Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The se...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 14; pp. 1 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcNPI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis. |
---|---|
AbstractList | Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of
N
-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of
CLPTM1L
in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of
CLPTM1L
in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis. SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcNPI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis. SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. |
Author | Liu, Yi-Shi Guerrero, Paula A. Murakami, Yoshiko Kinoshita, Taroh Iwasaki, Yugo Fujita, Morihisa Menon, Anant K. Maki, Yuta Silva, Daniel Varó’n Wang, Yicheng Seeberger, Peter H. |
Author_xml | – sequence: 1 givenname: Yicheng surname: Wang fullname: Wang, Yicheng – sequence: 2 givenname: Anant K. surname: Menon fullname: Menon, Anant K. – sequence: 3 givenname: Yuta surname: Maki fullname: Maki, Yuta – sequence: 4 givenname: Yi-Shi surname: Liu fullname: Liu, Yi-Shi – sequence: 5 givenname: Yugo surname: Iwasaki fullname: Iwasaki, Yugo – sequence: 6 givenname: Morihisa surname: Fujita fullname: Fujita, Morihisa – sequence: 7 givenname: Paula A. surname: Guerrero fullname: Guerrero, Paula A. – sequence: 8 givenname: Daniel Varó’n surname: Silva fullname: Silva, Daniel Varó’n – sequence: 9 givenname: Peter H. surname: Seeberger fullname: Seeberger, Peter H. – sequence: 10 givenname: Yoshiko surname: Murakami fullname: Murakami, Yoshiko – sequence: 11 givenname: Taroh surname: Kinoshita fullname: Kinoshita, Taroh |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35344438$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFvFCEYxYmpsdvq2ZOGxIuXaWEGmOFiYja2NlljU-uZMMw3XTYMTGGmZm_902WzbdUmnkj4fu_xgHeEDnzwgNBbSk4oqavT0et0UlLKSVNRKl-gBSWSFoJJcoAWhJR10bCSHaKjlDaEEMkb8godVrxijFXNAt2fgw8DFL9sB3h5dfHj8gonEwE8jnAH2iW8XF1ef6MrrBPW2NnRdjtCD63TCTJ1O9sIHe5DxND31ljwE75xWxPS1o3rkMa1nmy3ddaHZKfgcGvzyE9rSDa9Ri_7fAq8eViP0c-zL9fLr8Xq-_nF8vOqMJzIqWhFazhwLgWpwUBPoWqpbFphSFfyjnMqGtJ2JZDKcNYJlje0LkG3TWNAi-oYfdr7jnM7QGdyyKidGqMddNyqoK36d-LtWt2EOyWpkJQ22eDjg0EMtzOkSQ02GXBOewhzUqVgTDJRS5LRD8_QTZijz9fbUbIWhIkyU-__TvQU5fFzMsD3gIkhpQi9MnbKTxl2Aa1TlKhdCdSuBOpPCbLu9Jnu0fr_ind7xSZNIT7hZU05LYmofgOlTsD6 |
CitedBy_id | crossref_primary_10_1042_BST20221455 crossref_primary_10_5650_oleoscience_24_513 crossref_primary_10_1093_glycob_cwae061 crossref_primary_10_1146_annurev_genom_121222_115958 crossref_primary_10_3724_abbs_2024128 crossref_primary_10_1128_mbio_00527_24 crossref_primary_10_1016_j_bbamcr_2024_119700 crossref_primary_10_1016_j_biotechadv_2023_108118 crossref_primary_10_1042_BCJ20240223 crossref_primary_10_1186_s12870_023_04188_w crossref_primary_10_1038_s41467_024_48999_3 crossref_primary_10_3390_biology12111367 crossref_primary_10_1083_jcb_202207104 crossref_primary_10_1007_s00425_025_04640_1 crossref_primary_10_1083_jcb_202208159 |
Cites_doi | 10.1083/jcb.201706135 10.1158/0008-5472.CAN-13-3176 10.1073/pnas.1822025116 10.1038/ncomms13245 10.1002/j.1460-2075.1990.tb07873.x 10.3390/ijms19082161 10.1038/ncomms6115 10.1073/pnas.1709241114 10.1038/s41467-020-17016-8 10.1002/j.1460-2075.1993.tb05839.x 10.1074/jbc.270.34.19873 10.1006/jmbi.2002.5416 10.1021/acschembio.1c00465 10.1074/jbc.270.16.9147 10.1016/j.neuron.2017.12.038 10.1039/b413196g 10.1038/nature15391 10.1073/pnas.1008322108 10.1016/j.cmet.2021.05.006 10.1016/0005-2736(90)90096-7 10.1016/j.bpj.2016.05.023 10.1083/jcb.127.2.333 10.1074/jbc.RA118.004213 10.1038/415447a 10.1038/nmeth.3047 10.1091/mbc.12.2.487 10.1074/jbc.RA119.007472 10.1002/j.1460-2075.1995.tb07311.x 10.1038/nature07165 10.1038/s41467-019-11753-1 10.1073/pnas.1914677117 10.1074/jbc.272.25.15834 10.1091/mbc.E14-11-1568 10.1038/nature19356 10.1126/science.1231143 10.1038/nature09606 10.1039/b500300h 10.1073/pnas.2014481118 10.1098/rsob.190290 10.1371/journal.pone.0030876 10.1083/jcb.121.5.987 10.1073/pnas.2101562118 10.1038/s41467-020-14678-2 10.1002/ajmg.a.36987 10.1021/cb900163d 10.1083/jcb.202111095 10.1091/mbc.e03-03-0193 10.1074/jbc.M313537200 10.1126/science.aag0839 10.1002/ijc.32012 10.1016/j.cub.2010.12.031 10.1016/S0021-9258(17)46183-7 10.1042/bj2590913 10.1182/blood.V87.9.3600.bloodjournal8793600 10.1093/nar/gkz239 10.1194/jlr.M093526 10.1111/cge.13425 10.1083/jcb.201906127 10.1016/0092-8674(93)90250-T 10.1016/j.jbiosc.2016.02.011 10.1021/bi010627 10.1006/bbrc.2001.4250 10.1083/jcb.202103105 10.1093/molbev/mst010 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Apr 5, 2022 Copyright © 2022 the Author(s). Published by PNAS 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Apr 5, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2115083119 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 11 |
ExternalDocumentID | PMC9169118 35344438 10_1073_pnas_2115083119 27151206 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 17H06422 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 21H02415 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-b6bc5e559607ecef1e3b198b6c0d25d551680bd2e03c54d64516aa2eab88cea63 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:05:15 EDT 2025 Fri Jul 11 13:24:59 EDT 2025 Sat Aug 23 12:43:32 EDT 2025 Wed Feb 19 02:26:31 EST 2025 Tue Jul 01 01:03:14 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Thu May 29 08:49:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | CLPTM1L glycosylphosphatidylinositol scramblase endoplasmic reticulum glycobiology |
Language | English |
License | This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-b6bc5e559607ecef1e3b198b6c0d25d551680bd2e03c54d64516aa2eab88cea63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Stephen Beverley, Washington University in St. Louis School of Medicine, St. Louis, MO; received September 24, 2021; accepted February 22, 2022 Author contributions: Y.W. and T.K. designed research; Y.W., A.K.M., Y. Maki, and Y.-S.L. performed research; Y.I., M.F., P.A.G., D.V.S., P.H.S., and Y. Murakami contributed new reagents/analytic tools; Y.W., A.K.M., Y. Maki, and Y.-S.L. analyzed data; and Y.W., A.K.M., and T.K. wrote the paper. |
ORCID | 0000-0003-2784-9269 0000-0002-5838-302X 0000-0001-7166-7257 0000-0001-7789-1938 0000-0002-4546-6010 0000-0003-3394-8466 0000-0001-5640-1899 0000-0002-4870-5734 0000-0001-6924-2698 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9169118 |
PMID | 35344438 |
PQID | 2649760462 |
PQPubID | 42026 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169118 proquest_miscellaneous_2644946790 proquest_journals_2649760462 pubmed_primary_35344438 crossref_citationtrail_10_1073_pnas_2115083119 crossref_primary_10_1073_pnas_2115083119 jstor_primary_27151206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-05 |
PublicationDateYYYYMMDD | 2022-04-05 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 Ploier B. (e_1_3_4_64_2) 2016 e_1_3_4_18_2 e_1_3_4_39_2 Sugita Y. (e_1_3_4_60_2) 1994; 82 |
References_xml | – ident: e_1_3_4_39_2 doi: 10.1083/jcb.201706135 – start-page: 54635 issue: 115 year: 2016 ident: e_1_3_4_64_2 article-title: A fluorescence-based assay of phospholipid scramblase activity publication-title: J. Vis. Exp. – ident: e_1_3_4_18_2 doi: 10.1158/0008-5472.CAN-13-3176 – ident: e_1_3_4_44_2 doi: 10.1073/pnas.1822025116 – ident: e_1_3_4_22_2 doi: 10.1038/ncomms13245 – ident: e_1_3_4_46_2 doi: 10.1002/j.1460-2075.1990.tb07873.x – ident: e_1_3_4_17_2 doi: 10.3390/ijms19082161 – ident: e_1_3_4_26_2 doi: 10.1038/ncomms6115 – ident: e_1_3_4_28_2 doi: 10.1073/pnas.1709241114 – ident: e_1_3_4_58_2 doi: 10.1038/s41467-020-17016-8 – ident: e_1_3_4_45_2 doi: 10.1002/j.1460-2075.1993.tb05839.x – ident: e_1_3_4_54_2 doi: 10.1074/jbc.270.34.19873 – ident: e_1_3_4_29_2 doi: 10.1006/jmbi.2002.5416 – ident: e_1_3_4_11_2 doi: 10.1021/acschembio.1c00465 – ident: e_1_3_4_14_2 doi: 10.1074/jbc.270.16.9147 – ident: e_1_3_4_40_2 doi: 10.1016/j.neuron.2017.12.038 – ident: e_1_3_4_7_2 doi: 10.1039/b413196g – ident: e_1_3_4_24_2 doi: 10.1038/nature15391 – ident: e_1_3_4_63_2 doi: 10.1073/pnas.1008322108 – ident: e_1_3_4_43_2 doi: 10.1016/j.cmet.2021.05.006 – ident: e_1_3_4_36_2 doi: 10.1016/0005-2736(90)90096-7 – ident: e_1_3_4_56_2 doi: 10.1016/j.bpj.2016.05.023 – ident: e_1_3_4_34_2 doi: 10.1083/jcb.127.2.333 – ident: e_1_3_4_35_2 doi: 10.1074/jbc.RA118.004213 – volume: 82 start-page: 34 year: 1994 ident: e_1_3_4_60_2 article-title: Recombinant soluble CD59 inhibits reactive haemolysis with complement publication-title: Immunology – ident: e_1_3_4_8_2 doi: 10.1038/415447a – ident: e_1_3_4_15_2 doi: 10.1038/nmeth.3047 – ident: e_1_3_4_10_2 doi: 10.1091/mbc.12.2.487 – ident: e_1_3_4_30_2 doi: 10.1074/jbc.RA119.007472 – ident: e_1_3_4_50_2 doi: 10.1002/j.1460-2075.1995.tb07311.x – ident: e_1_3_4_9_2 doi: 10.1038/nature07165 – ident: e_1_3_4_38_2 doi: 10.1038/s41467-019-11753-1 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1914677117 – ident: e_1_3_4_48_2 doi: 10.1074/jbc.272.25.15834 – ident: e_1_3_4_62_2 doi: 10.1091/mbc.E14-11-1568 – ident: e_1_3_4_51_2 doi: 10.1038/nature19356 – ident: e_1_3_4_61_2 doi: 10.1126/science.1231143 – ident: e_1_3_4_21_2 doi: 10.1038/nature09606 – ident: e_1_3_4_37_2 doi: 10.1039/b500300h – ident: e_1_3_4_53_2 doi: 10.1073/pnas.2014481118 – ident: e_1_3_4_1_2 doi: 10.1098/rsob.190290 – ident: e_1_3_4_23_2 doi: 10.1371/journal.pone.0030876 – ident: e_1_3_4_4_2 doi: 10.1083/jcb.121.5.987 – ident: e_1_3_4_41_2 doi: 10.1073/pnas.2101562118 – ident: e_1_3_4_31_2 doi: 10.1038/s41467-020-14678-2 – ident: e_1_3_4_49_2 doi: 10.1002/ajmg.a.36987 – ident: e_1_3_4_6_2 doi: 10.1021/cb900163d – ident: e_1_3_4_47_2 doi: 10.1083/jcb.202111095 – ident: e_1_3_4_32_2 doi: 10.1091/mbc.e03-03-0193 – ident: e_1_3_4_5_2 doi: 10.1074/jbc.M313537200 – ident: e_1_3_4_25_2 doi: 10.1126/science.aag0839 – ident: e_1_3_4_19_2 doi: 10.1002/ijc.32012 – ident: e_1_3_4_27_2 doi: 10.1016/j.cub.2010.12.031 – ident: e_1_3_4_12_2 doi: 10.1016/S0021-9258(17)46183-7 – ident: e_1_3_4_33_2 doi: 10.1042/bj2590913 – ident: e_1_3_4_52_2 doi: 10.1182/blood.V87.9.3600.bloodjournal8793600 – ident: e_1_3_4_66_2 doi: 10.1093/nar/gkz239 – ident: e_1_3_4_57_2 doi: 10.1194/jlr.M093526 – ident: e_1_3_4_3_2 doi: 10.1111/cge.13425 – ident: e_1_3_4_13_2 doi: 10.1083/jcb.201906127 – ident: e_1_3_4_2_2 doi: 10.1016/0092-8674(93)90250-T – ident: e_1_3_4_59_2 doi: 10.1016/j.jbiosc.2016.02.011 – ident: e_1_3_4_55_2 doi: 10.1021/bi010627 – ident: e_1_3_4_16_2 doi: 10.1006/bbrc.2001.4250 – ident: e_1_3_4_42_2 doi: 10.1083/jcb.202103105 – ident: e_1_3_4_65_2 doi: 10.1093/molbev/mst010 |
SSID | ssj0009580 |
Score | 2.4912982 |
Snippet | Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is... Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes.... SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes.... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Biological Sciences Biosynthesis Cell surface Cleft lip/palate Clustered Regularly Interspaced Short Palindromic Repeats CRISPR Cytosol Endoplasmic reticulum Endoplasmic Reticulum - metabolism Genomes Glycolipids Glycosylphosphatidylinositol Glycosylphosphatidylinositols - metabolism Lipids Lipogenesis Membrane proteins Membrane Proteins - genetics Membrane Proteins - metabolism Membranes Phosphatidylinositol Phospholipids Proteins Translocation |
Title | Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis |
URI | https://www.jstor.org/stable/27151206 https://www.ncbi.nlm.nih.gov/pubmed/35344438 https://www.proquest.com/docview/2649760462 https://www.proquest.com/docview/2644946790 https://pubmed.ncbi.nlm.nih.gov/PMC9169118 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcuGCKFAwFLRIHIosB397fayiloLSELWJSE_W2t40llInwolQOPFL-K3MrNcfKQEVLlZkj9dW5nl2dvftG0Le-lMHOq3UMnDNynBZmhqhlwj48Nw4tbnHzKlkWwz8s7H7aeJNOp2fLdbSehV3k-8795X8j1fhHPgVd8n-g2frRuEE_Ab_whE8DMc7-fiDyBc3wviWpULvXXy8HF7oEAWQdoXCTCiM3OsPR-dWH6vJcH2eLbMULfhNDEkzFkxBHjCknFL3W4pJIDXger5JFsUGaevFcgbPSjeQjCK7azHX4wwu5ZA2FlnRzmyHdU9YVLyDQTXReNxsW1GxpNANfThoiiB_UdPWV8hMVZ2plAXOVc1r5Os0U7LnvKy2fbVe1d1KP1uXLRiXs6w9mQHjYOTAeK34C-mL4btlBdGu2HGuCtoq0Cp0uq0YLGxLitwrk9_6CAhqWNg450V323JbjXvwOTod9_vR6GQyukfu2zAMsWXgb4s6s1LtQr1gJR0VOO9vNb-V9ZTE111DmtvM3FaqM3pEHqoxCj0uAbdPOiJ_TPYrz9EjJVX-7gn50UIgLRFISwRShUCqEEh5QTmVCKQNAmmFQAoIpDUC6d8QSNsIfErGpyej3pmhanoYCaSmKyP248QTMIz1zUAkYmoJJ7ZCFvuJmdpeisu2zIQoIUwn8dzUxzrSnNuCx4wlgvvOAdkD5InnhGLhgNjhCRMpc50p6jwxz5uGiWVyDoFJI93qP48SJXiPdVfmkSReBE6ETooaJ2nkqL5hWWq9_Nn0QDqxtrMDTJ1NXyOHlVcjFSngPgBH4OM2cI28qS9DHMfFOZ6LxVrauCFkLaGpkWclCOrGHc9xXddhGgm24FEboEb89pU8m0mt-BDFsCz24g7PfUkeNJ_kIdlbfV2LV5Bxr-LXEva_AMtu2r0 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+CRISPR+screen+reveals+CLPTM1L+as+a+lipid+scramblase+required+for+efficient+glycosylphosphatidylinositol+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Yicheng&rft.au=Menon%2C+Anant+K&rft.au=Maki%2C+Yuta&rft.au=Liu%2C+Yi-Shi&rft.date=2022-04-05&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=119&rft.issue=14&rft.spage=e2115083119&rft_id=info:doi/10.1073%2Fpnas.2115083119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |