
  doi: 10.1038/nature07165
– ident: e_1_3_4_38_2
  doi: 10.1038/s41467-019-11753-1
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1914677117
– ident: e_1_3_4_48_2
  doi: 10.1074/jbc.272.25.15834
– ident: e_1_3_4_62_2
  doi: 10.1091/mbc.E14-11-1568
– ident: e_1_3_4_51_2
  doi: 10.1038/nature19356
– ident: e_1_3_4_61_2
  doi: 10.1126/science.1231143
– ident: e_1_3_4_21_2
  doi: 10.1038/nature09606
– ident: e_1_3_4_37_2
  doi: 10.1039/b500300h
– ident: e_1_3_4_53_2
  doi: 10.1073/pnas.2014481118
– ident: e_1_3_4_1_2
  doi: 10.1098/rsob.190290
– ident: e_1_3_4_23_2
  doi: 10.1371/journal.pone.0030876
– ident: e_1_3_4_4_2
  doi: 10.1083/jcb.121.5.987
– ident: e_1_3_4_41_2
  doi: 10.1073/pnas.2101562118
– ident: e_1_3_4_31_2
  doi: 10.1038/s41467-020-14678-2
– ident: e_1_3_4_49_2
  doi: 10.1002/ajmg.a.36987
– ident: e_1_3_4_6_2
  doi: 10.1021/cb900163d
– ident: e_1_3_4_47_2
  doi: 10.1083/jcb.202111095
– ident: e_1_3_4_32_2
  doi: 10.1091/mbc.e03-03-0193
– ident: e_1_3_4_5_2
  doi: 10.1074/jbc.M313537200
– ident: e_1_3_4_25_2
  doi: 10.1126/science.aag0839
– ident: e_1_3_4_19_2
  doi: 10.1002/ijc.32012
– ident: e_1_3_4_27_2
  doi: 10.1016/j.cub.2010.12.031
– ident: e_1_3_4_12_2
  doi: 10.1016/S0021-9258(17)46183-7
– ident: e_1_3_4_33_2
  doi: 10.1042/bj2590913
– ident: e_1_3_4_52_2
  doi: 10.1182/blood.V87.9.3600.bloodjournal8793600
– ident: e_1_3_4_66_2
  doi: 10.1093/nar/gkz239
– ident: e_1_3_4_57_2
  doi: 10.1194/jlr.M093526
– ident: e_1_3_4_3_2
  doi: 10.1111/cge.13425
– ident: e_1_3_4_13_2
  doi: 10.1083/jcb.201906127
– ident: e_1_3_4_2_2
  doi: 10.1016/0092-8674(93)90250-T
– ident: e_1_3_4_59_2
  doi: 10.1016/j.jbiosc.2016.02.011
– ident: e_1_3_4_55_2
  doi: 10.1021/bi010627
– ident: e_1_3_4_16_2
  doi: 10.1006/bbrc.2001.4250
– ident: e_1_3_4_42_2
  doi: 10.1083/jcb.202103105
– ident: e_1_3_4_65_2
  doi: 10.1093/molbev/mst010
SSID ssj0009580
Score 2.4912982
Snippet Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is...
Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes....
SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes....
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Biological Sciences
Biosynthesis
Cell surface
Cleft lip/palate
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
Cytosol
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Genomes
Glycolipids
Glycosylphosphatidylinositol
Glycosylphosphatidylinositols - metabolism
Lipids
Lipogenesis
Membrane proteins
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Phosphatidylinositol
Phospholipids
Proteins
Translocation
Title Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis
URI https://www.jstor.org/stable/27151206
https://www.ncbi.nlm.nih.gov/pubmed/35344438
https://www.proquest.com/docview/2649760462
https://www.proquest.com/docview/2644946790
https://pubmed.ncbi.nlm.nih.gov/PMC9169118
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwFLRIHIosB397fayiloLSELWJSE_W2t40llInwolQOPFL-K3MrNcfKQEVLlZkj9dW5nl2dvftG0Le-lMHOq3UMnDNynBZmhqhlwj48Nw4tbnHzKlkWwz8s7H7aeJNOp2fLdbSehV3k-8795X8j1fhHPgVd8n-g2frRuEE_Ab_whE8DMc7-fiDyBc3wviWpULvXXy8HF7oEAWQdoXCTCiM3OsPR-dWH6vJcH2eLbMULfhNDEkzFkxBHjCknFL3W4pJIDXger5JFsUGaevFcgbPSjeQjCK7azHX4wwu5ZA2FlnRzmyHdU9YVLyDQTXReNxsW1GxpNANfThoiiB_UdPWV8hMVZ2plAXOVc1r5Os0U7LnvKy2fbVe1d1KP1uXLRiXs6w9mQHjYOTAeK34C-mL4btlBdGu2HGuCtoq0Cp0uq0YLGxLitwrk9_6CAhqWNg450V323JbjXvwOTod9_vR6GQyukfu2zAMsWXgb4s6s1LtQr1gJR0VOO9vNb-V9ZTE111DmtvM3FaqM3pEHqoxCj0uAbdPOiJ_TPYrz9EjJVX-7gn50UIgLRFISwRShUCqEEh5QTmVCKQNAmmFQAoIpDUC6d8QSNsIfErGpyej3pmhanoYCaSmKyP248QTMIz1zUAkYmoJJ7ZCFvuJmdpeisu2zIQoIUwn8dzUxzrSnNuCx4wlgvvOAdkD5InnhGLhgNjhCRMpc50p6jwxz5uGiWVyDoFJI93qP48SJXiPdVfmkSReBE6ETooaJ2nkqL5hWWq9_Nn0QDqxtrMDTJ1NXyOHlVcjFSngPgBH4OM2cI28qS9DHMfFOZ6LxVrauCFkLaGpkWclCOrGHc9xXddhGgm24FEboEb89pU8m0mt-BDFsCz24g7PfUkeNJ_kIdlbfV2LV5Bxr-LXEva_AMtu2r0
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+CRISPR+screen+reveals+CLPTM1L+as+a+lipid+scramblase+required+for+efficient+glycosylphosphatidylinositol+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yicheng&rft.au=Menon%2C+Anant+K&rft.au=Maki%2C+Yuta&rft.au=Liu%2C+Yi-Shi&rft.date=2022-04-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=14&rft.spage=e2115083119&rft_id=info:doi/10.1073%2Fpnas.2115083119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon