Phosphoproteins in extracellular vesicles as candidate markers for breast cancer
The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 12; pp. 3175 - 3180 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
21.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring. |
---|---|
AbstractList | Protein phosphorylation is a major regulatory mechanism for many cellular functions, but no phosphoprotein in biofluids has been developed for disease diagnosis because of the presence of active phosphatases. This study presents a general strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs from small volumes of plasma samples and more than 100 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer as compared with healthy controls. This study demonstrates that the development of phosphoproteins in plasma EVs as disease biomarkers is highly feasible and may transform cancer screening and monitoring.
The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring. The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring. The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring.The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in biofluids for disease diagnosis remains elusive. Here we demonstrate a strategy to isolate and identify phosphoproteins in extracellular vesicles (EVs) from human plasma as potential markers to differentiate disease from healthy states. We identified close to 10,000 unique phosphopeptides in EVs isolated from small volumes of plasma samples. Using label-free quantitative phosphoproteomics, we identified 144 phosphoproteins in plasma EVs that are significantly higher in patients diagnosed with breast cancer compared with healthy controls. Several biomarkers were validated in individual patients using paralleled reaction monitoring for targeted quantitation. This study demonstrates that the development of phosphoproteins in plasma EV as disease biomarkers is highly feasible and may transform cancer screening and monitoring. |
Author | Hsu, Chuan-Chih Chen, I-Hsuan Tao, W. Andy Pan, Li Zhu, Jian-Kang Andaluz, Hillary Xue, Liang Iliuk, Anton B. Wendt, Michael K. Paez, Juan Sebastian Paez |
Author_xml | – sequence: 1 givenname: I-Hsuan surname: Chen fullname: Chen, I-Hsuan organization: Department of Biochemistry, Purdue University, West Lafayette, IN 47907 – sequence: 2 givenname: Liang surname: Xue fullname: Xue, Liang organization: Department of Biochemistry, Purdue University, West Lafayette, IN 47907 – sequence: 3 givenname: Chuan-Chih surname: Hsu fullname: Hsu, Chuan-Chih organization: Department of Biochemistry, Purdue University, West Lafayette, IN 47907 – sequence: 4 givenname: Juan Sebastian Paez surname: Paez fullname: Paez, Juan Sebastian Paez organization: Department of Biochemistry, Purdue University, West Lafayette, IN 47907 – sequence: 5 givenname: Li surname: Pan fullname: Pan, Li organization: Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 – sequence: 6 givenname: Hillary surname: Andaluz fullname: Andaluz, Hillary organization: Department of Chemistry, Purdue University, West Lafayette, IN 47907 – sequence: 7 givenname: Michael K. surname: Wendt fullname: Wendt, Michael K. organization: Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 – sequence: 8 givenname: Anton B. surname: Iliuk fullname: Iliuk, Anton B. organization: Department of Innovations, Tymora Analytical Operations, West Lafayette, IN 47906 – sequence: 9 givenname: Jian-Kang surname: Zhu fullname: Zhu, Jian-Kang organization: Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China – sequence: 10 givenname: W. Andy surname: Tao fullname: Tao, W. Andy organization: Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28270605$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1vFDEQxS0URC6Bmgq0Eg3NJeOvtd0goQgCUiRSQG15vXOcjz17sXcj-O_x6vIBKahcvN8bvzdzQo5iikjISwpnFBQ_H6MrZ7SlGrSmVDwhKwqGrlth4IisAJhaa8HEMTkpZQcARmp4Ro6ZZgpakCtyfb1NZdymMacJQyxNiA3-mrLzOAzz4HJzgyX4AUvjSuNd7EPvJmz2Lv_AXJpNyk2X0ZVpET3m5-Tpxg0FX9y-p-Tbxw9fLz6tr75cfr54f7X2Esy07lrBeOeAS9Y7wZTbAGWsdmgZ7U3VvELvkDLVG0Olcx1HKRiFXhmqqeSn5N1h7jh3e-w9xhp6sGMONdpvm1yw_yoxbO33dGMlV7z-Wge8vR2Q088Zy2T3oSytXcQ0F0u1kgI4b9uKvnmE7tKcY61XKU2NEoqZSr3-O9F9lLtlV-D8APicSsm4uUco2OWcdjmnfThndchHDh8mN4W0VArDf3yvDr5dmVJ-SNIKDVRp_gcbHa4N |
CitedBy_id | crossref_primary_10_1016_j_chembiol_2024_07_018 crossref_primary_10_3390_app14041639 crossref_primary_10_1007_s13361_019_02270_y crossref_primary_10_1016_j_biopsych_2021_12_015 crossref_primary_10_1038_s43856_023_00294_w crossref_primary_10_1080_14789450_2019_1551135 crossref_primary_10_1186_s12929_019_0533_x crossref_primary_10_1021_acsami_8b18269 crossref_primary_10_33218_prnano1_2__180724_2 crossref_primary_10_1039_C9CC03950C crossref_primary_10_1002_jcb_27813 crossref_primary_10_1186_s12964_020_00623_9 crossref_primary_10_1016_j_elecom_2023_107580 crossref_primary_10_1080_14789450_2024_2432477 crossref_primary_10_1111_cas_15438 crossref_primary_10_1186_s13195_022_01133_1 crossref_primary_10_1007_s13273_018_0014_4 crossref_primary_10_2217_pgs_2021_0099 crossref_primary_10_1088_2516_1091_ac73c9 crossref_primary_10_1016_j_ccr_2020_213506 crossref_primary_10_1186_s12014_022_09381_x crossref_primary_10_1002_iub_2182 crossref_primary_10_1016_j_ajpath_2017_11_013 crossref_primary_10_1002_adtp_202400051 crossref_primary_10_1002_smll_201802358 crossref_primary_10_1016_j_gendis_2022_03_021 crossref_primary_10_1016_j_xcrm_2024_101689 crossref_primary_10_3390_cancers13092179 crossref_primary_10_1016_j_chroma_2023_463882 crossref_primary_10_1177_2472555219878152 crossref_primary_10_3390_proteomes11010003 crossref_primary_10_1038_s41598_017_13683_8 crossref_primary_10_1002_advs_202402509 crossref_primary_10_1002_med_21453 crossref_primary_10_3389_fonc_2021_638357 crossref_primary_10_1021_acs_analchem_0c01572 crossref_primary_10_3389_fendo_2023_1202493 crossref_primary_10_3390_cancers14143350 crossref_primary_10_1111_tra_12558 crossref_primary_10_1186_s12964_023_01408_6 crossref_primary_10_2174_1574888X16666210622123942 crossref_primary_10_1007_s40242_024_4004_x crossref_primary_10_1186_s13045_017_0542_8 crossref_primary_10_1186_s13058_019_1237_6 crossref_primary_10_3390_ijms20010016 crossref_primary_10_1016_j_chembiol_2022_03_011 crossref_primary_10_1126_scisignal_aaz4742 crossref_primary_10_3390_ijms232315236 crossref_primary_10_1186_s40824_023_00445_z crossref_primary_10_1021_acs_jproteome_0c00151 crossref_primary_10_1039_D3AN00670K crossref_primary_10_1080_14789450_2022_2052849 crossref_primary_10_2147_OTT_S261071 crossref_primary_10_1038_s41419_024_06778_4 crossref_primary_10_1089_ten_tea_2023_0366 crossref_primary_10_1002_anie_202215337 crossref_primary_10_1007_s13361_019_02341_0 crossref_primary_10_1007_s10549_020_05996_6 crossref_primary_10_1038_s41598_024_78955_6 crossref_primary_10_1016_j_ymthe_2023_02_013 crossref_primary_10_1186_s12967_021_03053_4 crossref_primary_10_3389_fmed_2021_761362 crossref_primary_10_1002_alz_12166 crossref_primary_10_3390_proteomes11020018 crossref_primary_10_1016_j_snb_2024_136260 crossref_primary_10_1016_j_mcpro_2023_100536 crossref_primary_10_3390_jcm8050691 crossref_primary_10_1002_elps_201900295 crossref_primary_10_1002_prca_202100097 crossref_primary_10_1016_j_nantod_2023_101771 crossref_primary_10_1016_j_cca_2023_117757 crossref_primary_10_3390_ijms232012359 crossref_primary_10_1080_20013078_2020_1809766 crossref_primary_10_1186_s12876_022_02228_7 crossref_primary_10_1039_C7AN00985B crossref_primary_10_1002_elps_202000223 crossref_primary_10_1021_acs_analchem_0c03374 crossref_primary_10_1016_j_cell_2020_07_009 crossref_primary_10_3390_nano14211739 crossref_primary_10_1111_cas_13862 crossref_primary_10_1016_j_talanta_2020_121776 crossref_primary_10_1186_s12943_023_01741_x crossref_primary_10_1021_acs_analchem_3c04464 crossref_primary_10_1016_j_aca_2019_02_019 crossref_primary_10_1016_j_canlet_2018_07_037 crossref_primary_10_1007_s42485_021_00056_z crossref_primary_10_1021_acssensors_4c00192 crossref_primary_10_1134_S1062359022030104 crossref_primary_10_1007_s10815_024_03302_7 crossref_primary_10_3390_proteomes10040035 crossref_primary_10_1007_s00216_023_04575_0 crossref_primary_10_1038_s41389_020_0204_5 crossref_primary_10_3233_JAD_180578 crossref_primary_10_1016_j_talanta_2023_124771 crossref_primary_10_1021_acs_jproteome_6b00868 crossref_primary_10_1038_s41392_024_01735_1 crossref_primary_10_1002_ange_202305668 crossref_primary_10_1021_acs_jproteome_0c00138 crossref_primary_10_1039_D3AN01600E crossref_primary_10_1038_s41596_018_0109_3 crossref_primary_10_1007_s11801_024_3109_2 crossref_primary_10_3724_SP_J_1123_2023_11007 crossref_primary_10_2139_ssrn_4180315 crossref_primary_10_1016_j_cca_2018_12_028 crossref_primary_10_1021_acs_molpharmaceut_9b00409 crossref_primary_10_1063_5_0218986 crossref_primary_10_2174_0109298665286952240212053723 crossref_primary_10_7554_eLife_87369_3 crossref_primary_10_1016_j_jconrel_2022_08_010 crossref_primary_10_7554_eLife_90390 crossref_primary_10_1038_s41388_018_0237_9 crossref_primary_10_1002_prca_202000069 crossref_primary_10_1039_D0AN00915F crossref_primary_10_1002_jev2_12260 crossref_primary_10_1080_20013078_2019_1663666 crossref_primary_10_1186_s12953_019_0154_z crossref_primary_10_7717_peerj_achem_4 crossref_primary_10_3390_nano11071853 crossref_primary_10_1021_acs_analchem_3c00519 crossref_primary_10_1016_j_tranon_2024_102002 crossref_primary_10_1016_j_tibtech_2020_05_012 crossref_primary_10_1039_D2NR05619D crossref_primary_10_1186_s43556_020_00002_3 crossref_primary_10_4155_bio_2023_0038 crossref_primary_10_1186_s12943_022_01556_2 crossref_primary_10_3390_biomedicines10020408 crossref_primary_10_3389_fimmu_2024_1408415 crossref_primary_10_1016_j_bioactmat_2021_03_015 crossref_primary_10_1039_D4AN00660G crossref_primary_10_1021_acsnano_2c08774 crossref_primary_10_1007_s00109_023_02361_0 crossref_primary_10_1016_j_bcmd_2024_102842 crossref_primary_10_1002_ijc_33386 crossref_primary_10_1186_s12964_022_00945_w crossref_primary_10_1016_j_colsurfb_2023_113704 crossref_primary_10_1080_14789450_2017_1392244 crossref_primary_10_3389_fcell_2021_643680 crossref_primary_10_1007_s12672_024_01007_y crossref_primary_10_1080_20013078_2020_1750202 crossref_primary_10_1021_jasms_3c00329 crossref_primary_10_3389_fchem_2017_00102 crossref_primary_10_1210_endrev_bnac009 crossref_primary_10_1080_01478885_2019_1646984 crossref_primary_10_1155_2019_9702562 crossref_primary_10_1007_s12672_024_01022_z crossref_primary_10_1016_j_jprot_2018_02_021 crossref_primary_10_1016_j_bios_2024_116970 crossref_primary_10_1021_acsami_9b21333 crossref_primary_10_1007_s11095_020_02941_6 crossref_primary_10_3389_fbioe_2020_00525 crossref_primary_10_1002_btm2_10269 crossref_primary_10_1007_s00018_022_04164_x crossref_primary_10_1002_adhm_201800484 crossref_primary_10_1021_acs_jafc_2c02077 crossref_primary_10_1158_0008_5472_CAN_24_0832 crossref_primary_10_1155_2021_6611244 crossref_primary_10_3390_biom14070792 crossref_primary_10_1186_s12575_023_00223_0 crossref_primary_10_1016_j_aca_2021_338761 crossref_primary_10_1016_j_apsb_2021_01_001 crossref_primary_10_1186_s13046_020_01745_1 crossref_primary_10_3390_ijms21155373 crossref_primary_10_1017_erm_2022_34 crossref_primary_10_1002_pmic_202300065 crossref_primary_10_1002_pmic_202300062 crossref_primary_10_1021_acsbiomaterials_3c00745 crossref_primary_10_1021_acs_jproteome_1c00657 crossref_primary_10_1002_pmic_202300180 crossref_primary_10_1515_labmed_2022_0064 crossref_primary_10_1016_j_semcancer_2021_05_001 crossref_primary_10_1039_D2MO00154C crossref_primary_10_1016_j_celrep_2021_108960 crossref_primary_10_3390_chemosensors9110326 crossref_primary_10_1021_acs_analchem_3c01421 crossref_primary_10_1016_j_foodchem_2020_128656 crossref_primary_10_1016_j_sjbs_2022_01_012 crossref_primary_10_1039_C8AN02383B crossref_primary_10_1186_s40824_023_00353_2 crossref_primary_10_1002_pmic_201800160 crossref_primary_10_1016_j_jprot_2022_104701 crossref_primary_10_1002_adhm_202303510 crossref_primary_10_1002_pmic_201800162 crossref_primary_10_7554_eLife_39944 crossref_primary_10_1016_j_phrs_2021_105980 crossref_primary_10_1021_acs_analchem_8b04781 crossref_primary_10_1038_s41378_023_00617_w crossref_primary_10_1016_j_jprot_2021_104422 crossref_primary_10_1002_pmic_201800169 crossref_primary_10_1007_s00109_024_02452_6 crossref_primary_10_1002_mc_23462 crossref_primary_10_3390_molecules28145605 crossref_primary_10_1021_acs_analchem_9b04651 crossref_primary_10_3390_bioengineering9120740 crossref_primary_10_1016_j_aca_2023_341426 crossref_primary_10_1177_15353702211060517 crossref_primary_10_1002_biot_201700716 crossref_primary_10_1016_j_crmeth_2021_100055 crossref_primary_10_1021_acs_analchem_7b03919 crossref_primary_10_1016_j_celrep_2023_112539 crossref_primary_10_1016_j_mcpro_2021_100118 crossref_primary_10_3390_ijms21249457 crossref_primary_10_1016_j_aca_2023_341785 crossref_primary_10_1016_j_talanta_2022_123740 crossref_primary_10_1038_s41585_018_0014_0 crossref_primary_10_1021_acs_analchem_4c03492 crossref_primary_10_3390_cells8070727 crossref_primary_10_2147_CMAR_S228288 crossref_primary_10_1016_j_trac_2018_07_014 crossref_primary_10_3390_diagnostics10100843 crossref_primary_10_1021_acs_jproteome_7b00585 crossref_primary_10_1016_j_bios_2017_12_012 crossref_primary_10_1021_acs_jproteome_8b00459 crossref_primary_10_1007_s10911_020_09473_0 crossref_primary_10_1002_anie_202305668 crossref_primary_10_1021_acsami_0c06785 crossref_primary_10_3389_fonc_2022_998964 crossref_primary_10_3390_ijms24043061 crossref_primary_10_1080_14789450_2024_2320158 crossref_primary_10_1039_D1GC03290A crossref_primary_10_1002_pmic_202200319 crossref_primary_10_1186_s12967_022_03860_3 crossref_primary_10_1021_acsami_0c19400 crossref_primary_10_3390_biom10040495 crossref_primary_10_1007_s10725_020_00585_5 crossref_primary_10_1007_s13238_021_00863_6 crossref_primary_10_1016_j_plantsci_2022_111377 crossref_primary_10_1016_j_trac_2022_116862 crossref_primary_10_3389_fonc_2024_1303335 crossref_primary_10_4252_wjsc_v9_i11_187 crossref_primary_10_1021_acs_jafc_7b05614 crossref_primary_10_3390_ijms23158827 crossref_primary_10_1016_j_pharmthera_2018_08_002 crossref_primary_10_7554_eLife_87369 crossref_primary_10_1021_acs_analchem_0c03904 crossref_primary_10_1002_jex2_167 crossref_primary_10_3390_cancers15082364 crossref_primary_10_1186_s12943_025_02282_1 crossref_primary_10_1021_acs_analchem_8b04580 crossref_primary_10_1038_s42003_019_0570_8 crossref_primary_10_1016_j_biopha_2021_112257 crossref_primary_10_3389_fonc_2021_732743 crossref_primary_10_3390_ijms23105779 crossref_primary_10_1016_j_dmd_2025_100048 crossref_primary_10_3390_cancers15102780 crossref_primary_10_1016_j_trac_2023_117066 crossref_primary_10_3390_molecules24193516 crossref_primary_10_1039_D1AY00060H crossref_primary_10_1002_pmic_201800159 crossref_primary_10_3389_fonc_2020_580891 crossref_primary_10_3390_molecules27092651 crossref_primary_10_1021_acs_jproteome_0c00525 crossref_primary_10_1186_s40169_018_0192_7 crossref_primary_10_1021_acs_analchem_9b02268 crossref_primary_10_1038_s41392_020_00258_9 crossref_primary_10_1016_j_nano_2022_102582 crossref_primary_10_1021_acs_jproteome_3c00361 crossref_primary_10_1038_s41598_021_95082_8 crossref_primary_10_3389_fcell_2023_1173387 crossref_primary_10_1002_mco2_70009 crossref_primary_10_1038_s41571_018_0036_9 crossref_primary_10_1016_j_neubiorev_2021_05_002 crossref_primary_10_1016_j_compbiolchem_2023_107845 crossref_primary_10_1021_acs_analchem_1c01690 crossref_primary_10_2139_ssrn_4166484 crossref_primary_10_2174_1570180819666220718121827 crossref_primary_10_2174_0115701646309538240805093732 crossref_primary_10_1021_acsami_1c10795 crossref_primary_10_1002_advs_202303619 crossref_primary_10_1021_acs_analchem_8b01090 crossref_primary_10_7554_eLife_90390_3 crossref_primary_10_1016_j_isci_2024_109612 crossref_primary_10_3390_molecules28124768 crossref_primary_10_3390_diagnostics11060917 crossref_primary_10_1016_j_canlet_2019_12_046 crossref_primary_10_1002_jssc_202100523 crossref_primary_10_1186_s12964_024_01640_8 crossref_primary_10_1021_acsami_8b11138 crossref_primary_10_3389_fgene_2023_1152470 crossref_primary_10_1016_j_mcpro_2023_100557 crossref_primary_10_1177_15330338221131647 crossref_primary_10_1074_mcp_TIR118_000702 crossref_primary_10_1016_j_cytogfr_2023_08_003 crossref_primary_10_3389_fmolb_2021_640355 crossref_primary_10_1007_s00604_023_06081_7 crossref_primary_10_1002_ange_202215337 crossref_primary_10_1002_adfm_202100088 crossref_primary_10_1002_jssc_202100892 crossref_primary_10_1021_acs_analchem_0c03557 crossref_primary_10_1038_s41596_019_0260_5 crossref_primary_10_1002_mas_21749 crossref_primary_10_1016_j_esmogo_2025_100140 crossref_primary_10_3389_fimmu_2020_00948 crossref_primary_10_3390_cells11132070 crossref_primary_10_1002_advs_202310266 crossref_primary_10_1021_acs_jproteome_7b00140 crossref_primary_10_1016_j_canlet_2018_04_035 crossref_primary_10_3390_membranes12080775 crossref_primary_10_1016_j_canlet_2023_216592 crossref_primary_10_1021_acsami_2c19235 crossref_primary_10_1186_s13578_023_01112_5 crossref_primary_10_1016_j_aca_2020_06_054 crossref_primary_10_1016_j_nantod_2021_101361 crossref_primary_10_1021_acs_analchem_2c04190 crossref_primary_10_4155_bio_2022_0223 crossref_primary_10_1002_smtd_201900075 crossref_primary_10_62347_JWMX3035 crossref_primary_10_1016_j_talo_2025_100399 crossref_primary_10_1016_j_tranon_2025_102291 crossref_primary_10_1002_mas_21635 crossref_primary_10_1016_j_cca_2022_05_029 crossref_primary_10_1002_cncy_21929 crossref_primary_10_1016_j_biosystems_2023_104887 crossref_primary_10_1111_exd_14253 crossref_primary_10_3390_proteomes7020021 crossref_primary_10_1002_bit_27606 crossref_primary_10_1007_s11033_021_06740_z crossref_primary_10_1002_adhm_202301010 crossref_primary_10_3390_biom12010132 crossref_primary_10_1016_j_canlet_2022_215886 crossref_primary_10_1016_j_canlet_2023_216481 crossref_primary_10_1016_j_jprot_2020_104076 crossref_primary_10_1016_j_jconrel_2023_04_038 crossref_primary_10_3390_ijms21103573 crossref_primary_10_1021_acs_jproteome_8b00479 crossref_primary_10_1038_s41389_022_00431_5 crossref_primary_10_1126_science_aau6977 crossref_primary_10_1002_advs_202100825 crossref_primary_10_1002_biot_201800430 crossref_primary_10_52711_0974_360X_2022_00232 |
Cites_doi | 10.1038/nature14581 10.1038/nmeth.3901 10.1038/nbt.1511 10.1074/mcp.M114.040345 10.1074/mcp.M900240-MCP200 10.1038/msb4100182 10.1586/14789450.3.1.1 10.1038/ncb3169 10.1002/pmic.201500543 10.1074/mcp.M111.012732 10.1074/mcp.O112.018010 10.1016/j.gde.2004.07.001 10.1016/j.colsurfb.2011.05.013 10.1038/nprot.2007.261 10.1016/j.canlet.2014.10.038 10.1016/j.jim.2011.10.012 10.1186/1471-2105-4-2 10.1021/ac801974f 10.1186/1755-8794-5-46 10.1093/bioinformatics/btq054 10.1681/ASN.2008040406 10.1038/cddis.2014.510 10.1021/ac201093g 10.1038/ncb3181 10.1021/ac4031175 10.1002/pmic.201300282 10.1016/j.celrep.2014.07.036 10.1016/j.tcb.2015.01.004 10.1016/j.jprot.2012.02.015 10.1038/nature18003 10.1021/ja308453m 10.1016/j.cell.2006.09.026 10.1101/gr.1239303 10.1038/nmeth.2646 10.1002/elps.201400153 10.1073/pnas.1521230113 10.1002/prca.201400114 10.1093/nar/28.18.3442 10.1016/S0092-8674(00)81688-8 10.1093/nar/gkv1194 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 21, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 21, 2017 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1618088114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | EV phosphoproteins as potential biomarkers |
EISSN | 1091-6490 |
EndPage | 3180 |
ExternalDocumentID | PMC5373352 4321283951 28270605 10_1073_pnas_1618088114 26480178 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R41 GM109626 – fundername: NIGMS NIH HHS grantid: R01 GM088317 – fundername: NCI NIH HHS grantid: R41 CA210772 – fundername: NIGMS NIH HHS grantid: R01 GM111788 – fundername: NCI NIH HHS grantid: P30 CA023168 – fundername: National Science Foundation (NSF) grantid: 1506752 – fundername: HHS | National Institutes of Health (NIH) grantid: 5R41GM109626 – fundername: HHS | National Institutes of Health (NIH) grantid: 1R01GM111788 – fundername: HHS | National Institutes of Health (NIH) grantid: 1R41CA210772 – fundername: Purdue University grantid: P30 CA023168 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-b6423ba0352da427af0122811621d9423c7ecae127d9915aab3e54210d7918153 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:23:10 EDT 2025 Fri Jul 11 03:55:51 EDT 2025 Mon Jun 30 08:28:49 EDT 2025 Wed Feb 19 02:42:00 EST 2025 Tue Jul 01 03:19:31 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Fri May 30 11:46:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | phosphoproteins mass spectrometry extracellular vesicles proteomics biomarker |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-b6423ba0352da427af0122811621d9423c7ecae127d9915aab3e54210d7918153 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Jian-Kang Zhu, February 1, 2017 (sent for review November 1, 2016; reviewed by Natalie G. Ahn, Bernd Bodenmiller, and Jim Bruce) Author contributions: I.-H.C., L.P., A.B.I., J.-K.Z., and W.A.T. designed research; I.-H.C., L.X., C.-C.H., H.A., and A.B.I. performed research; I.-H.C., J.S.P.P., M.K.W., J.-K.Z., and W.A.T. analyzed data; and I.-H.C. and W.A.T. wrote the paper. Reviewers: N.G.A., University of Colorado; B.B., University of Zurich; and J.B., University of Washington. |
ORCID | 0000-0001-5134-731X |
OpenAccessLink | https://www.pnas.org/content/pnas/114/12/3175.full.pdf |
PMID | 28270605 |
PQID | 1881974729 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373352 proquest_miscellaneous_1875403366 proquest_journals_1881974729 pubmed_primary_28270605 crossref_primary_10_1073_pnas_1618088114 crossref_citationtrail_10_1073_pnas_1618088114 jstor_primary_26480178 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-21 |
PublicationDateYYYYMMDD | 2017-03-21 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Bodenmiller B (e_1_3_4_18_2) 2007; 3 Nam S (e_1_3_4_25_2) 2015; 356 Saraswat M (e_1_3_4_9_2) 2015; 14 Kowal J (e_1_3_4_14_2) 2016; 113 Zhang Y (e_1_3_4_7_2) 2015; 17 Sokolova V (e_1_3_4_10_2) 2011; 87 Peri S (e_1_3_4_23_2) 2012; 5 Cox J (e_1_3_4_38_2) 2008; 26 Kabuyama Y (e_1_3_4_2_2) 2004; 14 O’Shea JP (e_1_3_4_39_2) 2013; 10 Tyanova S (e_1_3_4_32_2) 2016; 13 Jaros JA (e_1_3_4_27_2) 2012; 76 Hu L (e_1_3_4_28_2) 2009; 81 Bourmaud A (e_1_3_4_22_2) 2016; 16 MacLean B (e_1_3_4_41_2) 2010; 26 Mertins P (e_1_3_4_20_2) 2016; 534 Melo SA (e_1_3_4_4_2) 2015; 523 Jayachandran M (e_1_3_4_13_2) 2012; 375 Iliuk A (e_1_3_4_29_2) 2012; 11 Yi T (e_1_3_4_26_2) 2014; 111 Boukouris S (e_1_3_4_6_2) 2015; 9 Sharma K (e_1_3_4_19_2) 2014; 8 Rappsilber J (e_1_3_4_37_2) 2007; 2 Hunter T (e_1_3_4_1_2) 2000; 100 Tsai CF (e_1_3_4_36_2) 2014; 86 Gonzales PA (e_1_3_4_5_2) 2009; 20 Cocucci E (e_1_3_4_12_2) 2015; 25 Gong Y (e_1_3_4_24_2) 2014; 5 Shannon P (e_1_3_4_33_2) 2003; 13 Iliuk AB (e_1_3_4_3_2) 2014; 35 Masuda T (e_1_3_4_16_2) 2009; 8 Olsen JV (e_1_3_4_17_2) 2006; 127 Palmisano G (e_1_3_4_11_2) 2012; 11 Masuda T (e_1_3_4_35_2) 2011; 83 Kalra H (e_1_3_4_15_2) 2013; 13 Mi H (e_1_3_4_40_2) 2016; 44 Costa-Silva B (e_1_3_4_8_2) 2015; 17 Bader GD (e_1_3_4_34_2) 2003; 4 Hermjakob H (e_1_3_4_31_2) 2006; 3 Pan L (e_1_3_4_30_2) 2012; 134 Snel B (e_1_3_4_21_2) 2000; 28 24890697 - Electrophoresis. 2014 Dec;35(24):3430-40 25985394 - Nat Cell Biol. 2015 Jun;17(6):816-26 26106858 - Nature. 2015 Jul 9;523(7559):177-82 21640565 - Colloids Surf B Biointerfaces. 2011 Oct 1;87(1):146-50 27348712 - Nat Methods. 2016 Sep;13(9):731-40 23088311 - J Am Chem Soc. 2012 Nov 7;134(44):18201-4 25683921 - Trends Cell Biol. 2015 Jun;25(6):364-72 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 21888424 - Anal Chem. 2011 Oct 15;83(20):7698-703 22382090 - J Proteomics. 2012 Dec 5;76 Spec No.:36-42 26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77 27145088 - Proteomics. 2016 Aug;16(15-16):2146-59 25452312 - Mol Cell Proteomics. 2015 Feb;14(2):263-76 22593177 - Mol Cell Proteomics. 2012 Sep;11(9):629-39 22345510 - Mol Cell Proteomics. 2012 Aug;11(8):230-43 10647936 - Cell. 2000 Jan 7;100(1):113-27 27251275 - Nature. 2016 May 25;534(7605):55-62 19767571 - Mol Cell Proteomics. 2009 Dec;8(12):2770-7 22075275 - J Immunol Methods. 2012 Jan 31;375(1-2):207-14 17081983 - Cell. 2006 Nov 3;127(3):635-48 25449779 - Cancer Lett. 2015 Jan 28;356(2 Pt B):880-90 17703201 - Nat Protoc. 2007;2(8):1896-906 25429621 - Cell Death Dis. 2014 Nov 27;5:e1544 20147306 - Bioinformatics. 2010 Apr 1;26(7):966-8 24782546 - Proc Natl Acad Sci U S A. 2014 May 27;111(21):E2182-90 26578592 - Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42 24097270 - Nat Methods. 2013 Dec;10(12):1211-2 19029910 - Nat Biotechnol. 2008 Dec;26(12):1367-72 15380239 - Curr Opin Genet Dev. 2004 Oct;14(5):492-8 25159151 - Cell Rep. 2014 Sep 11;8(5):1583-94 26022917 - Nat Cell Biol. 2015 Jun;17(6):709-11 23057841 - BMC Med Genomics. 2012 Oct 11;5:46 16445344 - Expert Rev Proteomics. 2006 Feb;3(1):1-3 17940529 - Mol Syst Biol. 2007;3:139 19117447 - Anal Chem. 2009 Jan 1;81(1):94-104 25684126 - Proteomics Clin Appl. 2015 Apr;9(3-4):358-67 10982861 - Nucleic Acids Res. 2000 Sep 15;28(18):3442-4 24115447 - Proteomics. 2013 Nov;13(22):3354-64 19056867 - J Am Soc Nephrol. 2009 Feb;20(2):363-79 24313913 - Anal Chem. 2014 Jan 7;86(1):685-93 14597658 - Genome Res. 2003 Nov;13(11):2498-504 |
References_xml | – volume: 523 start-page: 177 year: 2015 ident: e_1_3_4_4_2 article-title: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer publication-title: Nature doi: 10.1038/nature14581 – volume: 13 start-page: 731 year: 2016 ident: e_1_3_4_32_2 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat Methods doi: 10.1038/nmeth.3901 – volume: 26 start-page: 1367 year: 2008 ident: e_1_3_4_38_2 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat Biotechnol doi: 10.1038/nbt.1511 – volume: 14 start-page: 263 year: 2015 ident: e_1_3_4_9_2 article-title: N-linked (N-) glycoproteomics of urinary exosomes. [Corrected] publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M114.040345 – volume: 8 start-page: 2770 year: 2009 ident: e_1_3_4_16_2 article-title: Unbiased quantitation of Escherichia coli membrane proteome using phase transfer surfactants publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M900240-MCP200 – volume: 3 start-page: 139 year: 2007 ident: e_1_3_4_18_2 article-title: PhosphoPep--a phosphoproteome resource for systems biology research in Drosophila Kc167 cells publication-title: Mol Syst Biol doi: 10.1038/msb4100182 – volume: 3 start-page: 1 year: 2006 ident: e_1_3_4_31_2 article-title: The Proteomics Identifications Database (PRIDE) and the ProteomExchange Consortium: Making proteomics data accessible publication-title: Expert Rev Proteomics doi: 10.1586/14789450.3.1.1 – volume: 17 start-page: 816 year: 2015 ident: e_1_3_4_8_2 article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver publication-title: Nat Cell Biol doi: 10.1038/ncb3169 – volume: 16 start-page: 2146 year: 2016 ident: e_1_3_4_22_2 article-title: Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications publication-title: Proteomics doi: 10.1002/pmic.201500543 – volume: 11 start-page: 230 year: 2012 ident: e_1_3_4_11_2 article-title: Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M111.012732 – volume: 11 start-page: 629 year: 2012 ident: e_1_3_4_29_2 article-title: Chemical visualization of phosphoproteomes on membrane publication-title: Mol Cell Proteomics doi: 10.1074/mcp.O112.018010 – volume: 14 start-page: 492 year: 2004 ident: e_1_3_4_2_2 article-title: Applying proteomics to signaling networks publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2004.07.001 – volume: 87 start-page: 146 year: 2011 ident: e_1_3_4_10_2 article-title: Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2011.05.013 – volume: 2 start-page: 1896 year: 2007 ident: e_1_3_4_37_2 article-title: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips publication-title: Nat Protoc doi: 10.1038/nprot.2007.261 – volume: 111 start-page: E2182 year: 2014 ident: e_1_3_4_26_2 article-title: Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells publication-title: Proc Natl Acad Sci USA – volume: 356 start-page: 880 year: 2015 ident: e_1_3_4_25_2 article-title: A pathway-based approach for identifying biomarkers of tumor progression to trastuzumab-resistant breast cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2014.10.038 – volume: 375 start-page: 207 year: 2012 ident: e_1_3_4_13_2 article-title: Methodology for isolation, identification and characterization of microvesicles in peripheral blood publication-title: J Immunol Methods doi: 10.1016/j.jim.2011.10.012 – volume: 4 start-page: 2 year: 2003 ident: e_1_3_4_34_2 article-title: An automated method for finding molecular complexes in large protein interaction networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-4-2 – volume: 81 start-page: 94 year: 2009 ident: e_1_3_4_28_2 article-title: Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection publication-title: Anal Chem doi: 10.1021/ac801974f – volume: 5 start-page: 46 year: 2012 ident: e_1_3_4_23_2 article-title: Defining the genomic signature of the parous breast publication-title: BMC Med Genomics doi: 10.1186/1755-8794-5-46 – volume: 26 start-page: 966 year: 2010 ident: e_1_3_4_41_2 article-title: Skyline: An open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq054 – volume: 20 start-page: 363 year: 2009 ident: e_1_3_4_5_2 article-title: Large-scale proteomics and phosphoproteomics of urinary exosomes publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2008040406 – volume: 5 start-page: e1544 year: 2014 ident: e_1_3_4_24_2 article-title: Inhibition of phosphodiesterase 5 reduces bone mass by suppression of canonical Wnt signaling publication-title: Cell Death Dis doi: 10.1038/cddis.2014.510 – volume: 83 start-page: 7698 year: 2011 ident: e_1_3_4_35_2 article-title: Microscale phosphoproteome analysis of 10,000 cells from human cancer cell lines publication-title: Anal Chem doi: 10.1021/ac201093g – volume: 17 start-page: 709 year: 2015 ident: e_1_3_4_7_2 article-title: A niche role for cancer exosomes in metastasis publication-title: Nat Cell Biol doi: 10.1038/ncb3181 – volume: 86 start-page: 685 year: 2014 ident: e_1_3_4_36_2 article-title: Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography publication-title: Anal Chem doi: 10.1021/ac4031175 – volume: 13 start-page: 3354 year: 2013 ident: e_1_3_4_15_2 article-title: Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma publication-title: Proteomics doi: 10.1002/pmic.201300282 – volume: 8 start-page: 1583 year: 2014 ident: e_1_3_4_19_2 article-title: Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling publication-title: Cell Reports doi: 10.1016/j.celrep.2014.07.036 – volume: 25 start-page: 364 year: 2015 ident: e_1_3_4_12_2 article-title: Ectosomes and exosomes: Shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2015.01.004 – volume: 76 start-page: 36 year: 2012 ident: e_1_3_4_27_2 article-title: Clinical use of phosphorylated proteins in blood serum analysed by immobilised metal ion affinity chromatography and mass spectrometry publication-title: J Proteomics doi: 10.1016/j.jprot.2012.02.015 – volume: 534 start-page: 55 year: 2016 ident: e_1_3_4_20_2 article-title: Proteogenomics connects somatic mutations to signalling in breast cancer publication-title: Nature doi: 10.1038/nature18003 – volume: 134 start-page: 18201 year: 2012 ident: e_1_3_4_30_2 article-title: Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers publication-title: J Am Chem Soc doi: 10.1021/ja308453m – volume: 127 start-page: 635 year: 2006 ident: e_1_3_4_17_2 article-title: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks publication-title: Cell doi: 10.1016/j.cell.2006.09.026 – volume: 13 start-page: 2498 year: 2003 ident: e_1_3_4_33_2 article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 10 start-page: 1211 year: 2013 ident: e_1_3_4_39_2 article-title: pLogo: A probabilistic approach to visualizing sequence motifs publication-title: Nat Methods doi: 10.1038/nmeth.2646 – volume: 35 start-page: 3430 year: 2014 ident: e_1_3_4_3_2 article-title: Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications publication-title: Electrophoresis doi: 10.1002/elps.201400153 – volume: 113 start-page: E968 year: 2016 ident: e_1_3_4_14_2 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1521230113 – volume: 9 start-page: 358 year: 2015 ident: e_1_3_4_6_2 article-title: Exosomes in bodily fluids are a highly stable resource of disease biomarkers publication-title: Proteomics Clin Appl doi: 10.1002/prca.201400114 – volume: 28 start-page: 3442 year: 2000 ident: e_1_3_4_21_2 article-title: STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene publication-title: Nucleic Acids Res doi: 10.1093/nar/28.18.3442 – volume: 100 start-page: 113 year: 2000 ident: e_1_3_4_1_2 article-title: Signaling--2000 and beyond publication-title: Cell doi: 10.1016/S0092-8674(00)81688-8 – volume: 44 start-page: D336 year: 2016 ident: e_1_3_4_40_2 article-title: PANTHER version 10: Expanded protein families and functions, and analysis tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1194 – reference: 27251275 - Nature. 2016 May 25;534(7605):55-62 – reference: 24115447 - Proteomics. 2013 Nov;13(22):3354-64 – reference: 12525261 - BMC Bioinformatics. 2003 Jan 13;4:2 – reference: 10982861 - Nucleic Acids Res. 2000 Sep 15;28(18):3442-4 – reference: 22075275 - J Immunol Methods. 2012 Jan 31;375(1-2):207-14 – reference: 23057841 - BMC Med Genomics. 2012 Oct 11;5:46 – reference: 25985394 - Nat Cell Biol. 2015 Jun;17(6):816-26 – reference: 19029910 - Nat Biotechnol. 2008 Dec;26(12):1367-72 – reference: 15380239 - Curr Opin Genet Dev. 2004 Oct;14(5):492-8 – reference: 17940529 - Mol Syst Biol. 2007;3:139 – reference: 17081983 - Cell. 2006 Nov 3;127(3):635-48 – reference: 21640565 - Colloids Surf B Biointerfaces. 2011 Oct 1;87(1):146-50 – reference: 25159151 - Cell Rep. 2014 Sep 11;8(5):1583-94 – reference: 27348712 - Nat Methods. 2016 Sep;13(9):731-40 – reference: 25449779 - Cancer Lett. 2015 Jan 28;356(2 Pt B):880-90 – reference: 25452312 - Mol Cell Proteomics. 2015 Feb;14(2):263-76 – reference: 22382090 - J Proteomics. 2012 Dec 5;76 Spec No.:36-42 – reference: 17703201 - Nat Protoc. 2007;2(8):1896-906 – reference: 10647936 - Cell. 2000 Jan 7;100(1):113-27 – reference: 24313913 - Anal Chem. 2014 Jan 7;86(1):685-93 – reference: 21888424 - Anal Chem. 2011 Oct 15;83(20):7698-703 – reference: 22593177 - Mol Cell Proteomics. 2012 Sep;11(9):629-39 – reference: 16445344 - Expert Rev Proteomics. 2006 Feb;3(1):1-3 – reference: 24097270 - Nat Methods. 2013 Dec;10(12):1211-2 – reference: 27145088 - Proteomics. 2016 Aug;16(15-16):2146-59 – reference: 19767571 - Mol Cell Proteomics. 2009 Dec;8(12):2770-7 – reference: 22345510 - Mol Cell Proteomics. 2012 Aug;11(8):230-43 – reference: 19117447 - Anal Chem. 2009 Jan 1;81(1):94-104 – reference: 24890697 - Electrophoresis. 2014 Dec;35(24):3430-40 – reference: 26106858 - Nature. 2015 Jul 9;523(7559):177-82 – reference: 25429621 - Cell Death Dis. 2014 Nov 27;5:e1544 – reference: 26858453 - Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77 – reference: 19056867 - J Am Soc Nephrol. 2009 Feb;20(2):363-79 – reference: 26578592 - Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42 – reference: 14597658 - Genome Res. 2003 Nov;13(11):2498-504 – reference: 26022917 - Nat Cell Biol. 2015 Jun;17(6):709-11 – reference: 20147306 - Bioinformatics. 2010 Apr 1;26(7):966-8 – reference: 24782546 - Proc Natl Acad Sci U S A. 2014 May 27;111(21):E2182-90 – reference: 25683921 - Trends Cell Biol. 2015 Jun;25(6):364-72 – reference: 23088311 - J Am Chem Soc. 2012 Nov 7;134(44):18201-4 – reference: 25684126 - Proteomics Clin Appl. 2015 Apr;9(3-4):358-67 |
SSID | ssj0009580 |
Score | 2.6472416 |
Snippet | The state of protein phosphorylation can be a key determinant of cellular physiology such as early-stage cancer, but the development of phosphoproteins in... Protein phosphorylation is a major regulatory mechanism for many cellular functions, but no phosphoprotein in biofluids has been developed for disease... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3175 |
SubjectTerms | Biological Sciences Biomarkers Breast cancer Medical diagnosis Phosphorylation Plasma Proteins Proteomics |
Title | Phosphoproteins in extracellular vesicles as candidate markers for breast cancer |
URI | https://www.jstor.org/stable/26480178 https://www.ncbi.nlm.nih.gov/pubmed/28270605 https://www.proquest.com/docview/1881974729 https://www.proquest.com/docview/1875403366 https://pubmed.ncbi.nlm.nih.gov/PMC5373352 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLeqceGCGDAIDGQkDkOVS2MncXqcqk1lGqWHVuotchKXVhrp1DQc-Mv483gvdr6qMgGXqPJXE79f3ofzPgj5gC9YHKoh46OVZN4K7BSlEp8NU-EqVykQEhjg_GUaTBbezdJf9nq_Wl5LxT4eJD-PxpX8D1WhDeiKUbL_QNl6UWiA30BfuAKF4fpXNJ6tt_n9elvmWtgYj3DgtTuFp_Gle-kPnZdub1hNJsEAFrTv-9_RJWeXG09NdErfY2di_XStpjqrJVte-RFMq4PDyyYMxfKGvM_6s2lT1Hhsgz4-s0leNABcFqauM2DyWw2ovDDf_WEcG6839fn0TJnT7ZsCeZAGeVtyI2xun1WA_BsKxpuziodus82kOQhOz4RWD7Thy6DWsMAzlUVrxm3CTyuE8hYfRq3oqIAAjoZVjTOVD7BUAPDYapVOKu7p1-h6cXsbza-W825vKfo9ARIfVEuM3X_EwUApXUon7XTPoQl-so9SJZWS4tPBf3f0IeMSe8zYOfTZbSlB86fkibVe6KWB4inp6ewZOa02l17YJOYfn5PZATbpJqMdbNIKm1TltMYmtdikgE1qsEkNNl-QxfXVfDxhtnoHS0AJ3bMYLFsRK8y3myqPS7XCr7jwyAF30xH0JVInSrtcpmCj-ErFQvsed4epHIHa6YszcpJtM_2KUAnreGolUg3SI-ZJrFIZJqHraTVSoS8dMqj2MEpsanussHIXlS4WUkS46VGz6Q65qCfcm6wufx56VhKlHocuoQDt0CHnFZUiyxNgHsxBC52PHPK-7gaOjZurMr0tcIwEM0mIIHDIS0PUZvGQYzor3yGyQ-56AGaD7_Zkm3WZFd4XEuMnXz98W2_I4-bFPCcn-12h34JavY_flQj-DcyHz4A |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphoproteins+in+extracellular+vesicles+as+candidate+markers+for+breast+cancer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chen%2C+I-Hsuan&rft.au=Xue%2C+Liang&rft.au=Hsu%2C+Chuan-Chih&rft.au=Paez%2C+Juan+Sebastian+Paez&rft.date=2017-03-21&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=12&rft.spage=3175&rft_id=info:doi/10.1073%2Fpnas.1618088114&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321283951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |