Multiple oscillatory rhythms determine the temporal organization of perception

Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; pp. 13435 - 13440
Main Authors Ronconi, Luca, Oosterhof, Nikolaas N., Bonmassar, Claudia, Melcher, David
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.12.2017
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1714522114

Cover

Loading…
Abstract Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8–10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6–7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.
AbstractList To reduce the complexity of our sensory environment, the perceptual system discretizes information in different ways. In the time domain, this is evident when stimuli that are presented very close in time are sometimes faithfully perceived as different entities, whereas they are integrated into a single event at other times. Using multivariate decoding of electroencephalography data, we show that integration and segregation of stimuli over different time scales (a few tens vs. a few hundreds of milliseconds) do not rely on a single sampling rhythm; instead, they depend on the phase of prestimulus oscillations at different frequency bands in right posterior-parietal channels. These findings suggest the existence of a specific mapping between oscillations and temporal windows in perception. Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8–10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6–7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.
Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.
Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.
Author Ronconi, Luca
Oosterhof, Nikolaas N.
Bonmassar, Claudia
Melcher, David
Author_xml – sequence: 1
  givenname: Luca
  surname: Ronconi
  fullname: Ronconi, Luca
  organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
– sequence: 2
  givenname: Nikolaas N.
  surname: Oosterhof
  fullname: Oosterhof, Nikolaas N.
  organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
– sequence: 3
  givenname: Claudia
  surname: Bonmassar
  fullname: Bonmassar, Claudia
  organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
– sequence: 4
  givenname: David
  surname: Melcher
  fullname: Melcher, David
  organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29203678$$D View this record in MEDLINE/PubMed
BookMark eNp9Uc9PHCEYJUaj649zT20m6cXL6AcDDFyaGKNtE39cvBOWZVw2MzAFxmT968u6VlsPPRDCx3sv73vvEO364C1CnzCcYWib89HrdIZbTBkhGNMdNMMgcc2phF00AyBtLSihB-gwpRUASCZgHx0QSaDhrZihu9upz27sbRWScX2vc4jrKi7XeTmkamGzjYPztsrLcuwwhqj7KsRH7d2zzi74KnTVaKOx4-Z1jPY63Sd78nofoYfrq4fLH_XN_feflxc3tWEgcz3HVDAxN3Mt9IIb03HMeYc1Z5J0ZUiYwIxzI2yjtYRFRy0mhhCuSSMYbY7Qt63sOM0HuzDW5-JLjdENOq5V0E79--PdUj2GJ8VaRlspi8Dpq0AMvyabshpcMrbs722YksKybYBwgKZAv36ArsIUfdlOESCUio3pgvryt6M3K3-SLoDzLcDEkFK03RsEg9p0qTZdqvcuC4N9YBiXXzIvK7n-P7zPW94qlTLfnfCSOaak-Q10766n
CitedBy_id crossref_primary_10_1111_ejn_15514
crossref_primary_10_1111_psyp_14447
crossref_primary_10_1162_jocn_a_02010
crossref_primary_10_1523_JNEUROSCI_2308_23_2024
crossref_primary_10_1016_j_concog_2024_103731
crossref_primary_10_1016_j_nicl_2024_103720
crossref_primary_10_1111_ejn_15790
crossref_primary_10_1111_psyp_14085
crossref_primary_10_1016_j_cortex_2024_04_020
crossref_primary_10_3389_fpsyg_2021_779798
crossref_primary_10_1016_j_neubiorev_2025_106041
crossref_primary_10_3389_fpsyg_2021_643677
crossref_primary_10_1016_j_concog_2018_02_012
crossref_primary_10_3758_s13414_018_1506_y
crossref_primary_10_1016_j_neubiorev_2024_105795
crossref_primary_10_1093_cercor_bhab291
crossref_primary_10_7554_eLife_40868
crossref_primary_10_3389_fpsyg_2020_01765
crossref_primary_10_1523_ENEURO_0511_23_2024
crossref_primary_10_1523_ENEURO_0047_18_2018
crossref_primary_10_1111_ejn_15166
crossref_primary_10_1088_1741_2552_ace551
crossref_primary_10_1111_ejn_15362
crossref_primary_10_1523_ENEURO_0282_24_2024
crossref_primary_10_1016_j_neuroimage_2020_116882
crossref_primary_10_1162_jocn_a_02105
crossref_primary_10_1016_j_schres_2024_04_028
crossref_primary_10_1038_s41598_018_29671_5
crossref_primary_10_1093_cercor_bhac026
crossref_primary_10_1167_jov_24_13_5
crossref_primary_10_3389_fnins_2023_1067632
crossref_primary_10_1016_j_tins_2024_12_005
crossref_primary_10_1016_j_neuroimage_2023_120298
crossref_primary_10_1111_ejn_15017
crossref_primary_10_1371_journal_pbio_3000025
crossref_primary_10_1016_j_concog_2019_04_006
crossref_primary_10_1177_1073858418755352
crossref_primary_10_1016_j_tics_2020_07_001
crossref_primary_10_1162_jocn_a_01464
crossref_primary_10_1523_ENEURO_0030_21_2021
crossref_primary_10_1016_j_brainres_2023_148646
crossref_primary_10_3389_fpsyg_2023_1296483
crossref_primary_10_1167_jov_22_11_13
crossref_primary_10_3389_fnbeh_2023_1176865
crossref_primary_10_3390_bioengineering11080773
crossref_primary_10_1167_19_5_12
crossref_primary_10_1016_j_neuroimage_2022_119060
crossref_primary_10_1016_j_neuroimage_2019_116175
crossref_primary_10_1167_19_7_5
crossref_primary_10_1038_s41583_025_00915_4
crossref_primary_10_1111_psyp_13827
crossref_primary_10_3758_s13428_023_02282_3
crossref_primary_10_1080_02699931_2024_2441863
crossref_primary_10_1007_s11097_019_09651_4
crossref_primary_10_1093_cercor_bhae380
crossref_primary_10_1152_jn_00060_2019
crossref_primary_10_1038_s41598_023_34812_6
crossref_primary_10_1111_ejn_15740
crossref_primary_10_1111_theo_12334
crossref_primary_10_1162_jocn_a_01436
crossref_primary_10_1038_s41598_022_06503_1
crossref_primary_10_1162_jocn_a_01993
crossref_primary_10_1162_jocn_a_02004
crossref_primary_10_1093_nc_niab020
crossref_primary_10_1162_jocn_a_02006
crossref_primary_10_1016_j_neuroimage_2021_118024
crossref_primary_10_1093_nc_niaa010
crossref_primary_10_3758_s13423_020_01752_5
Cites_doi 10.1111/j.1469-8986.1974.tb00547.x
10.1523/JNEUROSCI.5487-07.2008
10.1016/j.tics.2011.01.003
10.1073/pnas.1004801107
10.1016/j.conb.2010.02.015
10.1016/j.neuron.2009.06.020
10.1162/jocn_a_00288
10.1523/JNEUROSCI.1877-12.2012
10.1523/JNEUROSCI.0113-09.2009
10.1093/acprof:oso/9780198530671.001.0001
10.1098/rstb.2009.0023
10.1016/j.brainresrev.2006.06.003
10.1016/j.cub.2017.06.033
10.1523/JNEUROSCI.1704-17.2017
10.1523/ENEURO.0078-17.2017
10.1037/h0045283
10.1016/j.neuroimage.2012.11.021
10.1016/j.cub.2014.11.034
10.1016/S1364-6613(97)01008-5
10.1016/j.tins.2008.09.012
10.1523/JNEUROSCI.1161-11.2011
10.1523/JNEUROSCI.0600-15.2015
10.1002/pchj.144
10.1016/j.cub.2015.10.007
10.7551/mitpress/8516.003.0014
10.1523/JNEUROSCI.3357-14.2015
10.1016/j.tics.2016.07.006
10.1016/j.cub.2013.10.063
10.1523/JNEUROSCI.1853-07.2008
10.1073/pnas.1117190108
10.1073/pnas.1121622109
10.3389/fnins.2017.00154
10.1523/JNEUROSCI.16-13-04240.1996
10.1016/j.neuroimage.2014.08.055
10.1523/JNEUROSCI.3187-13.2014
10.1523/JNEUROSCI.4697-10.2011
10.1006/ccog.2002.0560
10.1016/j.cub.2015.07.048
10.1126/science.132.3441.1765
10.1016/j.cub.2013.09.020
10.1016/0028-3932(81)90005-1
10.1111/j.1749-6632.1967.tb55012.x
10.1016/j.tics.2012.03.002
10.1523/JNEUROSCI.4795-10.2011
10.1016/j.neuroimage.2016.02.065
10.1016/j.cub.2016.04.070
10.1098/rstb.2009.0015
10.1162/jocn_a_00755
10.1371/journal.pone.0102248
10.1016/0168-5597(91)90107-9
10.3758/BF03207984
10.1073/pnas.1517519112
10.1016/j.cub.2011.05.049
10.1016/0013-4694(57)90037-8
10.1016/0013-4694(65)90123-9
10.1152/ajplegacy.1932.103.1.213
10.1126/science.1138071
10.1038/srep16290
10.1016/S1364-6613(03)00095-0
10.1016/j.tins.2014.04.001
10.1162/jocn_a_00494
10.1523/JNEUROSCI.3963-08.2009
10.3389/fnhum.2010.00186
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2017 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Dec 19, 2017
Copyright © 2017 the Author(s). Published by PNAS. 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2017 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Dec 19, 2017
– notice: Copyright © 2017 the Author(s). Published by PNAS. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1714522114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Multiple oscillatory rhythms determine perception
EISSN 1091-6490
EndPage 13440
ExternalDocumentID PMC5754799
29203678
10_1073_pnas_1714522114
26485142
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas)
  grantid: 313658
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-b14858bcba8ad6ccf6166f1a6592fba82581566c8e3aa90df4e12c226a238543
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:11:18 EDT 2025
Thu Jul 10 19:10:21 EDT 2025
Mon Jun 30 08:37:11 EDT 2025
Mon Jul 21 05:48:14 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Tue Jul 01 03:19:44 EDT 2025
Fri May 30 11:46:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords vision
oscillations
theta
MVPA
alpha
Language English
License Copyright © 2017 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-b14858bcba8ad6ccf6166f1a6592fba82581566c8e3aa90df4e12c226a238543
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by David J. Heeger, New York University, New York, NY, and approved November 7, 2017 (received for review August 17, 2017)
Author contributions: L.R. and D.M. designed research; L.R. and C.B. performed research; L.R. and N.N.O. analyzed data; and L.R., N.N.O., and D.M. wrote the paper.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5754799
PMID 29203678
PQID 2024486592
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754799
proquest_miscellaneous_1973026003
proquest_journals_2024486592
pubmed_primary_29203678
crossref_primary_10_1073_pnas_1714522114
crossref_citationtrail_10_1073_pnas_1714522114
jstor_primary_26485142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-19
PublicationDateYYYYMMDD 2017-12-19
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
James W (e_1_3_3_59_2) 1890
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Busch N (e_1_3_3_46_2) 2014
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
22689974 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10599-604
19487191 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887-96
25010517 - PLoS One. 2014 Jul 10;9(7):e102248
21389236 - J Neurosci. 2011 Mar 9;31(10):3813-20
21430168 - J Neurosci. 2011 Mar 23;31(12):4698-708
20359884 - Curr Opin Neurobiol. 2010 Apr;20(2):156-65
8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9
28593191 - eNeuro. 2017 Jun 7;4(3):null
28972130 - J Neurosci. 2017 Nov 1;37(44):10636-10644
21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85
13447855 - Electroencephalogr Clin Neurophysiol. 1957 Aug;9(3):497-504
25390199 - J Cogn Neurosci. 2015 May;27(5):945-58
26490871 - J Neurosci. 2015 Oct 21;35(42):14341-52
22084106 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19377-82
21292539 - Trends Cogn Sci. 2011 Mar;15(3):122-31
26526370 - Curr Biol. 2015 Nov 16;25(22):2985-90
18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50
21119777 - Front Hum Neurosci. 2010 Nov 04;4:186
24836381 - Trends Neurosci. 2014 Jul;37(7):357-69
21223864 - Trends Cogn Sci. 1997 May;1(2):56-61
27678482 - Psych J. 2016 Sep;5(3):170-6
22905825 - J Cogn Neurosci. 2012 Dec;24(12):2321-33
23186917 - Neuroimage. 2013 Apr 1;69:126-37
3696947 - Percept Psychophys. 1987 Dec;42(6):526-34
19679077 - Neuron. 2009 Aug 13;63(3):386-96
12757822 - Trends Cogn Sci. 2003 May;7(5):207-213
26924284 - Neuroimage. 2016 Jun;133:53-61
25698760 - J Neurosci. 2015 Feb 18;35(7):3256-62
7312152 - Neuropsychologia. 1981;19(5):675-86
26279231 - Curr Biol. 2015 Aug 31;25(17):2332-7
12191941 - Conscious Cogn. 2002 Jun;11(2):241-64; discussion 308-13
28396622 - Front Neurosci. 2017 Mar 27;11:154
22933808 - J Neurosci. 2012 Aug 29;32(35):12268-76
4421317 - Psychophysiology. 1974 May;11(3):294-303
18287498 - J Neurosci. 2008 Feb 20;28(8):1816-23
14276036 - Electroencephalogr Clin Neurophysiol. 1965 Apr;18:433-40
25219334 - Neuroimage. 2014 Dec;103:119-29
24184106 - Curr Biol. 2013 Nov 18;23(22):2273-8
19535598 - J Neurosci. 2009 Jun 17;29(24):7869-76
19261866 - J Neurosci. 2009 Mar 4;29(9):2725-32
20805482 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53
21849549 - J Neurosci. 2011 Aug 17;31(33):11889-93
25544613 - Curr Biol. 2015 Jan 19;25(2):231-5
13689987 - Science. 1960 Dec 9;132(3441):1765-6
22436764 - Trends Cogn Sci. 2012 Apr;16(4):200-6
19487185 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1815-30
24453342 - J Neurosci. 2014 Jan 22;34(4):1554-65
26668393 - Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15833-7
27567317 - Trends Cogn Sci. 2016 Oct;20(10):723-35
1713834 - Electroencephalogr Clin Neurophysiol. 1991 Jul-Aug;80(4):241-50
16887192 - Brain Res Rev. 2007 Jan;53(1):63-88
28756954 - Curr Biol. 2017 Aug 7;27(15):2344-2351.e4
24116843 - J Cogn Neurosci. 2014 Feb;26(2):422-32
27291050 - Curr Biol. 2016 Jul 11;26(13):1659-68
24316204 - Curr Biol. 2013 Dec 16;23(24):2553-8
17395832 - Science. 2007 Mar 30;315(5820):1860-2
19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
26542183 - Sci Rep. 2015 Nov 06;5:16290
13907740 - J Exp Psychol. 1961 Nov;62:423-32
References_xml – ident: e_1_3_3_13_2
  doi: 10.1111/j.1469-8986.1974.tb00547.x
– ident: e_1_3_3_41_2
  doi: 10.1523/JNEUROSCI.5487-07.2008
– ident: e_1_3_3_48_2
  doi: 10.1016/j.tics.2011.01.003
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.1004801107
– ident: e_1_3_3_63_2
  doi: 10.1016/j.conb.2010.02.015
– ident: e_1_3_3_23_2
  doi: 10.1016/j.neuron.2009.06.020
– ident: e_1_3_3_34_2
  doi: 10.1162/jocn_a_00288
– ident: e_1_3_3_15_2
  doi: 10.1523/JNEUROSCI.1877-12.2012
– ident: e_1_3_3_9_2
  doi: 10.1523/JNEUROSCI.0113-09.2009
– ident: e_1_3_3_4_2
  doi: 10.1093/acprof:oso/9780198530671.001.0001
– ident: e_1_3_3_45_2
  doi: 10.1098/rstb.2009.0023
– ident: e_1_3_3_28_2
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: e_1_3_3_51_2
  doi: 10.1016/j.cub.2017.06.033
– ident: e_1_3_3_52_2
  doi: 10.1523/JNEUROSCI.1704-17.2017
– ident: e_1_3_3_56_2
  doi: 10.1523/ENEURO.0078-17.2017
– ident: e_1_3_3_1_2
  doi: 10.1037/h0045283
– ident: e_1_3_3_11_2
  doi: 10.1016/j.neuroimage.2012.11.021
– ident: e_1_3_3_65_2
  doi: 10.1016/j.cub.2014.11.034
– ident: e_1_3_3_39_2
  doi: 10.1016/S1364-6613(97)01008-5
– ident: e_1_3_3_62_2
  doi: 10.1016/j.tins.2008.09.012
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.1161-11.2011
– ident: e_1_3_3_33_2
  doi: 10.1523/JNEUROSCI.0600-15.2015
– ident: e_1_3_3_43_2
  doi: 10.1002/pchj.144
– ident: e_1_3_3_66_2
  doi: 10.1016/j.cub.2015.10.007
– start-page: 161
  volume-title: Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality
  year: 2014
  ident: e_1_3_3_46_2
  doi: 10.7551/mitpress/8516.003.0014
– ident: e_1_3_3_16_2
  doi: 10.1523/JNEUROSCI.3357-14.2015
– ident: e_1_3_3_58_2
  doi: 10.1016/j.tics.2016.07.006
– ident: e_1_3_3_10_2
  doi: 10.1016/j.cub.2013.10.063
– ident: e_1_3_3_53_2
  doi: 10.1523/JNEUROSCI.1853-07.2008
– ident: e_1_3_3_32_2
  doi: 10.1073/pnas.1117190108
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.1121622109
– ident: e_1_3_3_61_2
  doi: 10.3389/fnins.2017.00154
– ident: e_1_3_3_47_2
  doi: 10.1523/JNEUROSCI.16-13-04240.1996
– ident: e_1_3_3_26_2
  doi: 10.1016/j.neuroimage.2014.08.055
– ident: e_1_3_3_37_2
  doi: 10.1523/JNEUROSCI.3187-13.2014
– ident: e_1_3_3_25_2
  doi: 10.1523/JNEUROSCI.4697-10.2011
– ident: e_1_3_3_44_2
  doi: 10.1006/ccog.2002.0560
– ident: e_1_3_3_21_2
  doi: 10.1016/j.cub.2015.07.048
– ident: e_1_3_3_17_2
  doi: 10.1126/science.132.3441.1765
– ident: e_1_3_3_12_2
  doi: 10.1016/j.cub.2013.09.020
– ident: e_1_3_3_49_2
– ident: e_1_3_3_8_2
  doi: 10.1016/0028-3932(81)90005-1
– ident: e_1_3_3_7_2
  doi: 10.1111/j.1749-6632.1967.tb55012.x
– ident: e_1_3_3_30_2
  doi: 10.1016/j.tics.2012.03.002
– ident: e_1_3_3_19_2
  doi: 10.1523/JNEUROSCI.4795-10.2011
– ident: e_1_3_3_35_2
  doi: 10.1016/j.neuroimage.2016.02.065
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cub.2016.04.070
– ident: e_1_3_3_40_2
  doi: 10.1098/rstb.2009.0015
– ident: e_1_3_3_22_2
  doi: 10.1162/jocn_a_00755
– ident: e_1_3_3_42_2
  doi: 10.1371/journal.pone.0102248
– ident: e_1_3_3_24_2
  doi: 10.1016/0168-5597(91)90107-9
– ident: e_1_3_3_2_2
– ident: e_1_3_3_3_2
  doi: 10.3758/BF03207984
– ident: e_1_3_3_60_2
  doi: 10.1073/pnas.1517519112
– volume-title: Principles of Psychology
  year: 1890
  ident: e_1_3_3_59_2
– ident: e_1_3_3_54_2
  doi: 10.1016/j.cub.2011.05.049
– ident: e_1_3_3_6_2
  doi: 10.1016/0013-4694(57)90037-8
– ident: e_1_3_3_18_2
  doi: 10.1016/0013-4694(65)90123-9
– ident: e_1_3_3_5_2
  doi: 10.1152/ajplegacy.1932.103.1.213
– ident: e_1_3_3_64_2
  doi: 10.1126/science.1138071
– ident: e_1_3_3_38_2
  doi: 10.1038/srep16290
– ident: e_1_3_3_57_2
  doi: 10.1016/S1364-6613(03)00095-0
– ident: e_1_3_3_31_2
  doi: 10.1016/j.tins.2014.04.001
– ident: e_1_3_3_55_2
  doi: 10.1162/jocn_a_00494
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.3963-08.2009
– ident: e_1_3_3_29_2
  doi: 10.3389/fnhum.2010.00186
– reference: 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85
– reference: 26490871 - J Neurosci. 2015 Oct 21;35(42):14341-52
– reference: 16887192 - Brain Res Rev. 2007 Jan;53(1):63-88
– reference: 24116843 - J Cogn Neurosci. 2014 Feb;26(2):422-32
– reference: 26279231 - Curr Biol. 2015 Aug 31;25(17):2332-7
– reference: 24836381 - Trends Neurosci. 2014 Jul;37(7):357-69
– reference: 7312152 - Neuropsychologia. 1981;19(5):675-86
– reference: 1713834 - Electroencephalogr Clin Neurophysiol. 1991 Jul-Aug;80(4):241-50
– reference: 24316204 - Curr Biol. 2013 Dec 16;23(24):2553-8
– reference: 25544613 - Curr Biol. 2015 Jan 19;25(2):231-5
– reference: 28396622 - Front Neurosci. 2017 Mar 27;11:154
– reference: 4421317 - Psychophysiology. 1974 May;11(3):294-303
– reference: 12191941 - Conscious Cogn. 2002 Jun;11(2):241-64; discussion 308-13
– reference: 17395832 - Science. 2007 Mar 30;315(5820):1860-2
– reference: 8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9
– reference: 22084106 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19377-82
– reference: 22689974 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10599-604
– reference: 13907740 - J Exp Psychol. 1961 Nov;62:423-32
– reference: 23186917 - Neuroimage. 2013 Apr 1;69:126-37
– reference: 21849549 - J Neurosci. 2011 Aug 17;31(33):11889-93
– reference: 25219334 - Neuroimage. 2014 Dec;103:119-29
– reference: 18287498 - J Neurosci. 2008 Feb 20;28(8):1816-23
– reference: 22933808 - J Neurosci. 2012 Aug 29;32(35):12268-76
– reference: 22436764 - Trends Cogn Sci. 2012 Apr;16(4):200-6
– reference: 19261866 - J Neurosci. 2009 Mar 4;29(9):2725-32
– reference: 22905825 - J Cogn Neurosci. 2012 Dec;24(12):2321-33
– reference: 28756954 - Curr Biol. 2017 Aug 7;27(15):2344-2351.e4
– reference: 21119777 - Front Hum Neurosci. 2010 Nov 04;4:186
– reference: 19535598 - J Neurosci. 2009 Jun 17;29(24):7869-76
– reference: 13447855 - Electroencephalogr Clin Neurophysiol. 1957 Aug;9(3):497-504
– reference: 19679077 - Neuron. 2009 Aug 13;63(3):386-96
– reference: 28593191 - eNeuro. 2017 Jun 7;4(3):null
– reference: 21223864 - Trends Cogn Sci. 1997 May;1(2):56-61
– reference: 28972130 - J Neurosci. 2017 Nov 1;37(44):10636-10644
– reference: 13689987 - Science. 1960 Dec 9;132(3441):1765-6
– reference: 21430168 - J Neurosci. 2011 Mar 23;31(12):4698-708
– reference: 21292539 - Trends Cogn Sci. 2011 Mar;15(3):122-31
– reference: 27567317 - Trends Cogn Sci. 2016 Oct;20(10):723-35
– reference: 26668393 - Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15833-7
– reference: 26526370 - Curr Biol. 2015 Nov 16;25(22):2985-90
– reference: 26542183 - Sci Rep. 2015 Nov 06;5:16290
– reference: 20805482 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53
– reference: 24184106 - Curr Biol. 2013 Nov 18;23(22):2273-8
– reference: 14276036 - Electroencephalogr Clin Neurophysiol. 1965 Apr;18:433-40
– reference: 19487191 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887-96
– reference: 25698760 - J Neurosci. 2015 Feb 18;35(7):3256-62
– reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18
– reference: 25010517 - PLoS One. 2014 Jul 10;9(7):e102248
– reference: 24453342 - J Neurosci. 2014 Jan 22;34(4):1554-65
– reference: 25390199 - J Cogn Neurosci. 2015 May;27(5):945-58
– reference: 3696947 - Percept Psychophys. 1987 Dec;42(6):526-34
– reference: 27678482 - Psych J. 2016 Sep;5(3):170-6
– reference: 20359884 - Curr Opin Neurobiol. 2010 Apr;20(2):156-65
– reference: 26924284 - Neuroimage. 2016 Jun;133:53-61
– reference: 19487185 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1815-30
– reference: 27291050 - Curr Biol. 2016 Jul 11;26(13):1659-68
– reference: 21389236 - J Neurosci. 2011 Mar 9;31(10):3813-20
– reference: 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50
– reference: 12757822 - Trends Cogn Sci. 2003 May;7(5):207-213
SSID ssj0009580
Score 2.5040941
Snippet Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been...
To reduce the complexity of our sensory environment, the perceptual system discretizes information in different ways. In the time domain, this is evident when...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13435
SubjectTerms Alpha Rhythm
Biological Sciences
Brain - physiology
Channels
Cortex
Decoding
EEG
Electroencephalography
Excitability
Female
Humans
Integration
Interstimulus interval
Male
Oscillations
Perception
Reaction Time
Sensory perception
Social Sciences
Stimuli
Theta Rhythm
Theta rhythms
Visual Perception
Young Adult
Title Multiple oscillatory rhythms determine the temporal organization of perception
URI https://www.jstor.org/stable/26485142
https://www.ncbi.nlm.nih.gov/pubmed/29203678
https://www.proquest.com/docview/2024486592
https://www.proquest.com/docview/1973026003
https://pubmed.ncbi.nlm.nih.gov/PMC5754799
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAQGMhIPAxVKSRxvh7HtDGhNZtQJvUtsp1EndYlU5NIsF_PdfyRdBRp8BJVTuK2ucfX58bX5yL00WdlSSiMNFJG3Ca-x-wozonNuc8dBvN91Otsz5Pg9JJ8X_iLyeTnKGupa9mM323dV_I_VoU2sKvYJfsPljWdQgN8BvvCESwMxwfZeK6zAYUiJdizXzBfL3-1y5tmmqtEl6LnlkqCaqXKON0ZpnhrMlvGPPXCzGuNziJI9GvDw2ETivIMzdSeXiRDSeMfdQVhttx33Q25QOdiQ8l6WZcSgtcQVdNmWAv6Wlc3QOVlxvfRinb5lbl1Xqw0uoYsfPWyAiZAx7WVS5T-FeiJHRBZIXRWbGnTTlluLVXoU5q00sc6HpEKJ394f3BXomRxRZuZqOsO1FJ3s6GznZxnJ5dnZ1l6vEgfoccuBBjCpX9bOCO55kjqWKifpkWhQu_zve43-IxMad0WrNzPuR2RmPQZeqqiD3woobSLJkX1HO1qK-IDJUL-6QVKNLbwCFtYYQsbbGFABtbYwmNs4brEA7ZeovTkOD06tVXtDZsDhWxtBmGyHzHOaETzgPMycIKgdKhYhS-h0fWFzFDAo8KjNP6Sl6RwXA5jmwIH9Im3h3aquipeIwwTqM_jmDgOo4RRgKjLgEPyXNS5ZwG10Ew_wIwrXXpRHmWV9fkRoZeJJ54NT9xCB-aGWynJ8vdL93qLmOtEPieECK6F9rWJMjWgm8wFvkoi8Q8t9MGcBncr1tBoVdQd9B3DlCiKOngWeiUtOnQei1X9MLJQuGFrc4GQct88U10te0l3CJpIGMdvHvC9b9GTYWTto5123RXvgBi37H2P4d8FEb3W
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+oscillatory+rhythms+determine+the+temporal+organization+of+perception&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ronconi%2C+Luca&rft.au=Oosterhof%2C+Nikolaas+N&rft.au=Bonmassar%2C+Claudia&rft.au=Melcher%2C+David&rft.date=2017-12-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=51&rft.spage=13435&rft_id=info:doi/10.1073%2Fpnas.1714522114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon