An Optimal, Power Efficient, Internet of Medical Things Framework for Monitoring of Physiological Data Using Regression Models
The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a u...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 11; p. 3429 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.05.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity. |
---|---|
AbstractList | The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity. The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity.The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for continuous power needs. Additionally, there are mechanisms for better utilization of battery power for network longevity. IoMT networks pose a unique challenge with respect to sensor power replenishment as the sensors could be embedded inside the subject. A possible solution could be to reduce the amount of sensor data transmission and recreate the signal at the receiving end. This article builds upon previous physiological monitoring studies by applying new decision tree-based regression models to calculate the accuracy of reproducing data from two sets of physiological signals transmitted over cellular networks. These regression analyses are then executed over three different iteration varieties to assess the effect that the number of decision trees has on the efficiency of the regression model in question. The results indicate much lower errors as compared to other approaches indicating significant saving on the battery power and improvement in network longevity. |
Audience | Academic |
Author | Brahamanpally, Nagaraju Mishra, Amitabh Liberman, Lucas S. |
AuthorAffiliation | 1 Department of Cybersecurity and Information Technology, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA 2 Department of Computer Science, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA |
AuthorAffiliation_xml | – name: 2 Department of Computer Science, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA – name: 1 Department of Cybersecurity and Information Technology, Hall Marcus College of Science and Engineering, University of West Florida, Pensacola, FL 32514, USA |
Author_xml | – sequence: 1 givenname: Amitabh orcidid: 0000-0002-6566-6925 surname: Mishra fullname: Mishra, Amitabh – sequence: 2 givenname: Lucas S. surname: Liberman fullname: Liberman, Lucas S. – sequence: 3 givenname: Nagaraju surname: Brahamanpally fullname: Brahamanpally, Nagaraju |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38894222$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1P3DAQhqOKqsC2h_6BylIvrcSCv5LYp2pFoV0JBKrgHDm2k_U2sbe2t4hLf3tnWboCVOXgaN5nXs-M57DY88HbonhP8DFjEp8kyglhnMpXxQHhlE8FpXjvyf9-cZjSEmPKGBNvin0mhOSU0oPiz8yjq1V2oxqO0HW4sxGddZ3Tzvp8hOY-2-htRqFDl9Y4rQZ0s3C-T-g8qtHehfgTdSGiy-BdDhGUDXq9uE8uDKF_SPiqskK3aaP9sH20CTQPGcYO6W3xulNDsu8ez0lxe352c_p9enH1bX46u5jqEss8VVZzI41qheyIolqVuKqI0YbRVpacS0I6KURLLTGtEGXFS1KakrWcWwwObFLMt74mqGWzitBvvG-Ccs1DIMS-UTE7PdhGm5YzixUMVnPZMlmRVla0ll3NcAmBSfFl67Vat6M1GiYV1fDM9Lni3aLpw--GEFJzUQpw-PToEMOvtU25GV3SdhiUt2GdGoZrLDDFnAH68QW6DOvoYVZAVTWHKgUH6nhL9Qo6cL4LcLGGz9jRaViWzkF8VstaYkbJxvbD0x52xf9bDAA-bwEdQ0rRdjuE4GazdM1u6YA9ecFql1WGV4Yq3PCfjL_aStdA |
CitedBy_id | crossref_primary_10_1080_09720510_2018_1471266 |
Cites_doi | 10.1016/j.jacc.2022.11.005 10.1038/s41598-022-26951-z 10.5772/intechopen.99655 10.1016/j.apor.2020.102339 10.1016/B978-0-12-818546-9.00005-1 10.5121/ijasuc.2012.3301 10.1109/ICC.2014.6883350 10.1007/978-0-387-77650-7_34 10.1002/9781119331797 10.1016/S0378-7753(01)00948-X 10.1109/CNSC.2014.6906663 10.2196/20135 10.1007/s10614-020-10054-w 10.3390/su13031213 10.1038/s41598-020-73478-2 10.1088/1757-899X/288/1/012116 10.3390/s21103542 10.1016/j.eswa.2022.119134 10.11591/eei.v11i2.3219 10.1002/9781119544487 10.1186/s12992-023-00947-4 10.1063/1.3679102 10.3389/frai.2023.1124553 10.1038/nature03673 10.1016/B978-0-12-821750-4.00016-5 10.1021/acsenvironau.1c00014 10.1038/s41528-022-00146-y 10.1007/s11277-020-07309-y 10.1002/9781119654834 10.1177/1536867X20909688 10.1007/s00059-021-05090-7 10.1109/JIOT.2021.3068040 10.1109/CCNC.2014.7056324 10.1093/jncimonographs/lgac028 10.1063/5.0152290 10.1371/journal.pone.0195088 10.1055/s-0040-1702004 10.1093/eurjpc/zwac187 10.3390/polym13183064 10.1016/j.iotcps.2023.04.006 10.1016/j.proeng.2011.12.169 10.1161/CIRCRESAHA.120.316340 10.1001/jamanetworkopen.2021.4708 10.1007/978-981-19-4884-8_5 10.1161/01.CIR.98.10.946 10.1016/j.apenergy.2020.114566 10.1038/s41587-019-0045-y 10.1145/3560265 10.1021/ac000215r 10.3390/electronics10060661 10.1007/s00704-019-03048-8 10.1007/978-3-031-04524-0_11 10.1088/2632-2153/ac1ee9 10.3390/en15103787 10.3390/s22062087 10.1177/15501477211067740 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s24113429 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_cdb43e0a390c49b3961b96279f73059b PMC11174858 A797903213 38894222 10_3390_s24113429 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-aec4d9dab89f1a2ca50661dcd32b9544911f988b2e1db88564515d53b44e05093 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:09 EDT 2025 Thu Aug 21 18:33:48 EDT 2025 Fri Jul 11 05:55:14 EDT 2025 Fri Jul 25 05:25:47 EDT 2025 Tue Jun 10 21:02:32 EDT 2025 Mon Jul 21 05:49:49 EDT 2025 Tue Jul 01 03:51:00 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | electrocardiogram (ECG/EKG) arterial pressure (ART) Internet of Medical Things (IoMT) regression |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-aec4d9dab89f1a2ca50661dcd32b9544911f988b2e1db88564515d53b44e05093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-6566-6925 |
OpenAccessLink | https://doaj.org/article/cdb43e0a390c49b3961b96279f73059b |
PMID | 38894222 |
PQID | 3067439084 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cdb43e0a390c49b3961b96279f73059b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11174858 proquest_miscellaneous_3070802043 proquest_journals_3067439084 gale_infotracacademiconefile_A797903213 pubmed_primary_38894222 crossref_primary_10_3390_s24113429 crossref_citationtrail_10_3390_s24113429 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240526 |
PublicationDateYYYYMMDD | 2024-05-26 |
PublicationDate_xml | – month: 5 year: 2024 text: 20240526 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Soori (ref_4) 2023; 3 Crosby (ref_9) 2012; 3 ref_14 ref_58 Kim (ref_11) 2019; 37 ref_13 ref_57 Samim (ref_51) 2023; 48 ref_56 Sahoo (ref_2) 2023; 19 ref_55 ref_54 ref_52 Denisov (ref_31) 2011; 25 Heinzel (ref_32) 2002; 105 Burner (ref_3) 1992; 14 Vaduganathan (ref_18) 2022; 80 ref_61 Inman (ref_30) 2012; 100 Callens (ref_46) 2020; 104 Jumin (ref_60) 2020; 14 ref_67 Kornej (ref_50) 2020; 127 ref_66 ref_21 Dennett (ref_16) 2023; 2023 ref_20 Muttair (ref_43) 2022; 11 ref_26 Baviskar (ref_42) 2014; 2 Jiang (ref_45) 2023; 19 Ashween (ref_29) 2020; 113 Pekel (ref_63) 2020; 139 Shao (ref_35) 2005; 435 Blockeel (ref_62) 2023; 6 Schonlau (ref_64) 2020; 20 ref_34 ref_33 Yoon (ref_47) 2021; 57 Almahmeed (ref_17) 2022; 29 Wang (ref_44) 2021; 8 Mazunga (ref_27) 2021; 11 Kelly (ref_19) 2020; 22 Guillen (ref_65) 2023; 214 Ballerstadt (ref_23) 2000; 72 ref_39 ref_37 Wozniakowski (ref_59) 2021; 2 Dey (ref_24) 2020; 10 Mishra (ref_10) 2015; 10 He (ref_12) 2022; 6 Adam (ref_25) 2018; 14 Puspitaningayu (ref_38) 2018; Volume 288 Ijemaru (ref_28) 2022; 18 ref_40 Ogunduyile (ref_41) 2013; 3 ref_1 Wehrle (ref_36) 2021; 2 Cai (ref_48) 2020; 262 Benjamin (ref_53) 1998; 98 ref_49 ref_8 Hsu (ref_7) 2020; 29 ref_5 Smith (ref_22) 2023; 13 Rahib (ref_15) 2021; 4 ref_6 |
References_xml | – volume: 80 start-page: 2361 year: 2022 ident: ref_18 article-title: The global burden of cardiovascular diseases and risk: A compass for future health publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.11.005 – volume: 13 start-page: 4998 year: 2023 ident: ref_22 article-title: Reshaping healthcare with wearable biosensors publication-title: Sci. Rep. doi: 10.1038/s41598-022-26951-z – ident: ref_13 doi: 10.5772/intechopen.99655 – volume: 104 start-page: 102339 year: 2020 ident: ref_46 article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102339 – ident: ref_14 doi: 10.1016/B978-0-12-818546-9.00005-1 – volume: 3 start-page: 1 year: 2012 ident: ref_9 article-title: Wireless body area networks for healthcare: A survey publication-title: Int. J. Ad Hoc Sens. Ubiquitous Comput. doi: 10.5121/ijasuc.2012.3301 – ident: ref_56 doi: 10.1109/ICC.2014.6883350 – ident: ref_39 – ident: ref_57 doi: 10.1007/978-0-387-77650-7_34 – ident: ref_1 – ident: ref_67 doi: 10.1002/9781119331797 – volume: 11 start-page: e00720 year: 2021 ident: ref_27 article-title: Ultra-low power techniques in energy harvesting wireless sensor networks: Recent advances and issues publication-title: Sci. Afr. – volume: 105 start-page: 250 year: 2002 ident: ref_32 article-title: Fuel cells for low power applications publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00948-X – ident: ref_40 doi: 10.1109/CNSC.2014.6906663 – volume: 22 start-page: e20135 year: 2020 ident: ref_19 article-title: The Internet of Things: Impact and implications for health care delivery publication-title: J. Med. Internet Res. doi: 10.2196/20135 – volume: 57 start-page: 247 year: 2021 ident: ref_47 article-title: Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach publication-title: Comput. Econ. doi: 10.1007/s10614-020-10054-w – ident: ref_33 doi: 10.3390/su13031213 – volume: 10 start-page: 16306 year: 2020 ident: ref_24 article-title: Design of novel super wide band antenna close to the fundamental dimension limit theory publication-title: Sci. Rep. doi: 10.1038/s41598-020-73478-2 – volume: 14 start-page: 713 year: 2020 ident: ref_60 article-title: Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction publication-title: Eng. Appl. Comput. Fluid Mech. – volume: Volume 288 start-page: 012116 year: 2018 ident: ref_38 article-title: The emerging wireless body area network on android smartphones: A review publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/288/1/012116 – ident: ref_52 doi: 10.3390/s21103542 – volume: 10 start-page: 685 year: 2015 ident: ref_10 article-title: Energy Conservation and Lifetime Optimization of Wireless Body Sensor Networks for 24 × 7 Physiological parameters’ Monitoring publication-title: J. Commun. – volume: 214 start-page: 119134 year: 2023 ident: ref_65 article-title: Gradient tree boosting and the estimation of production frontiers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119134 – volume: 11 start-page: 893 year: 2022 ident: ref_43 article-title: Wireless body-area network monitoring with ZigBee, 5G and 5G with MIMO for outdoor environments publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v11i2.3219 – ident: ref_61 doi: 10.1002/9781119544487 – ident: ref_66 – volume: 19 start-page: 49 year: 2023 ident: ref_2 article-title: Future health expenditure in the BRICS countries: A forecasting analysis for 2035 publication-title: Glob. Health doi: 10.1186/s12992-023-00947-4 – volume: 14 start-page: 1 year: 2018 ident: ref_25 article-title: Energy-harvesting wireless sensor networks (EH-WSNs) A review publication-title: ACM Trans. Sens. Netw. (TOSN) – volume: 100 start-page: 042901 year: 2012 ident: ref_30 article-title: Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters publication-title: Appl. Phys. Lett. doi: 10.1063/1.3679102 – volume: 6 start-page: 1124553 year: 2023 ident: ref_62 article-title: Decision trees: From efficient prediction to responsible AI publication-title: Front. Artif. Intell. doi: 10.3389/frai.2023.1124553 – volume: 435 start-page: 795 year: 2005 ident: ref_35 article-title: A thermally self-sustained micro solid-oxide fuel-cell stack with high power density publication-title: Nature doi: 10.1038/nature03673 – ident: ref_20 doi: 10.1016/B978-0-12-821750-4.00016-5 – volume: 2 start-page: 42 year: 2021 ident: ref_36 article-title: Optimizing solid oxide fuel cell performance to re-evaluate its role in the mobility sector publication-title: ACS Environ. Au doi: 10.1021/acsenvironau.1c00014 – volume: 6 start-page: 20 year: 2022 ident: ref_12 article-title: Flexible miniaturized sensor technologies for long-term physiological monitoring publication-title: npj Flex. Electron. doi: 10.1038/s41528-022-00146-y – volume: 113 start-page: 2107 year: 2020 ident: ref_29 article-title: Energy efficient data gathering technique based on optimal mobile sink node selection for improved network life time in wireless sensor network (WSN) publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-020-07309-y – ident: ref_58 doi: 10.1002/9781119654834 – volume: 20 start-page: 3 year: 2020 ident: ref_64 article-title: The random forest algorithm for statistical learning publication-title: Stata J. doi: 10.1177/1536867X20909688 – volume: 3 start-page: 632 year: 2013 ident: ref_41 article-title: Healthcare monitoring system using a collection of sensor nodes publication-title: Int. J. Emerg. Technol. Adv. Eng. (IJETAE) – volume: 48 start-page: 48 year: 2023 ident: ref_51 article-title: Prevalence of atrial fibrillation: The Swiss population-based CoLaus|PsyCoLaus study publication-title: Herz doi: 10.1007/s00059-021-05090-7 – volume: 8 start-page: 13640 year: 2021 ident: ref_44 article-title: Energy-efficient data and energy integrated management strategy for iot devices based on rf energy harvesting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3068040 – ident: ref_55 doi: 10.1109/CCNC.2014.7056324 – volume: 2023 start-page: 133 year: 2023 ident: ref_16 article-title: Embedding lifestyle interventions into cancer care: Has telehealth narrowed the equity gap? publication-title: JNCI Monogr. doi: 10.1093/jncimonographs/lgac028 – ident: ref_21 doi: 10.1063/5.0152290 – ident: ref_49 doi: 10.1371/journal.pone.0195088 – volume: 29 start-page: 139 year: 2020 ident: ref_7 article-title: Notable papers and trends from 2019 in sensors, signals, and imaging informatics publication-title: Yearb. Med. Inform. doi: 10.1055/s-0040-1702004 – volume: 29 start-page: 2218 year: 2022 ident: ref_17 article-title: Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation publication-title: Eur. J. Prev. Cardiol. doi: 10.1093/eurjpc/zwac187 – ident: ref_34 doi: 10.3390/polym13183064 – volume: 14 start-page: 1 year: 1992 ident: ref_3 article-title: National health expenditures projections through 2030 publication-title: Health Care Financ. Rev. – volume: 3 start-page: 192 year: 2023 ident: ref_4 article-title: Internet of Things for smart factories in industry 4.0, a review publication-title: Internet Things Cyber-Phys. Syst. doi: 10.1016/j.iotcps.2023.04.006 – volume: 25 start-page: 685 year: 2011 ident: ref_31 article-title: Stepwise microactuators powered by ultrasonic transfer publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.12.169 – volume: 127 start-page: 4 year: 2020 ident: ref_50 article-title: Epidemiology of atrial fibrillation in the 21st century: Novel methods and new insights publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.120.316340 – volume: 4 start-page: e214708 year: 2021 ident: ref_15 article-title: Estimated projection of US cancer incidence and death to 2040 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.4708 – ident: ref_6 doi: 10.1007/978-981-19-4884-8_5 – volume: 98 start-page: 946 year: 1998 ident: ref_53 article-title: Impact of atrial fibrillation on the risk of death: The Framingham Heart Study publication-title: Circulation doi: 10.1161/01.CIR.98.10.946 – ident: ref_54 – volume: 262 start-page: 114566 year: 2020 ident: ref_48 article-title: Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114566 – volume: 37 start-page: 389 year: 2019 ident: ref_11 article-title: Wearable biosensors for healthcare monitoring publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0045-y – volume: 19 start-page: 1 year: 2023 ident: ref_45 article-title: Energy-saving service offloading for the Internet of Medical Things using deep reinforcement learning publication-title: ACM Trans. Sens. Netw. doi: 10.1145/3560265 – volume: 72 start-page: 4185 year: 2000 ident: ref_23 article-title: A fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring publication-title: Anal. Chem. doi: 10.1021/ac000215r – ident: ref_26 doi: 10.3390/electronics10060661 – volume: 2 start-page: 66 year: 2014 ident: ref_42 article-title: Android smartphone based body area network for the evaluation of medical parameters in real time publication-title: Int. J. Electr. Electron. Data Commun. – volume: 139 start-page: 1111 year: 2020 ident: ref_63 article-title: Estimation of soil moisture using decision tree regression publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-019-03048-8 – ident: ref_8 doi: 10.1007/978-3-031-04524-0_11 – volume: 2 start-page: 045022 year: 2021 ident: ref_59 article-title: A new formulation of gradient boosting publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/ac1ee9 – ident: ref_37 doi: 10.3390/en15103787 – ident: ref_5 doi: 10.3390/s22062087 – volume: 18 start-page: 15501477211067740 year: 2022 ident: ref_28 article-title: Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/15501477211067740 |
SSID | ssj0023338 |
Score | 2.4189596 |
Snippet | The sensors used in the Internet of Medical Things (IoMT) network run on batteries and need to be replaced, replenished or should use energy harvesting for... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3429 |
SubjectTerms | Algorithms Analysis Architecture arterial pressure (ART) Communication Cost reduction Electric power production Electric Power Supplies electrocardiogram (ECG/EKG) Geriatrics Health care expenditures Humans Internet Internet of Medical Things (IoMT) Internet of Things Monitoring, Physiologic - methods Patients Physiology Power regression Regression Analysis Sensors Smartphones Telemedicine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM-0pTIICQ6NmviR2MeldFUh8RCiUm-WHTuAtM0iNr3y25mJk7ArkLhwTSaW4_nGM5OMvwF44QrtEAchjy0iWHplclfVMpdV4FEobWJJ553fva8uLuXbK3W11eqLasISPXBauNMmeCli4TA3b6TxwlSlp4YxpkVsKuNp90WfNyVTY6olMPNKPEICHzzdoJ8qhRziyN_eZyDp_3Mr3vJFu3WSW45neQ_ujhEjW6SZ7sOt2N2HO1s8gg_g56JjH9D2r93qhH2kvmfsfKCGwBFPWProF3u2btn4X4aldp1sOZVmMYxdWbJvGpJEh9rQaWtkb1zv2FBfwD7FL6l4tmPUSW21eQiXy_PPZxf52FghbzA-6HMXGxlMcF6btnScuiKgmw5NENwbJSVugK3R2nNUlNeaCGdKFZTwUkbiixGPYK9bd_EJsKIKQVWijBi6yRi547opUbCteOTa6wxeTQtum5F1nJpfrCxmH6QbO-smg-ez6PdEtfE3odektVmA2LGHC4gZO2LG_gszGbwknVuyYZxM48ajCPhKxIZlF7WpTSF4KTI4mmBhR-PeWMqyMI4rtMzg2XwbzZL-tbgurm9IpqZTzIXEIR4nFM1zFlob-vKWgd7B185L7d7pvn0dqL_RM9VSK33wP5bhEG5zDNGoFoJXR7DX_7iJTzHE6v3xYE2_AM5_I_U priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuQASKgVKoEUGIcGhURPbSewT2pauKiQeQlTaW2THTkFaktJNr_x2ZhInuysQ180k62SetsffB_DaJMqgHbjY12jB0mY6NnkhY5k77kWmtE_pvPPHT_n5hfywyBZhwW0V2irHmNgHatdWtEZ-TKUtJs9EyXdXv2JijaLd1UChcRvuEHQZtXQVi_WES-D8a0ATEnjn8QqzVSpkX02uc1AP1f93QN7ISNvdkhvpZ74LD0LdyGaDoh_CLd_swf3ZxjbAHtzbABd8BL9nDfuMAeGnWR6xL0SGxs56vAj8gyM2rAT6jrU1C5s1bODwZPOxX4thQcsGp6dHkmjfMDrGS_bedIb1TQfsq78cOmobRvRqy9VjuJiffTs9jwPbQlxh0dDFxlfSaWes0nVqOFElYO52lRPc6kxKjIq1Vspy1J5VilBo0sxlwkrpCURGPIGdpm38U2BJ7lyWi9RjPSe954arKkXBOueeK6sieDt-_7IKUOTEiLEscUpCqionVUXwahK9GvA3_iV0QkqcBAgyu_-hvb4sgweWlbNS-MTgnZXUVug8tcQ8pGsMcpm2EbwhEyjJsXEwlQnnE_CVCCKrnBW60IngqYjgYLSSMnj8qlzbZwQvp8voq7QBYxrf3pBMQUebE4mP2B-MahqzUErTclwEasvctl5q-0rz43uPB47pqpAqU8_-P67ncJdjRUatDzw_gJ3u-sYfYkXV2Re92_wBkashFg priority: 102 providerName: ProQuest |
Title | An Optimal, Power Efficient, Internet of Medical Things Framework for Monitoring of Physiological Data Using Regression Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38894222 https://www.proquest.com/docview/3067439084 https://www.proquest.com/docview/3070802043 https://pubmed.ncbi.nlm.nih.gov/PMC11174858 https://doaj.org/article/cdb43e0a390c49b3961b96279f73059b |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_axwUOE98ERmUQEhwWSGwnsQ8IddAyIW1ME5V6i-zYGUhdCm0nwYW_nffypUbswCWqkhc3yfu2n38P4KWJlEE5cKEvUYKlTXRo0kyGMnXci0RpH9N-59Oz9GQmP8-T-Q50PTbbD7i-MbWjflKz1eLNr5-_36PCv6OME1P2t2v0QrFAw7oL-_gzI_08lf1iAheibmhNe7pC9IdRAzA0vHXglmr0_n9t9JaTGhZQbnmk6R04aENJNm54fxd2fHUPbm8BDN6HP-OKfUGjcGUWR-ycGqKxSY0ZgSMesWY20G_YsmTtgg1r-niyaVezxTCoZY3i05BEWheNdjaTfTQbw-rCA3bhL5uq2opRi7XF-gHMppOvH07CtuNCWGDgsAmNL6TTzlily9hwapeA_tsVTnCrEynRMpZaKcuRg1YpQqKJE5cIK6UnIBnxEPaqZeUfA4tS55JUxB5jOuk9N1wVMRKWKfdcWRXA6-6D50ULR05dMRY5piXEm7znTQAvetIfDQbHTUTHxLWegGCz6xPL1WXeamFeOCuFjwzeWUhthU5jS92HdImGLtE2gFfE85zEDR-mMO0eBXwlgsnKx5nOdCR4LAI47MQi74Q2p_QLA7xIyQCe95dRX2kRxlR-eU00GW1vjiQO8aiRov6ZhVKapuQCUAP5GrzU8Er1_VuNCY4uK5MqUU_-44-fwi2OoRnVQPD0EPY2q2v_DEOrjR3BbjbP8Kimn0awfzw5O78Y1dMUo1ql_gLdGSWe |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAiISiPBgoYBIJDoya2k9gHhBba1ZY-QKiV9hbs2ClIS7Z0t0Jc-En8Rmby2IdA3HrdzHqdncc3tsffADw3kTJoBy70JVqwtIkOTZrJUKaOe5Eo7WO673x4lA5O5PthMlyB391dGCqr7GJiHajduKA98m1KbRE8IyXfnH0PqWsUna52LTQas9j3P3_gkm3yem8H9fuC8_7u8btB2HYVCAsEx2lofCGddsYqXcaGU0sAxChXOMGtTqRE7y-1UpbjLK1SxLYSJy4RVkpPZCkCx70CVxF4I_KobDhf4Alc7zXsRQJnuj1BdIyFrLPXOebVrQH-BoAFBFyuzlyAu_4tuNnmqazXGNZtWPHVOtzoLRw7rMPaApnhHfjVq9gHDEDfzGiLfaTma2y35qfAH9hizc6jn7JxydrDIdb0DGX9rj6MYQLNmiBDQ5JoXaDaxWe2Y6aG1UUO7JM_bSp4K0bt3EaTu3ByKXq4B6vVuPIbwKLUuSQVscf8UXrPDVdFjIJlyj1XVgXwqvv_86KlPqcOHKMcl0CkqnymqgCezUTPGr6Pfwm9JSXOBIiiu_5gfH6atx6fF85K4SOD3yyktkKnsaVOR7rEoJpoG8BLMoGcAglOpjDtfQh8JaLkynuZznQkeCwC2OysJG8jzCSf-0MAT2ePMTbQgY-p_PiCZDK6Sh1JHOJ-Y1SzOQulNG3_BaCWzG3ppZafVF-_1PzjCI-ZVIl68P95PYFrg-PDg_xg72j_IVznmA1S2QVPN2F1en7hH2E2N7WPaxdi8PmyffYPsPBdXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISFAQjA-FhhgEAgeFjWxncR-QKjQVRuDMSEm9S3YsbMhlXSsnRAv_GH8ddzlox8C8bbX5uo6vbvfne3z7wCemUgZtAMX-hItWNpEhybNZChTx71IlPYx3Xf-cJDuHsl3o2S0Br-7uzBUVtlhYg3UblLQHnmPUlsMnpGSvbItizgcDF-ffg-pgxSdtHbtNBoT2fc_f-Dybfpqb4C6fs75cOfz292w7TAQFhgoZ6HxhXTaGat0GRtO7QEwXrnCCW51IiUiQamVshxnbJUi5pU4cYmwUnoiThE47iW4nIkkJh_LRovFnsC1X8NkJHDWvSlGyljIOpNdxL-6TcDfwWApGq5Wai6FvuFNuNHmrKzfGNktWPPVBlzvLx1BbMC1JWLD2_CrX7GPCEbfzHibHVIjNrZTc1XgD2yzZhfSz9ikZO1BEWv6h7JhVyvGMJlmDeDQkCRaF6t2WM0GZmZYXfDAPvnjppq3YtTabTy9A0cXooe7sF5NKr8JLEqdS1IRe8wlpffccFXEKFim3HNlVQAvu_8_L1oadOrGMc5xOUSqyueqCuDpXPS04f74l9AbUuJcgOi66w8mZ8d56_154awUPjL4zUJqK3QaW-p6pEsE2ETbAF6QCeQEKjiZwrR3I_CViJ4r72c605HgsQhgq7OSvEWbab7wjQCezB8jTtDhj6n85JxkMrpWHUkc4l5jVPM5C6U0bQUGoFbMbeWlVp9UX09qLnIMlZlUibr__3k9hivorfn7vYP9B3CVY2JIFRg83YL12dm5f4iJ3cw-qj2IwZeLdtk_7o1hkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal%2C+Power+Efficient%2C+Internet+of+Medical+Things+Framework+for+Monitoring+of+Physiological+Data+Using+Regression+Models&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mishra%2C+Amitabh&rft.au=Liberman%2C+Lucas+S&rft.au=Brahamanpally%2C+Nagaraju&rft.date=2024-05-26&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=11&rft_id=info:doi/10.3390%2Fs24113429&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |