Multiple oscillatory rhythms determine the temporal organization of perception
Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 51; pp. 13435 - 13440 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.12.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1714522114 |
Cover
Loading…
Abstract | Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8–10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6–7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception. |
---|---|
AbstractList | To reduce the complexity of our sensory environment, the perceptual system discretizes information in different ways. In the time domain, this is evident when stimuli that are presented very close in time are sometimes faithfully perceived as different entities, whereas they are integrated into a single event at other times. Using multivariate decoding of electroencephalography data, we show that integration and segregation of stimuli over different time scales (a few tens vs. a few hundreds of milliseconds) do not rely on a single sampling rhythm; instead, they depend on the phase of prestimulus oscillations at different frequency bands in right posterior-parietal channels. These findings suggest the existence of a specific mapping between oscillations and temporal windows in perception.
Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8–10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6–7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception. Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception. Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception.Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been described in terms of temporal windows (TWs) of integration/segregation, in which the phase of ongoing neural oscillations determines whether two stimuli are integrated into a single percept or segregated into separate events. However, TWs can vary substantially, raising the question of whether different TWs map onto unique oscillations or, rather, reflect a single, general fluctuation in cortical excitability (e.g., in the alpha band). We used multivariate decoding of electroencephalography (EEG) data to investigate perception of stimuli that either repeated in the same location (two-flash fusion) or moved in space (apparent motion). By manipulating the interstimulus interval (ISI), we created bistable stimuli that caused subjects to perceive either integration (fusion/apparent motion) or segregation (two unrelated flashes). Training a classifier searchlight on the whole channels/frequencies/times space, we found that the perceptual outcome (integration vs. segregation) could be reliably decoded from the phase of prestimulus oscillations in right parieto-occipital channels. The highest decoding accuracy for the two-flash fusion task (ISI = 40 ms) was evident in the phase of alpha oscillations (8-10 Hz), while the highest decoding accuracy for the apparent motion task (ISI = 120 ms) was evident in the phase of theta oscillations (6-7 Hz). These results reveal a precise relationship between specific TW durations and specific oscillations. Such oscillations at different frequencies may provide a hierarchical framework for the temporal organization of perception. |
Author | Ronconi, Luca Oosterhof, Nikolaas N. Bonmassar, Claudia Melcher, David |
Author_xml | – sequence: 1 givenname: Luca surname: Ronconi fullname: Ronconi, Luca organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy – sequence: 2 givenname: Nikolaas N. surname: Oosterhof fullname: Oosterhof, Nikolaas N. organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy – sequence: 3 givenname: Claudia surname: Bonmassar fullname: Bonmassar, Claudia organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy – sequence: 4 givenname: David surname: Melcher fullname: Melcher, David organization: Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29203678$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uc9PHCEYJUaj649zT20m6cXL6AcDDFyaGKNtE39cvBOWZVw2MzAFxmT968u6VlsPPRDCx3sv73vvEO364C1CnzCcYWib89HrdIZbTBkhGNMdNMMgcc2phF00AyBtLSihB-gwpRUASCZgHx0QSaDhrZihu9upz27sbRWScX2vc4jrKi7XeTmkamGzjYPztsrLcuwwhqj7KsRH7d2zzi74KnTVaKOx4-Z1jPY63Sd78nofoYfrq4fLH_XN_feflxc3tWEgcz3HVDAxN3Mt9IIb03HMeYc1Z5J0ZUiYwIxzI2yjtYRFRy0mhhCuSSMYbY7Qt63sOM0HuzDW5-JLjdENOq5V0E79--PdUj2GJ8VaRlspi8Dpq0AMvyabshpcMrbs722YksKybYBwgKZAv36ArsIUfdlOESCUio3pgvryt6M3K3-SLoDzLcDEkFK03RsEg9p0qTZdqvcuC4N9YBiXXzIvK7n-P7zPW94qlTLfnfCSOaak-Q10766n |
CitedBy_id | crossref_primary_10_1111_ejn_15514 crossref_primary_10_1111_psyp_14447 crossref_primary_10_1162_jocn_a_02010 crossref_primary_10_1523_JNEUROSCI_2308_23_2024 crossref_primary_10_1016_j_concog_2024_103731 crossref_primary_10_1016_j_nicl_2024_103720 crossref_primary_10_1111_ejn_15790 crossref_primary_10_1111_psyp_14085 crossref_primary_10_1016_j_cortex_2024_04_020 crossref_primary_10_3389_fpsyg_2021_779798 crossref_primary_10_1016_j_neubiorev_2025_106041 crossref_primary_10_3389_fpsyg_2021_643677 crossref_primary_10_1016_j_concog_2018_02_012 crossref_primary_10_3758_s13414_018_1506_y crossref_primary_10_1016_j_neubiorev_2024_105795 crossref_primary_10_1093_cercor_bhab291 crossref_primary_10_7554_eLife_40868 crossref_primary_10_3389_fpsyg_2020_01765 crossref_primary_10_1523_ENEURO_0511_23_2024 crossref_primary_10_1523_ENEURO_0047_18_2018 crossref_primary_10_1111_ejn_15166 crossref_primary_10_1088_1741_2552_ace551 crossref_primary_10_1111_ejn_15362 crossref_primary_10_1523_ENEURO_0282_24_2024 crossref_primary_10_1016_j_neuroimage_2020_116882 crossref_primary_10_1162_jocn_a_02105 crossref_primary_10_1016_j_schres_2024_04_028 crossref_primary_10_1038_s41598_018_29671_5 crossref_primary_10_1093_cercor_bhac026 crossref_primary_10_1167_jov_24_13_5 crossref_primary_10_3389_fnins_2023_1067632 crossref_primary_10_1016_j_tins_2024_12_005 crossref_primary_10_1016_j_neuroimage_2023_120298 crossref_primary_10_1111_ejn_15017 crossref_primary_10_1371_journal_pbio_3000025 crossref_primary_10_1016_j_concog_2019_04_006 crossref_primary_10_1177_1073858418755352 crossref_primary_10_1016_j_tics_2020_07_001 crossref_primary_10_1162_jocn_a_01464 crossref_primary_10_1523_ENEURO_0030_21_2021 crossref_primary_10_1016_j_brainres_2023_148646 crossref_primary_10_3389_fpsyg_2023_1296483 crossref_primary_10_1167_jov_22_11_13 crossref_primary_10_3389_fnbeh_2023_1176865 crossref_primary_10_3390_bioengineering11080773 crossref_primary_10_1167_19_5_12 crossref_primary_10_1016_j_neuroimage_2022_119060 crossref_primary_10_1016_j_neuroimage_2019_116175 crossref_primary_10_1167_19_7_5 crossref_primary_10_1038_s41583_025_00915_4 crossref_primary_10_1111_psyp_13827 crossref_primary_10_3758_s13428_023_02282_3 crossref_primary_10_1080_02699931_2024_2441863 crossref_primary_10_1007_s11097_019_09651_4 crossref_primary_10_1093_cercor_bhae380 crossref_primary_10_1152_jn_00060_2019 crossref_primary_10_1038_s41598_023_34812_6 crossref_primary_10_1111_ejn_15740 crossref_primary_10_1111_theo_12334 crossref_primary_10_1162_jocn_a_01436 crossref_primary_10_1038_s41598_022_06503_1 crossref_primary_10_1162_jocn_a_01993 crossref_primary_10_1162_jocn_a_02004 crossref_primary_10_1093_nc_niab020 crossref_primary_10_1162_jocn_a_02006 crossref_primary_10_1016_j_neuroimage_2021_118024 crossref_primary_10_1093_nc_niaa010 crossref_primary_10_3758_s13423_020_01752_5 |
Cites_doi | 10.1111/j.1469-8986.1974.tb00547.x 10.1523/JNEUROSCI.5487-07.2008 10.1016/j.tics.2011.01.003 10.1073/pnas.1004801107 10.1016/j.conb.2010.02.015 10.1016/j.neuron.2009.06.020 10.1162/jocn_a_00288 10.1523/JNEUROSCI.1877-12.2012 10.1523/JNEUROSCI.0113-09.2009 10.1093/acprof:oso/9780198530671.001.0001 10.1098/rstb.2009.0023 10.1016/j.brainresrev.2006.06.003 10.1016/j.cub.2017.06.033 10.1523/JNEUROSCI.1704-17.2017 10.1523/ENEURO.0078-17.2017 10.1037/h0045283 10.1016/j.neuroimage.2012.11.021 10.1016/j.cub.2014.11.034 10.1016/S1364-6613(97)01008-5 10.1016/j.tins.2008.09.012 10.1523/JNEUROSCI.1161-11.2011 10.1523/JNEUROSCI.0600-15.2015 10.1002/pchj.144 10.1016/j.cub.2015.10.007 10.7551/mitpress/8516.003.0014 10.1523/JNEUROSCI.3357-14.2015 10.1016/j.tics.2016.07.006 10.1016/j.cub.2013.10.063 10.1523/JNEUROSCI.1853-07.2008 10.1073/pnas.1117190108 10.1073/pnas.1121622109 10.3389/fnins.2017.00154 10.1523/JNEUROSCI.16-13-04240.1996 10.1016/j.neuroimage.2014.08.055 10.1523/JNEUROSCI.3187-13.2014 10.1523/JNEUROSCI.4697-10.2011 10.1006/ccog.2002.0560 10.1016/j.cub.2015.07.048 10.1126/science.132.3441.1765 10.1016/j.cub.2013.09.020 10.1016/0028-3932(81)90005-1 10.1111/j.1749-6632.1967.tb55012.x 10.1016/j.tics.2012.03.002 10.1523/JNEUROSCI.4795-10.2011 10.1016/j.neuroimage.2016.02.065 10.1016/j.cub.2016.04.070 10.1098/rstb.2009.0015 10.1162/jocn_a_00755 10.1371/journal.pone.0102248 10.1016/0168-5597(91)90107-9 10.3758/BF03207984 10.1073/pnas.1517519112 10.1016/j.cub.2011.05.049 10.1016/0013-4694(57)90037-8 10.1016/0013-4694(65)90123-9 10.1152/ajplegacy.1932.103.1.213 10.1126/science.1138071 10.1038/srep16290 10.1016/S1364-6613(03)00095-0 10.1016/j.tins.2014.04.001 10.1162/jocn_a_00494 10.1523/JNEUROSCI.3963-08.2009 10.3389/fnhum.2010.00186 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2017 the Author(s). Published by PNAS. Copyright National Academy of Sciences Dec 19, 2017 Copyright © 2017 the Author(s). Published by PNAS. 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2017 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Dec 19, 2017 – notice: Copyright © 2017 the Author(s). Published by PNAS. 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1714522114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Multiple oscillatory rhythms determine perception |
EISSN | 1091-6490 |
EndPage | 13440 |
ExternalDocumentID | PMC5754799 29203678 10_1073_pnas_1714522114 26485142 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: EC | FP7 | FP7 Ideas: European Research Council (FP7 Ideas) grantid: 313658 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-b14858bcba8ad6ccf6166f1a6592fba82581566c8e3aa90df4e12c226a238543 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:11:18 EDT 2025 Thu Jul 10 19:10:21 EDT 2025 Mon Jun 30 08:37:11 EDT 2025 Mon Jul 21 05:48:14 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Tue Jul 01 03:19:44 EDT 2025 Fri May 30 11:46:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | vision oscillations theta MVPA alpha |
Language | English |
License | Copyright © 2017 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-b14858bcba8ad6ccf6166f1a6592fba82581566c8e3aa90df4e12c226a238543 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by David J. Heeger, New York University, New York, NY, and approved November 7, 2017 (received for review August 17, 2017) Author contributions: L.R. and D.M. designed research; L.R. and C.B. performed research; L.R. and N.N.O. analyzed data; and L.R., N.N.O., and D.M. wrote the paper. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5754799 |
PMID | 29203678 |
PQID | 2024486592 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5754799 proquest_miscellaneous_1973026003 proquest_journals_2024486592 pubmed_primary_29203678 crossref_primary_10_1073_pnas_1714522114 crossref_citationtrail_10_1073_pnas_1714522114 jstor_primary_26485142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-19 |
PublicationDateYYYYMMDD | 2017-12-19 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 James W (e_1_3_3_59_2) 1890 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Busch N (e_1_3_3_46_2) 2014 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 22689974 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10599-604 19487191 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887-96 25010517 - PLoS One. 2014 Jul 10;9(7):e102248 21389236 - J Neurosci. 2011 Mar 9;31(10):3813-20 21430168 - J Neurosci. 2011 Mar 23;31(12):4698-708 20359884 - Curr Opin Neurobiol. 2010 Apr;20(2):156-65 8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9 28593191 - eNeuro. 2017 Jun 7;4(3):null 28972130 - J Neurosci. 2017 Nov 1;37(44):10636-10644 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85 13447855 - Electroencephalogr Clin Neurophysiol. 1957 Aug;9(3):497-504 25390199 - J Cogn Neurosci. 2015 May;27(5):945-58 26490871 - J Neurosci. 2015 Oct 21;35(42):14341-52 22084106 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19377-82 21292539 - Trends Cogn Sci. 2011 Mar;15(3):122-31 26526370 - Curr Biol. 2015 Nov 16;25(22):2985-90 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 21119777 - Front Hum Neurosci. 2010 Nov 04;4:186 24836381 - Trends Neurosci. 2014 Jul;37(7):357-69 21223864 - Trends Cogn Sci. 1997 May;1(2):56-61 27678482 - Psych J. 2016 Sep;5(3):170-6 22905825 - J Cogn Neurosci. 2012 Dec;24(12):2321-33 23186917 - Neuroimage. 2013 Apr 1;69:126-37 3696947 - Percept Psychophys. 1987 Dec;42(6):526-34 19679077 - Neuron. 2009 Aug 13;63(3):386-96 12757822 - Trends Cogn Sci. 2003 May;7(5):207-213 26924284 - Neuroimage. 2016 Jun;133:53-61 25698760 - J Neurosci. 2015 Feb 18;35(7):3256-62 7312152 - Neuropsychologia. 1981;19(5):675-86 26279231 - Curr Biol. 2015 Aug 31;25(17):2332-7 12191941 - Conscious Cogn. 2002 Jun;11(2):241-64; discussion 308-13 28396622 - Front Neurosci. 2017 Mar 27;11:154 22933808 - J Neurosci. 2012 Aug 29;32(35):12268-76 4421317 - Psychophysiology. 1974 May;11(3):294-303 18287498 - J Neurosci. 2008 Feb 20;28(8):1816-23 14276036 - Electroencephalogr Clin Neurophysiol. 1965 Apr;18:433-40 25219334 - Neuroimage. 2014 Dec;103:119-29 24184106 - Curr Biol. 2013 Nov 18;23(22):2273-8 19535598 - J Neurosci. 2009 Jun 17;29(24):7869-76 19261866 - J Neurosci. 2009 Mar 4;29(9):2725-32 20805482 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53 21849549 - J Neurosci. 2011 Aug 17;31(33):11889-93 25544613 - Curr Biol. 2015 Jan 19;25(2):231-5 13689987 - Science. 1960 Dec 9;132(3441):1765-6 22436764 - Trends Cogn Sci. 2012 Apr;16(4):200-6 19487185 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1815-30 24453342 - J Neurosci. 2014 Jan 22;34(4):1554-65 26668393 - Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15833-7 27567317 - Trends Cogn Sci. 2016 Oct;20(10):723-35 1713834 - Electroencephalogr Clin Neurophysiol. 1991 Jul-Aug;80(4):241-50 16887192 - Brain Res Rev. 2007 Jan;53(1):63-88 28756954 - Curr Biol. 2017 Aug 7;27(15):2344-2351.e4 24116843 - J Cogn Neurosci. 2014 Feb;26(2):422-32 27291050 - Curr Biol. 2016 Jul 11;26(13):1659-68 24316204 - Curr Biol. 2013 Dec 16;23(24):2553-8 17395832 - Science. 2007 Mar 30;315(5820):1860-2 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 26542183 - Sci Rep. 2015 Nov 06;5:16290 13907740 - J Exp Psychol. 1961 Nov;62:423-32 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1111/j.1469-8986.1974.tb00547.x – ident: e_1_3_3_41_2 doi: 10.1523/JNEUROSCI.5487-07.2008 – ident: e_1_3_3_48_2 doi: 10.1016/j.tics.2011.01.003 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.1004801107 – ident: e_1_3_3_63_2 doi: 10.1016/j.conb.2010.02.015 – ident: e_1_3_3_23_2 doi: 10.1016/j.neuron.2009.06.020 – ident: e_1_3_3_34_2 doi: 10.1162/jocn_a_00288 – ident: e_1_3_3_15_2 doi: 10.1523/JNEUROSCI.1877-12.2012 – ident: e_1_3_3_9_2 doi: 10.1523/JNEUROSCI.0113-09.2009 – ident: e_1_3_3_4_2 doi: 10.1093/acprof:oso/9780198530671.001.0001 – ident: e_1_3_3_45_2 doi: 10.1098/rstb.2009.0023 – ident: e_1_3_3_28_2 doi: 10.1016/j.brainresrev.2006.06.003 – ident: e_1_3_3_51_2 doi: 10.1016/j.cub.2017.06.033 – ident: e_1_3_3_52_2 doi: 10.1523/JNEUROSCI.1704-17.2017 – ident: e_1_3_3_56_2 doi: 10.1523/ENEURO.0078-17.2017 – ident: e_1_3_3_1_2 doi: 10.1037/h0045283 – ident: e_1_3_3_11_2 doi: 10.1016/j.neuroimage.2012.11.021 – ident: e_1_3_3_65_2 doi: 10.1016/j.cub.2014.11.034 – ident: e_1_3_3_39_2 doi: 10.1016/S1364-6613(97)01008-5 – ident: e_1_3_3_62_2 doi: 10.1016/j.tins.2008.09.012 – ident: e_1_3_3_27_2 doi: 10.1523/JNEUROSCI.1161-11.2011 – ident: e_1_3_3_33_2 doi: 10.1523/JNEUROSCI.0600-15.2015 – ident: e_1_3_3_43_2 doi: 10.1002/pchj.144 – ident: e_1_3_3_66_2 doi: 10.1016/j.cub.2015.10.007 – start-page: 161 volume-title: Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality year: 2014 ident: e_1_3_3_46_2 doi: 10.7551/mitpress/8516.003.0014 – ident: e_1_3_3_16_2 doi: 10.1523/JNEUROSCI.3357-14.2015 – ident: e_1_3_3_58_2 doi: 10.1016/j.tics.2016.07.006 – ident: e_1_3_3_10_2 doi: 10.1016/j.cub.2013.10.063 – ident: e_1_3_3_53_2 doi: 10.1523/JNEUROSCI.1853-07.2008 – ident: e_1_3_3_32_2 doi: 10.1073/pnas.1117190108 – ident: e_1_3_3_50_2 doi: 10.1073/pnas.1121622109 – ident: e_1_3_3_61_2 doi: 10.3389/fnins.2017.00154 – ident: e_1_3_3_47_2 doi: 10.1523/JNEUROSCI.16-13-04240.1996 – ident: e_1_3_3_26_2 doi: 10.1016/j.neuroimage.2014.08.055 – ident: e_1_3_3_37_2 doi: 10.1523/JNEUROSCI.3187-13.2014 – ident: e_1_3_3_25_2 doi: 10.1523/JNEUROSCI.4697-10.2011 – ident: e_1_3_3_44_2 doi: 10.1006/ccog.2002.0560 – ident: e_1_3_3_21_2 doi: 10.1016/j.cub.2015.07.048 – ident: e_1_3_3_17_2 doi: 10.1126/science.132.3441.1765 – ident: e_1_3_3_12_2 doi: 10.1016/j.cub.2013.09.020 – ident: e_1_3_3_49_2 – ident: e_1_3_3_8_2 doi: 10.1016/0028-3932(81)90005-1 – ident: e_1_3_3_7_2 doi: 10.1111/j.1749-6632.1967.tb55012.x – ident: e_1_3_3_30_2 doi: 10.1016/j.tics.2012.03.002 – ident: e_1_3_3_19_2 doi: 10.1523/JNEUROSCI.4795-10.2011 – ident: e_1_3_3_35_2 doi: 10.1016/j.neuroimage.2016.02.065 – ident: e_1_3_3_36_2 doi: 10.1016/j.cub.2016.04.070 – ident: e_1_3_3_40_2 doi: 10.1098/rstb.2009.0015 – ident: e_1_3_3_22_2 doi: 10.1162/jocn_a_00755 – ident: e_1_3_3_42_2 doi: 10.1371/journal.pone.0102248 – ident: e_1_3_3_24_2 doi: 10.1016/0168-5597(91)90107-9 – ident: e_1_3_3_2_2 – ident: e_1_3_3_3_2 doi: 10.3758/BF03207984 – ident: e_1_3_3_60_2 doi: 10.1073/pnas.1517519112 – volume-title: Principles of Psychology year: 1890 ident: e_1_3_3_59_2 – ident: e_1_3_3_54_2 doi: 10.1016/j.cub.2011.05.049 – ident: e_1_3_3_6_2 doi: 10.1016/0013-4694(57)90037-8 – ident: e_1_3_3_18_2 doi: 10.1016/0013-4694(65)90123-9 – ident: e_1_3_3_5_2 doi: 10.1152/ajplegacy.1932.103.1.213 – ident: e_1_3_3_64_2 doi: 10.1126/science.1138071 – ident: e_1_3_3_38_2 doi: 10.1038/srep16290 – ident: e_1_3_3_57_2 doi: 10.1016/S1364-6613(03)00095-0 – ident: e_1_3_3_31_2 doi: 10.1016/j.tins.2014.04.001 – ident: e_1_3_3_55_2 doi: 10.1162/jocn_a_00494 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.3963-08.2009 – ident: e_1_3_3_29_2 doi: 10.3389/fnhum.2010.00186 – reference: 21723129 - Curr Biol. 2011 Jul 26;21(14):1176-85 – reference: 26490871 - J Neurosci. 2015 Oct 21;35(42):14341-52 – reference: 16887192 - Brain Res Rev. 2007 Jan;53(1):63-88 – reference: 24116843 - J Cogn Neurosci. 2014 Feb;26(2):422-32 – reference: 26279231 - Curr Biol. 2015 Aug 31;25(17):2332-7 – reference: 24836381 - Trends Neurosci. 2014 Jul;37(7):357-69 – reference: 7312152 - Neuropsychologia. 1981;19(5):675-86 – reference: 1713834 - Electroencephalogr Clin Neurophysiol. 1991 Jul-Aug;80(4):241-50 – reference: 24316204 - Curr Biol. 2013 Dec 16;23(24):2553-8 – reference: 25544613 - Curr Biol. 2015 Jan 19;25(2):231-5 – reference: 28396622 - Front Neurosci. 2017 Mar 27;11:154 – reference: 4421317 - Psychophysiology. 1974 May;11(3):294-303 – reference: 12191941 - Conscious Cogn. 2002 Jun;11(2):241-64; discussion 308-13 – reference: 17395832 - Science. 2007 Mar 30;315(5820):1860-2 – reference: 8753885 - J Neurosci. 1996 Jul 1;16(13):4240-9 – reference: 22084106 - Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19377-82 – reference: 22689974 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10599-604 – reference: 13907740 - J Exp Psychol. 1961 Nov;62:423-32 – reference: 23186917 - Neuroimage. 2013 Apr 1;69:126-37 – reference: 21849549 - J Neurosci. 2011 Aug 17;31(33):11889-93 – reference: 25219334 - Neuroimage. 2014 Dec;103:119-29 – reference: 18287498 - J Neurosci. 2008 Feb 20;28(8):1816-23 – reference: 22933808 - J Neurosci. 2012 Aug 29;32(35):12268-76 – reference: 22436764 - Trends Cogn Sci. 2012 Apr;16(4):200-6 – reference: 19261866 - J Neurosci. 2009 Mar 4;29(9):2725-32 – reference: 22905825 - J Cogn Neurosci. 2012 Dec;24(12):2321-33 – reference: 28756954 - Curr Biol. 2017 Aug 7;27(15):2344-2351.e4 – reference: 21119777 - Front Hum Neurosci. 2010 Nov 04;4:186 – reference: 19535598 - J Neurosci. 2009 Jun 17;29(24):7869-76 – reference: 13447855 - Electroencephalogr Clin Neurophysiol. 1957 Aug;9(3):497-504 – reference: 19679077 - Neuron. 2009 Aug 13;63(3):386-96 – reference: 28593191 - eNeuro. 2017 Jun 7;4(3):null – reference: 21223864 - Trends Cogn Sci. 1997 May;1(2):56-61 – reference: 28972130 - J Neurosci. 2017 Nov 1;37(44):10636-10644 – reference: 13689987 - Science. 1960 Dec 9;132(3441):1765-6 – reference: 21430168 - J Neurosci. 2011 Mar 23;31(12):4698-708 – reference: 21292539 - Trends Cogn Sci. 2011 Mar;15(3):122-31 – reference: 27567317 - Trends Cogn Sci. 2016 Oct;20(10):723-35 – reference: 26668393 - Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15833-7 – reference: 26526370 - Curr Biol. 2015 Nov 16;25(22):2985-90 – reference: 26542183 - Sci Rep. 2015 Nov 06;5:16290 – reference: 20805482 - Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53 – reference: 24184106 - Curr Biol. 2013 Nov 18;23(22):2273-8 – reference: 14276036 - Electroencephalogr Clin Neurophysiol. 1965 Apr;18:433-40 – reference: 19487191 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887-96 – reference: 25698760 - J Neurosci. 2015 Feb 18;35(7):3256-62 – reference: 19012975 - Trends Neurosci. 2009 Jan;32(1):9-18 – reference: 25010517 - PLoS One. 2014 Jul 10;9(7):e102248 – reference: 24453342 - J Neurosci. 2014 Jan 22;34(4):1554-65 – reference: 25390199 - J Cogn Neurosci. 2015 May;27(5):945-58 – reference: 3696947 - Percept Psychophys. 1987 Dec;42(6):526-34 – reference: 27678482 - Psych J. 2016 Sep;5(3):170-6 – reference: 20359884 - Curr Opin Neurobiol. 2010 Apr;20(2):156-65 – reference: 26924284 - Neuroimage. 2016 Jun;133:53-61 – reference: 19487185 - Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1815-30 – reference: 27291050 - Curr Biol. 2016 Jul 11;26(13):1659-68 – reference: 21389236 - J Neurosci. 2011 Mar 9;31(10):3813-20 – reference: 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 – reference: 12757822 - Trends Cogn Sci. 2003 May;7(5):207-213 |
SSID | ssj0009580 |
Score | 2.5040941 |
Snippet | Incoming sensory input is condensed by our perceptual system to optimally represent and store information. In the temporal domain, this process has been... To reduce the complexity of our sensory environment, the perceptual system discretizes information in different ways. In the time domain, this is evident when... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13435 |
SubjectTerms | Alpha Rhythm Biological Sciences Brain - physiology Channels Cortex Decoding EEG Electroencephalography Excitability Female Humans Integration Interstimulus interval Male Oscillations Perception Reaction Time Sensory perception Social Sciences Stimuli Theta Rhythm Theta rhythms Visual Perception Young Adult |
Title | Multiple oscillatory rhythms determine the temporal organization of perception |
URI | https://www.jstor.org/stable/26485142 https://www.ncbi.nlm.nih.gov/pubmed/29203678 https://www.proquest.com/docview/2024486592 https://www.proquest.com/docview/1973026003 https://pubmed.ncbi.nlm.nih.gov/PMC5754799 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeOEFMWAQGMhIPAxVKSRxvh7HtDGhNZtQJvUtsp1EndYlU5NIsF_PdfyRdBRp8BJVTuK2ucfX58bX5yL00WdlSSiMNFJG3Ca-x-wozonNuc8dBvN91Otsz5Pg9JJ8X_iLyeTnKGupa9mM323dV_I_VoU2sKvYJfsPljWdQgN8BvvCESwMxwfZeK6zAYUiJdizXzBfL3-1y5tmmqtEl6LnlkqCaqXKON0ZpnhrMlvGPPXCzGuNziJI9GvDw2ETivIMzdSeXiRDSeMfdQVhttx33Q25QOdiQ8l6WZcSgtcQVdNmWAv6Wlc3QOVlxvfRinb5lbl1Xqw0uoYsfPWyAiZAx7WVS5T-FeiJHRBZIXRWbGnTTlluLVXoU5q00sc6HpEKJ394f3BXomRxRZuZqOsO1FJ3s6GznZxnJ5dnZ1l6vEgfoccuBBjCpX9bOCO55kjqWKifpkWhQu_zve43-IxMad0WrNzPuR2RmPQZeqqiD3woobSLJkX1HO1qK-IDJUL-6QVKNLbwCFtYYQsbbGFABtbYwmNs4brEA7ZeovTkOD06tVXtDZsDhWxtBmGyHzHOaETzgPMycIKgdKhYhS-h0fWFzFDAo8KjNP6Sl6RwXA5jmwIH9Im3h3aquipeIwwTqM_jmDgOo4RRgKjLgEPyXNS5ZwG10Ew_wIwrXXpRHmWV9fkRoZeJJ54NT9xCB-aGWynJ8vdL93qLmOtEPieECK6F9rWJMjWgm8wFvkoi8Q8t9MGcBncr1tBoVdQd9B3DlCiKOngWeiUtOnQei1X9MLJQuGFrc4GQct88U10te0l3CJpIGMdvHvC9b9GTYWTto5123RXvgBi37H2P4d8FEb3W |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+oscillatory+rhythms+determine+the+temporal+organization+of+perception&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ronconi%2C+Luca&rft.au=Oosterhof%2C+Nikolaas+N&rft.au=Bonmassar%2C+Claudia&rft.au=Melcher%2C+David&rft.date=2017-12-19&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=114&rft.issue=51&rft.spage=13435&rft_id=info:doi/10.1073%2Fpnas.1714522114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |