An Optimal, Power Efficient, Internet of Medical Things Framework for Monitoring of Physiological Data Using Regression Models

The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a u...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 11; p. 3429
Main Authors Mishra, Amitabh, Liberman, Lucas S., Brahamanpally, Nagaraju
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.05.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity.
AbstractList The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity.
The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity.The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity.
Audience Academic
Author Brahamanpally, Nagaraju
Mishra, Amitabh
Liberman, Lucas S.
AuthorAffiliation 1 Department of Cybersecurity and Information Technology, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
2 Department of Computer Science, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
AuthorAffiliation_xml – name: 2 Department of Computer Science, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
– name: 1 Department of Cybersecurity and Information Technology, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA
Author_xml – sequence: 1
  givenname: Amitabh
  orcidid: 0000-0002-6566-6925
  surname: Mishra
  fullname: Mishra, Amitabh
– sequence: 2
  givenname: Lucas S.
  surname: Liberman
  fullname: Liberman, Lucas S.
– sequence: 3
  givenname: Nagaraju
  surname: Brahamanpally
  fullname: Brahamanpally, Nagaraju
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38894222$$D View this record in MEDLINE/PubMed
BookMark eNptkk1P3DAQhqOKqsC2h_6BylIvrcSCv5LYp2pFoV0JBKrgHDm2k_U2sbe2t4hLf3tnWboCVOXgaN5nXs-M57DY88HbonhP8DFjEp8kyglhnMpXxQHhlE8FpXjvyf9-cZjSEmPKGBNvin0mhOSU0oPiz8yjq1V2oxqO0HW4sxGddZ3Tzvp8hOY-2-htRqFDl9Y4rQZ0s3C-T-g8qtHehfgTdSGiy-BdDhGUDXq9uE8uDKF_SPiqskK3aaP9sH20CTQPGcYO6W3xulNDsu8ez0lxe352c_p9enH1bX46u5jqEss8VVZzI41qheyIolqVuKqI0YbRVpacS0I6KURLLTGtEGXFS1KakrWcWwwObFLMt74mqGWzitBvvG-Ccs1DIMS-UTE7PdhGm5YzixUMVnPZMlmRVla0ll3NcAmBSfFl67Vat6M1GiYV1fDM9Lni3aLpw--GEFJzUQpw-PToEMOvtU25GV3SdhiUt2GdGoZrLDDFnAH68QW6DOvoYVZAVTWHKgUH6nhL9Qo6cL4LcLGGz9jRaViWzkF8VstaYkbJxvbD0x52xf9bDAA-bwEdQ0rRdjuE4GazdM1u6YA9ecFql1WGV4Yq3PCfjL_aStdA
CitedBy_id crossref_primary_10_1080_09720510_2018_1471266
Cites_doi 10.1016/j.jacc.2022.11.005
10.1038/s41598-022-26951-z
10.5772/intechopen.99655
10.1016/j.apor.2020.102339
10.1016/B978-0-12-818546-9.00005-1
10.5121/ijasuc.2012.3301
10.1109/ICC.2014.6883350
10.1007/978-0-387-77650-7_34
10.1002/9781119331797
10.1016/S0378-7753(01)00948-X
10.1109/CNSC.2014.6906663
10.2196/20135
10.1007/s10614-020-10054-w
10.3390/su13031213
10.1038/s41598-020-73478-2
10.1088/1757-899X/288/1/012116
10.3390/s21103542
10.1016/j.eswa.2022.119134
10.11591/eei.v11i2.3219
10.1002/9781119544487
10.1186/s12992-023-00947-4
10.1063/1.3679102
10.3389/frai.2023.1124553
10.1038/nature03673
10.1016/B978-0-12-821750-4.00016-5
10.1021/acsenvironau.1c00014
10.1038/s41528-022-00146-y
10.1007/s11277-020-07309-y
10.1002/9781119654834
10.1177/1536867X20909688
10.1007/s00059-021-05090-7
10.1109/JIOT.2021.3068040
10.1109/CCNC.2014.7056324
10.1093/jncimonographs/lgac028
10.1063/5.0152290
10.1371/journal.pone.0195088
10.1055/s-0040-1702004
10.1093/eurjpc/zwac187
10.3390/polym13183064
10.1016/j.iotcps.2023.04.006
10.1016/j.proeng.2011.12.169
10.1161/CIRCRESAHA.120.316340
10.1001/jamanetworkopen.2021.4708
10.1007/978-981-19-4884-8_5
10.1161/01.CIR.98.10.946
10.1016/j.apenergy.2020.114566
10.1038/s41587-019-0045-y
10.1145/3560265
10.1021/ac000215r
10.3390/electronics10060661
10.1007/s00704-019-03048-8
10.1007/978-3-031-04524-0_11
10.1088/2632-2153/ac1ee9
10.3390/en15103787
10.3390/s22062087
10.1177/15501477211067740
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24113429
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cdb43e0a390c49b3961b96279f73059b
PMC11174858
A797903213
38894222
10_3390_s24113429
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-aec4d9dab89f1a2ca50661dcd32b9544911f988b2e1db88564515d53b44e05093
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:09 EDT 2025
Thu Aug 21 18:33:48 EDT 2025
Fri Jul 11 05:55:14 EDT 2025
Fri Jul 25 05:25:47 EDT 2025
Tue Jun 10 21:02:32 EDT 2025
Mon Jul 21 05:49:49 EDT 2025
Tue Jul 01 03:51:00 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords electrocardiogram (ECG/EKG)
arterial pressure (ART)
Internet of Medical Things (IoMT)
regression
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-aec4d9dab89f1a2ca50661dcd32b9544911f988b2e1db88564515d53b44e05093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-6566-6925
OpenAccessLink https://doaj.org/article/cdb43e0a390c49b3961b96279f73059b
PMID 38894222
PQID 3067439084
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_cdb43e0a390c49b3961b96279f73059b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11174858
proquest_miscellaneous_3070802043
proquest_journals_3067439084
gale_infotracacademiconefile_A797903213
pubmed_primary_38894222
crossref_primary_10_3390_s24113429
crossref_citationtrail_10_3390_s24113429
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240526
PublicationDateYYYYMMDD 2024-05-26
PublicationDate_xml – month: 5
  year: 2024
  text: 20240526
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Soori (ref_4) 2023; 3
Crosby (ref_9) 2012; 3
ref_14
ref_58
Kim (ref_11) 2019; 37
ref_13
ref_57
Samim (ref_51) 2023; 48
ref_56
Sahoo (ref_2) 2023; 19
ref_55
ref_54
ref_52
Denisov (ref_31) 2011; 25
Heinzel (ref_32) 2002; 105
Burner (ref_3) 1992; 14
Vaduganathan (ref_18) 2022; 80
ref_61
Inman (ref_30) 2012; 100
Callens (ref_46) 2020; 104
Jumin (ref_60) 2020; 14
ref_67
Kornej (ref_50) 2020; 127
ref_66
ref_21
Dennett (ref_16) 2023; 2023
ref_20
Muttair (ref_43) 2022; 11
ref_26
Baviskar (ref_42) 2014; 2
Jiang (ref_45) 2023; 19
Ashween (ref_29) 2020; 113
Pekel (ref_63) 2020; 139
Shao (ref_35) 2005; 435
Blockeel (ref_62) 2023; 6
Schonlau (ref_64) 2020; 20
ref_34
ref_33
Yoon (ref_47) 2021; 57
Almahmeed (ref_17) 2022; 29
Wang (ref_44) 2021; 8
Mazunga (ref_27) 2021; 11
Kelly (ref_19) 2020; 22
Guillen (ref_65) 2023; 214
Ballerstadt (ref_23) 2000; 72
ref_39
ref_37
Wozniakowski (ref_59) 2021; 2
Dey (ref_24) 2020; 10
Mishra (ref_10) 2015; 10
He (ref_12) 2022; 6
Adam (ref_25) 2018; 14
Puspitaningayu (ref_38) 2018; Volume 288
Ijemaru (ref_28) 2022; 18
ref_40
Ogunduyile (ref_41) 2013; 3
ref_1
Wehrle (ref_36) 2021; 2
Cai (ref_48) 2020; 262
Benjamin (ref_53) 1998; 98
ref_49
ref_8
Hsu (ref_7) 2020; 29
ref_5
Smith (ref_22) 2023; 13
Rahib (ref_15) 2021; 4
ref_6
References_xml – volume: 80
  start-page: 2361
  year: 2022
  ident: ref_18
  article-title: The global burden of cardiovascular diseases and risk: A compass for future health
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2022.11.005
– volume: 13
  start-page: 4998
  year: 2023
  ident: ref_22
  article-title: Reshaping healthcare with wearable biosensors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26951-z
– ident: ref_13
  doi: 10.5772/intechopen.99655
– volume: 104
  start-page: 102339
  year: 2020
  ident: ref_46
  article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102339
– ident: ref_14
  doi: 10.1016/B978-0-12-818546-9.00005-1
– volume: 3
  start-page: 1
  year: 2012
  ident: ref_9
  article-title: Wireless body area networks for healthcare: A survey
  publication-title: Int. J. Ad Hoc Sens. Ubiquitous Comput.
  doi: 10.5121/ijasuc.2012.3301
– ident: ref_56
  doi: 10.1109/ICC.2014.6883350
– ident: ref_39
– ident: ref_57
  doi: 10.1007/978-0-387-77650-7_34
– ident: ref_1
– ident: ref_67
  doi: 10.1002/9781119331797
– volume: 11
  start-page: e00720
  year: 2021
  ident: ref_27
  article-title: Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues
  publication-title: Sci. Afr.
– volume: 105
  start-page: 250
  year: 2002
  ident: ref_32
  article-title: Fuel cells for low power applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00948-X
– ident: ref_40
  doi: 10.1109/CNSC.2014.6906663
– volume: 22
  start-page: e20135
  year: 2020
  ident: ref_19
  article-title: The Internet of Things: Impact and implications for health care delivery
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20135
– volume: 57
  start-page: 247
  year: 2021
  ident: ref_47
  article-title: Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-020-10054-w
– ident: ref_33
  doi: 10.3390/su13031213
– volume: 10
  start-page: 16306
  year: 2020
  ident: ref_24
  article-title: Design of novel super wide band antenna close to the fundamental dimension limit theory
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73478-2
– volume: 14
  start-page: 713
  year: 2020
  ident: ref_60
  article-title: Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: Volume 288
  start-page: 012116
  year: 2018
  ident: ref_38
  article-title: The emerging wireless body area network on android smartphones: A review
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/288/1/012116
– ident: ref_52
  doi: 10.3390/s21103542
– volume: 10
  start-page: 685
  year: 2015
  ident: ref_10
  article-title: Energy Conservation and Lifetime Optimization of Wireless Body Sensor Networks for 24 × 7 Physiological parameters’ Monitoring
  publication-title: J. Commun.
– volume: 214
  start-page: 119134
  year: 2023
  ident: ref_65
  article-title: Gradient tree boosting and the estimation of production frontiers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119134
– volume: 11
  start-page: 893
  year: 2022
  ident: ref_43
  article-title: Wireless body-area network monitoring with ZigBee, 5G and 5G with MIMO for outdoor environments
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v11i2.3219
– ident: ref_61
  doi: 10.1002/9781119544487
– ident: ref_66
– volume: 19
  start-page: 49
  year: 2023
  ident: ref_2
  article-title: Future health expenditure in the BRICS countries: A forecasting analysis for 2035
  publication-title: Glob. Health
  doi: 10.1186/s12992-023-00947-4
– volume: 14
  start-page: 1
  year: 2018
  ident: ref_25
  article-title: Energy-harvesting wireless sensor networks (EH-WSNs) A review
  publication-title: ACM Trans. Sens. Netw. (TOSN)
– volume: 100
  start-page: 042901
  year: 2012
  ident: ref_30
  article-title: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3679102
– volume: 6
  start-page: 1124553
  year: 2023
  ident: ref_62
  article-title: Decision trees: From efficient prediction to responsible AI
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2023.1124553
– volume: 435
  start-page: 795
  year: 2005
  ident: ref_35
  article-title: A thermally self-sustained micro solid-oxide fuel-cell stack with high power density
  publication-title: Nature
  doi: 10.1038/nature03673
– ident: ref_20
  doi: 10.1016/B978-0-12-821750-4.00016-5
– volume: 2
  start-page: 42
  year: 2021
  ident: ref_36
  article-title: Optimizing solid oxide fuel cell performance to re-evaluate its role in the mobility sector
  publication-title: ACS Environ. Au
  doi: 10.1021/acsenvironau.1c00014
– volume: 6
  start-page: 20
  year: 2022
  ident: ref_12
  article-title: Flexible miniaturized sensor technologies for long-term physiological monitoring
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-022-00146-y
– volume: 113
  start-page: 2107
  year: 2020
  ident: ref_29
  article-title: Energy efficient data gathering technique based on optimal mobile sink node selection for improved network life time in wireless sensor network (WSN)
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-020-07309-y
– ident: ref_58
  doi: 10.1002/9781119654834
– volume: 20
  start-page: 3
  year: 2020
  ident: ref_64
  article-title: The random forest algorithm for statistical learning
  publication-title: Stata J.
  doi: 10.1177/1536867X20909688
– volume: 3
  start-page: 632
  year: 2013
  ident: ref_41
  article-title: Healthcare monitoring system using a collection of sensor nodes
  publication-title: Int. J. Emerg. Technol. Adv. Eng. (IJETAE)
– volume: 48
  start-page: 48
  year: 2023
  ident: ref_51
  article-title: Prevalence of atrial fibrillation: The Swiss population-based CoLaus|PsyCoLaus study
  publication-title: Herz
  doi: 10.1007/s00059-021-05090-7
– volume: 8
  start-page: 13640
  year: 2021
  ident: ref_44
  article-title: Energy-efficient data and energy integrated management strategy for iot devices based on rf energy harvesting
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3068040
– ident: ref_55
  doi: 10.1109/CCNC.2014.7056324
– volume: 2023
  start-page: 133
  year: 2023
  ident: ref_16
  article-title: Embedding lifestyle interventions into cancer care: Has telehealth narrowed the equity gap?
  publication-title: JNCI Monogr.
  doi: 10.1093/jncimonographs/lgac028
– ident: ref_21
  doi: 10.1063/5.0152290
– ident: ref_49
  doi: 10.1371/journal.pone.0195088
– volume: 29
  start-page: 139
  year: 2020
  ident: ref_7
  article-title: Notable papers and trends from 2019 in sensors, signals, and imaging informatics
  publication-title: Yearb. Med. Inform.
  doi: 10.1055/s-0040-1702004
– volume: 29
  start-page: 2218
  year: 2022
  ident: ref_17
  article-title: Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation
  publication-title: Eur. J. Prev. Cardiol.
  doi: 10.1093/eurjpc/zwac187
– ident: ref_34
  doi: 10.3390/polym13183064
– volume: 14
  start-page: 1
  year: 1992
  ident: ref_3
  article-title: National health expenditures projections through 2030
  publication-title: Health Care Financ. Rev.
– volume: 3
  start-page: 192
  year: 2023
  ident: ref_4
  article-title: Internet of Things for smart factories in industry 4.0, a review
  publication-title: Internet Things Cyber-Phys. Syst.
  doi: 10.1016/j.iotcps.2023.04.006
– volume: 25
  start-page: 685
  year: 2011
  ident: ref_31
  article-title: Stepwise microactuators powered by ultrasonic transfer
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.12.169
– volume: 127
  start-page: 4
  year: 2020
  ident: ref_50
  article-title: Epidemiology of atrial fibrillation in the 21st century: Novel methods and new insights
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.316340
– volume: 4
  start-page: e214708
  year: 2021
  ident: ref_15
  article-title: Estimated projection of US cancer incidence and death to 2040
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2021.4708
– ident: ref_6
  doi: 10.1007/978-981-19-4884-8_5
– volume: 98
  start-page: 946
  year: 1998
  ident: ref_53
  article-title: Impact of atrial fibrillation on the risk of death: The Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/01.CIR.98.10.946
– ident: ref_54
– volume: 262
  start-page: 114566
  year: 2020
  ident: ref_48
  article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114566
– volume: 37
  start-page: 389
  year: 2019
  ident: ref_11
  article-title: Wearable biosensors for healthcare monitoring
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0045-y
– volume: 19
  start-page: 1
  year: 2023
  ident: ref_45
  article-title: Energy-saving service offloading for the Internet of Medical Things using deep reinforcement learning
  publication-title: ACM Trans. Sens. Netw.
  doi: 10.1145/3560265
– volume: 72
  start-page: 4185
  year: 2000
  ident: ref_23
  article-title: A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring
  publication-title: Anal. Chem.
  doi: 10.1021/ac000215r
– ident: ref_26
  doi: 10.3390/electronics10060661
– volume: 2
  start-page: 66
  year: 2014
  ident: ref_42
  article-title: Android smartphone based body area network for the evaluation of medical parameters in real time
  publication-title: Int. J. Electr. Electron. Data Commun.
– volume: 139
  start-page: 1111
  year: 2020
  ident: ref_63
  article-title: Estimation of soil moisture using decision tree regression
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-019-03048-8
– ident: ref_8
  doi: 10.1007/978-3-031-04524-0_11
– volume: 2
  start-page: 045022
  year: 2021
  ident: ref_59
  article-title: A new formulation of gradient boosting
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ac1ee9
– ident: ref_37
  doi: 10.3390/en15103787
– ident: ref_5
  doi: 10.3390/s22062087
– volume: 18
  start-page: 15501477211067740
  year: 2022
  ident: ref_28
  article-title: Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/15501477211067740
SSID ssj0023338
Score 2.4189596
Snippet The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3429
SubjectTerms Algorithms
Analysis
Architecture
arterial pressure (ART)
Communication
Cost reduction
Electric power production
Electric Power Supplies
electrocardiogram (ECG/EKG)
Geriatrics
Health care expenditures
Humans
Internet
Internet of Medical Things (IoMT)
Internet of Things
Monitoring, Physiologic - methods
Patients
Physiology
Power
regression
Regression Analysis
Sensors
Smartphones
Telemedicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM-0pTIICQ6NmviR2MeldFUh8RCiUm-WHTuAtM0iNr3y25mJk7ArkLhwTSaW4_nGM5OMvwF44QrtEAchjy0iWHplclfVMpdV4FEobWJJ553fva8uLuXbK3W11eqLasISPXBauNMmeCli4TA3b6TxwlSlp4YxpkVsKuNp90WfNyVTY6olMPNKPEICHzzdoJ8qhRziyN_eZyDp_3Mr3vJFu3WSW45neQ_ujhEjW6SZ7sOt2N2HO1s8gg_g56JjH9D2r93qhH2kvmfsfKCGwBFPWProF3u2btn4X4aldp1sOZVmMYxdWbJvGpJEh9rQaWtkb1zv2FBfwD7FL6l4tmPUSW21eQiXy_PPZxf52FghbzA-6HMXGxlMcF6btnScuiKgmw5NENwbJSVugK3R2nNUlNeaCGdKFZTwUkbiixGPYK9bd_EJsKIKQVWijBi6yRi547opUbCteOTa6wxeTQtum5F1nJpfrCxmH6QbO-smg-ez6PdEtfE3odektVmA2LGHC4gZO2LG_gszGbwknVuyYZxM48ajCPhKxIZlF7WpTSF4KTI4mmBhR-PeWMqyMI4rtMzg2XwbzZL-tbgurm9IpqZTzIXEIR4nFM1zFlob-vKWgd7B185L7d7pvn0dqL_RM9VSK33wP5bhEG5zDNGoFoJXR7DX_7iJTzHE6v3xYE2_AM5_I_U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuQASKgVKoEUGIcGhURPbSewT2pauKiQeQlTaW2THTkFaktJNr_x2ZhInuysQ180k62SetsffB_DaJMqgHbjY12jB0mY6NnkhY5k77kWmtE_pvPPHT_n5hfywyBZhwW0V2irHmNgHatdWtEZ-TKUtJs9EyXdXv2JijaLd1UChcRvuEHQZtXQVi_WES-D8a0ATEnjn8QqzVSpkX02uc1AP1f93QN7ISNvdkhvpZ74LD0LdyGaDoh_CLd_swf3ZxjbAHtzbABd8BL9nDfuMAeGnWR6xL0SGxs56vAj8gyM2rAT6jrU1C5s1bODwZPOxX4thQcsGp6dHkmjfMDrGS_bedIb1TQfsq78cOmobRvRqy9VjuJiffTs9jwPbQlxh0dDFxlfSaWes0nVqOFElYO52lRPc6kxKjIq1Vspy1J5VilBo0sxlwkrpCURGPIGdpm38U2BJ7lyWi9RjPSe954arKkXBOueeK6sieDt-_7IKUOTEiLEscUpCqionVUXwahK9GvA3_iV0QkqcBAgyu_-hvb4sgweWlbNS-MTgnZXUVug8tcQ8pGsMcpm2EbwhEyjJsXEwlQnnE_CVCCKrnBW60IngqYjgYLSSMnj8qlzbZwQvp8voq7QBYxrf3pBMQUebE4mP2B-MahqzUErTclwEasvctl5q-0rz43uPB47pqpAqU8_-P67ncJdjRUatDzw_gJ3u-sYfYkXV2Re92_wBkashFg
  priority: 102
  providerName: ProQuest
Title An Optimal, Power Efficient, Internet of Medical Things Framework for Monitoring of Physiological Data Using Regression Models
URI https://www.ncbi.nlm.nih.gov/pubmed/38894222
https://www.proquest.com/docview/3067439084
https://www.proquest.com/docview/3070802043
https://pubmed.ncbi.nlm.nih.gov/PMC11174858
https://doaj.org/article/cdb43e0a390c49b3961b96279f73059b
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_axwUOE98ERmUQEhwWSGwnsQ8IddAyIW1ME5V6i-zYGUhdCm0nwYW_nffypUbswCWqkhc3yfu2n38P4KWJlEE5cKEvUYKlTXRo0kyGMnXci0RpH9N-59Oz9GQmP8-T-Q50PTbbD7i-MbWjflKz1eLNr5-_36PCv6OME1P2t2v0QrFAw7oL-_gzI_08lf1iAheibmhNe7pC9IdRAzA0vHXglmr0_n9t9JaTGhZQbnmk6R04aENJNm54fxd2fHUPbm8BDN6HP-OKfUGjcGUWR-ycGqKxSY0ZgSMesWY20G_YsmTtgg1r-niyaVezxTCoZY3i05BEWheNdjaTfTQbw-rCA3bhL5uq2opRi7XF-gHMppOvH07CtuNCWGDgsAmNL6TTzlily9hwapeA_tsVTnCrEynRMpZaKcuRg1YpQqKJE5cIK6UnIBnxEPaqZeUfA4tS55JUxB5jOuk9N1wVMRKWKfdcWRXA6-6D50ULR05dMRY5piXEm7znTQAvetIfDQbHTUTHxLWegGCz6xPL1WXeamFeOCuFjwzeWUhthU5jS92HdImGLtE2gFfE85zEDR-mMO0eBXwlgsnKx5nOdCR4LAI47MQi74Q2p_QLA7xIyQCe95dRX2kRxlR-eU00GW1vjiQO8aiRov6ZhVKapuQCUAP5GrzU8Er1_VuNCY4uK5MqUU_-44-fwi2OoRnVQPD0EPY2q2v_DEOrjR3BbjbP8Kimn0awfzw5O78Y1dMUo1ql_gLdGSWe
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAiISiPBgoYBIJDoya2k9gHhBba1ZY-QKiV9hbs2ClIS7Z0t0Jc-En8Rmby2IdA3HrdzHqdncc3tsffADw3kTJoBy70JVqwtIkOTZrJUKaOe5Eo7WO673x4lA5O5PthMlyB391dGCqr7GJiHajduKA98m1KbRE8IyXfnH0PqWsUna52LTQas9j3P3_gkm3yem8H9fuC8_7u8btB2HYVCAsEx2lofCGddsYqXcaGU0sAxChXOMGtTqRE7y-1UpbjLK1SxLYSJy4RVkpPZCkCx70CVxF4I_KobDhf4Alc7zXsRQJnuj1BdIyFrLPXOebVrQH-BoAFBFyuzlyAu_4tuNnmqazXGNZtWPHVOtzoLRw7rMPaApnhHfjVq9gHDEDfzGiLfaTma2y35qfAH9hizc6jn7JxydrDIdb0DGX9rj6MYQLNmiBDQ5JoXaDaxWe2Y6aG1UUO7JM_bSp4K0bt3EaTu3ByKXq4B6vVuPIbwKLUuSQVscf8UXrPDVdFjIJlyj1XVgXwqvv_86KlPqcOHKMcl0CkqnymqgCezUTPGr6Pfwm9JSXOBIiiu_5gfH6atx6fF85K4SOD3yyktkKnsaVOR7rEoJpoG8BLMoGcAglOpjDtfQh8JaLkynuZznQkeCwC2OysJG8jzCSf-0MAT2ePMTbQgY-p_PiCZDK6Sh1JHOJ-Y1SzOQulNG3_BaCWzG3ppZafVF-_1PzjCI-ZVIl68P95PYFrg-PDg_xg72j_IVznmA1S2QVPN2F1en7hH2E2N7WPaxdi8PmyffYPsPBdXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISFAQjA-FhhgEAgeFjWxncR-QKjQVRuDMSEm9S3YsbMhlXSsnRAv_GH8ddzlox8C8bbX5uo6vbvfne3z7wCemUgZtAMX-hItWNpEhybNZChTx71IlPYx3Xf-cJDuHsl3o2S0Br-7uzBUVtlhYg3UblLQHnmPUlsMnpGSvbItizgcDF-ffg-pgxSdtHbtNBoT2fc_f-Dybfpqb4C6fs75cOfz292w7TAQFhgoZ6HxhXTaGat0GRtO7QEwXrnCCW51IiUiQamVshxnbJUi5pU4cYmwUnoiThE47iW4nIkkJh_LRovFnsC1X8NkJHDWvSlGyljIOpNdxL-6TcDfwWApGq5Wai6FvuFNuNHmrKzfGNktWPPVBlzvLx1BbMC1JWLD2_CrX7GPCEbfzHibHVIjNrZTc1XgD2yzZhfSz9ikZO1BEWv6h7JhVyvGMJlmDeDQkCRaF6t2WM0GZmZYXfDAPvnjppq3YtTabTy9A0cXooe7sF5NKr8JLEqdS1IRe8wlpffccFXEKFim3HNlVQAvu_8_L1oadOrGMc5xOUSqyueqCuDpXPS04f74l9AbUuJcgOi66w8mZ8d56_154awUPjL4zUJqK3QaW-p6pEsE2ETbAF6QCeQEKjiZwrR3I_CViJ4r72c605HgsQhgq7OSvEWbab7wjQCezB8jTtDhj6n85JxkMrpWHUkc4l5jVPM5C6U0bQUGoFbMbeWlVp9UX09qLnIMlZlUibr__3k9hivorfn7vYP9B3CVY2JIFRg83YL12dm5f4iJ3cw-qj2IwZeLdtk_7o1hkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal%2C+Power+Efficient%2C+Internet+of+Medical+Things+Framework+for+Monitoring+of+Physiological+Data+Using+Regression+Models&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mishra%2C+Amitabh&rft.au=Liberman%2C+Lucas+S&rft.au=Brahamanpally%2C+Nagaraju&rft.date=2024-05-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113429&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon