A Modular AI-Driven Intrusion Detection System for Network Traffic Monitoring in Industry 4.0, Using Nvidia Morpheus and Generative Adversarial Networks

Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusio...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 1; p. 130
Main Authors Chiriac, Beatrice-Nicoleta, Anton, Florin-Daniel, Ioniță, Anca-Daniela, Vasilică, Bogdan-Valentin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s25010130

Cover

Abstract Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets.
AbstractList Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets.
Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets.Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets.
Audience Academic
Author Vasilică, Bogdan-Valentin
Anton, Florin-Daniel
Chiriac, Beatrice-Nicoleta
Ioniță, Anca-Daniela
AuthorAffiliation Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Sciences, National University of Science and Technology Polithenica Bucharest, 313 Spl. Independenței, RO060042 Bucharest, Romania; anca.ionita@upb.ro (A.-D.I.); bogdan.vasilica@upb.ro (B.-V.V.)
AuthorAffiliation_xml – name: Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Sciences, National University of Science and Technology Polithenica Bucharest, 313 Spl. Independenței, RO060042 Bucharest, Romania; anca.ionita@upb.ro (A.-D.I.); bogdan.vasilica@upb.ro (B.-V.V.)
Author_xml – sequence: 1
  givenname: Beatrice-Nicoleta
  surname: Chiriac
  fullname: Chiriac, Beatrice-Nicoleta
– sequence: 2
  givenname: Florin-Daniel
  surname: Anton
  fullname: Anton, Florin-Daniel
– sequence: 3
  givenname: Anca-Daniela
  orcidid: 0000-0002-8966-6196
  surname: Ioniță
  fullname: Ioniță, Anca-Daniela
– sequence: 4
  givenname: Bogdan-Valentin
  surname: Vasilică
  fullname: Vasilică, Bogdan-Valentin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39796921$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiF5gwQsgS2xAIqlvMxmvUNRCiVTKgnY9OmOfSR0mdmp7gvImPC4OaaO2Ql7YOv7Ofy76j4sD5x0WxVtGx0Ioehp5SRllgr4ojpjkclRzTg8evQ-L4xgXlHIhRP2qOBRqoirF2VHxZ0q-ezP0EMh0NjoPdo2OzFwKQ7TekXNMqNP29XMTEy5J5wO5wvTbh1_kOkDXWZ0FnE0-WDcndptshpjChsgx_URu4jZ8tbbGQgbD6haHSMAZcoEOA6RckEzNGkOEYKF_EI-vi5cd9BHf3N8nxc3XL9dn30aXPy5mZ9PLkS6pSiNQolZKlgJM2UqgtWQToKZVvOK15qxlTCroOAMhUdUKW4ZSG6oMrUtaGXFSzHa6xsOiWQW7hLBpPNjmX8CHeQMhWd1jU-btUSU4GEBZY6taBrVpjW47UZUIWevzTms1tEs0GvMeoX8i-vTH2dtm7tcNYxMuJJ1khQ_3CsHfDRhTs7RRY9-DQz_ERrBSSlpWjGb0_TN04Yfg8q62lKhqVZV1psY7ag55Aus6nwvrfAwurc426myOT2suSiayX3LCu8cz7Jt_sEwGPu4AHXyMAbs9wmiztWOzt2NmT5-x2ibY-il3Yfv_ZPwFUtjhKg
CitedBy_id crossref_primary_10_1016_j_jisa_2025_104013
Cites_doi 10.1016/j.comcom.2022.06.015
10.1145/3339474
10.1016/j.comcom.2022.10.001
10.1109/ACCESS.2021.3056650
10.1016/j.comcom.2021.08.026
10.1016/j.patcog.2022.108912
10.1016/j.ijleo.2022.170417
10.3390/computers12020034
10.3390/en15176276
10.3390/s23249869
10.1109/YEF-ECE.2019.8740818
10.1007/s11590-023-02007-7
10.1016/j.cose.2021.102367
10.3390/s23125644
10.1109/COMST.2017.2782482
10.32604/csse.2023.030635
10.1016/j.future.2010.12.017
10.1016/j.ins.2023.119000
10.1145/2939672.2939785
10.1007/s11571-022-09780-8
10.1007/s10462-020-09942-2
10.1016/j.micpro.2022.104752
10.3390/electronics9020219
10.1109/JIOT.2018.2869847
10.1016/j.future.2022.03.001
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s25010130
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_53330932adae48eb9b1a8dbdcbf365ea
PMC11723407
A823513142
39796921
10_3390_s25010130
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c509t-a93899453ad5b4a08417a0db92628c21b1149af21a34e989eb1e4cd09d08506d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:06:46 EDT 2025
Thu Aug 21 18:28:38 EDT 2025
Fri Sep 05 10:15:47 EDT 2025
Fri Jul 25 22:46:15 EDT 2025
Tue Jun 10 20:57:18 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Tue Jul 01 02:10:08 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Internet of Things (IoT)
neural networks
event monitoring
Industry 4.0
networking
intrusion detection and protection system
artificial intelligence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-a93899453ad5b4a08417a0db92628c21b1149af21a34e989eb1e4cd09d08506d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8966-6196
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25010130
PMID 39796921
PQID 3153689658
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_53330932adae48eb9b1a8dbdcbf365ea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11723407
proquest_miscellaneous_3154405610
proquest_journals_3153689658
gale_infotracacademiconefile_A823513142
pubmed_primary_39796921
crossref_primary_10_3390_s25010130
crossref_citationtrail_10_3390_s25010130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jasim (ref_16) 2023; 273
Tabassum (ref_19) 2022; 192
Kilincer (ref_15) 2023; 96
Ramana (ref_22) 2022; 196
ref_13
Chiriac (ref_29) 2023; 85
ref_12
ref_11
Martins (ref_10) 2022; 133
ref_32
ref_31
ref_30
Tomar (ref_5) 2023; 45
Rao (ref_14) 2021; 180
ref_17
Idrees (ref_1) 2022; 132
Alohali (ref_7) 2022; 16
Mullet (ref_4) 2021; 9
Herrero (ref_20) 2013; 29
ref_25
ref_24
(ref_21) 2023; 18
Kehk (ref_23) 2023; 639
Lu (ref_9) 2018; 6
Yang (ref_26) 2019; 10
Bannour (ref_2) 2017; 20
Gama (ref_6) 2021; 54
ref_3
ref_28
Duy (ref_18) 2021; 109
ref_27
ref_8
Chale (ref_33) 2023; 18
References_xml – volume: 192
  start-page: 299
  year: 2022
  ident: ref_19
  article-title: Fedgan-ids: Privacy-preserving ids using gan and federated learning
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.06.015
– ident: ref_30
– ident: ref_32
– ident: ref_3
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_26
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
  doi: 10.1145/3339474
– volume: 196
  start-page: 195
  year: 2022
  ident: ref_22
  article-title: WOGRU-IDS—An intelligent intrusion detection system for IoT assisted Wireless Sensor Networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.10.001
– volume: 9
  start-page: 23235
  year: 2021
  ident: ref_4
  article-title: A review of cybersecurity guidelines for manufacturing factories in industry 4.0
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056650
– volume: 180
  start-page: 77
  year: 2021
  ident: ref_14
  article-title: A hybrid intrusion detection system based on sparse autoencoder and deep neural network
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.08.026
– volume: 132
  start-page: 108912
  year: 2022
  ident: ref_1
  article-title: Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108912
– volume: 273
  start-page: 170417
  year: 2023
  ident: ref_16
  article-title: New automatic (IDS) in IoTs with artificial intelligence technique
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.170417
– ident: ref_13
  doi: 10.3390/computers12020034
– volume: 85
  start-page: 77
  year: 2023
  ident: ref_29
  article-title: A Hybrid IDS Architecture
  publication-title: Univ. Politeh. Buchar. Sci. Bull. C-Electr. Eng. Comput. Sci.
– ident: ref_11
  doi: 10.3390/en15176276
– ident: ref_12
  doi: 10.3390/s23249869
– ident: ref_17
  doi: 10.1109/YEF-ECE.2019.8740818
– volume: 18
  start-page: 2169
  year: 2023
  ident: ref_33
  article-title: Constrained optimization based adversarial example generation for transfer attacks in network intrusion detection systems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-023-02007-7
– volume: 109
  start-page: 102367
  year: 2021
  ident: ref_18
  article-title: DIGFuPAS: Deceive IDS with GAN and function-preserving on adversarial samples in SDN-enabled networks
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102367
– ident: ref_24
  doi: 10.3390/s23125644
– volume: 20
  start-page: 333
  year: 2017
  ident: ref_2
  article-title: Distributed SDN control: Survey, taxonomy, and challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2782482
– volume: 45
  start-page: 1495
  year: 2023
  ident: ref_5
  article-title: Real Time Automation and Ratio Control Using PLC & SCADA in Industry 4.0
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.030635
– ident: ref_8
– volume: 29
  start-page: 250
  year: 2013
  ident: ref_20
  article-title: RT-MOVICAB-IDS: Addressing real-time intrusion detection
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2010.12.017
– ident: ref_25
– ident: ref_31
– volume: 639
  start-page: 119000
  year: 2023
  ident: ref_23
  article-title: An explainable deep learning-enabled intrusion detection framework in IoT networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119000
– ident: ref_27
  doi: 10.1145/2939672.2939785
– volume: 16
  start-page: 1045
  year: 2022
  ident: ref_7
  article-title: Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-022-09780-8
– volume: 54
  start-page: 3849
  year: 2021
  ident: ref_6
  article-title: Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09942-2
– volume: 96
  start-page: 104752
  year: 2023
  ident: ref_15
  article-title: SPA-IDS: An intelligent intrusion detection system based on vertical mode decomposition and iterative feature selection in computer networks
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2022.104752
– ident: ref_28
  doi: 10.3390/electronics9020219
– volume: 6
  start-page: 2103
  year: 2018
  ident: ref_9
  article-title: Internet of Things (IoT) cybersecurity research: A review of current research topics
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2869847
– volume: 18
  start-page: 16
  year: 2023
  ident: ref_21
  article-title: Securecyber: An SDN-enabled SIEM for enhanced cybersecurity in the industrial internet of things
  publication-title: MMTC Commun.-Front.
– volume: 133
  start-page: 95
  year: 2022
  ident: ref_10
  article-title: Host-based IDS: A review and open issues of an anomaly detection system in IoT
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2022.03.001
SSID ssj0023338
Score 2.4417658
Snippet Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 130
SubjectTerms Algorithms
Analysis
Artificial intelligence
Classification
Cybersecurity
Datasets
Deep learning
Detectors
Efficiency
event monitoring
Flexibility
Industrial Internet of Things
Industry 4.0
Information management
Infrastructure
Internet of Things (IoT)
intrusion detection and protection system
Intrusion detection systems
Machine learning
networking
Neural networks
Open source software
Performance evaluation
Security software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT3oQ30ZXKUXQg3HTj8Tu4-i67Ao7Jxf21vRrcGDJiJkV_Cf-XKu6M2GCghdhTpNK6HR91VWVrv6KsVdSrKILVIrTdqFWKFVr9CO1FuiLncNfpIPC58vu9EJ9vmwv91p9UU1YoQcuE3eE4Qht1gkXXVI6eeO509HH4Feya1MOjRrT7JKpMdXCm3ThEZKY1B8N6Og57dHNvE8m6f9zKd7zRfM6yT3Hc3KH3R4jRliUkd5lN1J_j93a4xG8z34t4HwTqaAUFmf18XdaweCsp_MUOO1wnLa54KqHwk8OGKjCstR_AzorYpGAYtz0PFjTzbmjx09Q75q3kOsKYPljjWBCQVRNuh7A9REKazUtmZBbOw-OAL17-PCAXZx8-vLxtB5bLtQBI4dt7Qzx7alWuth65Rqt-HvXRE-sgjoI7jF9Mm4luJMqGW1wpU8qxMbETH0X5UN20G_69JhB5ElziYutcR1GfdEpDLaIYUw1PpgkK_ZmpwobRj5yaotxZTEvIa3ZSWsVezmJfiskHH8T-kD6nASINzv_gWiyI5rsv9BUsdeEBkvWjYMJbjykgK9EPFl2oYVsueRKVOxwBxg7mv1gJfqPThOfTsVeTJfRYGkXxvVpc51llKK8DUf8qOBrGjNtsnZG8IrpGfJmLzW_0q-_ZlJwjpGoxOz8yf-YhqfspqA-x_lT0yE7QLymZxh8bf3zbGe_AYxyL88
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIcCA0jp1gn9BCWVqk7olKvVnjx5aVUNI2WyT-CT-XGScbNgIh5ZTMRs7O2zP-hrGXslwG8NSKU9U-V0iVa_QjuS7RFwPgFeig8PGiPjxRX06r02HDrRvaKjc2MRnq0HraI9-XqJq1JqiS9-cXOU2NourqMELjOrsh0NOQnOv55zHhkph_9WhCElP7_Q7dvaBK3cQHJaj-vw3ylkeadktuuZ_5HXZ7iBv5rGf0XXYtNvfYrS00wfvs14wft4HaSvnsKD-4JDvGjxo6VYF_Pj-I69R21fAepZxjuMoXfRc4R5dFWBK8V3F6H1_Rj9Ncj59cvS3e8NRdwBc_VihSSIgMilcdhybwHruaDCdPA547ILHevLx7wE7mn75-PMyHwQu5x_hhnYMh1D1VSQiVU1BoJd5BERxhC2pfCodJlIFlKUCqaLRBex-VD4UJCQAvyIdsp2mb-JjxIKIWEk2ugRpjvwAKQy7CGVOF8ybKjL3esML6AZWchmN8t5idENfsyLWMvRhJz3sojn8RfSB-jgSEnp1utJdndlBGiyEuFYBLCBCVjs44ATq44N1S1lWEjL0iabCk47gYD8NRBfwkQsuyM13KSkihyoztbQTGDsrf2T-imrHn42NUW6rFQBPbq0SjFGVvuOJHvXyNa6ZSa21KkTE9kbzJR02fNKtvCRpcYDwqMUff_f-6nrCbJc0xTltJe2wHJTE-xeBq7Z4lDfoNLhgl3w
  priority: 102
  providerName: ProQuest
Title A Modular AI-Driven Intrusion Detection System for Network Traffic Monitoring in Industry 4.0, Using Nvidia Morpheus and Generative Adversarial Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/39796921
https://www.proquest.com/docview/3153689658
https://www.proquest.com/docview/3154405610
https://pubmed.ncbi.nlm.nih.gov/PMC11723407
https://doaj.org/article/53330932adae48eb9b1a8dbdcbf365ea
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1LiRaEBAfceh921geEUtrQIiVCiEi5WWvvBiJVTolTRP8JP5eZ9UOx6AEpyiEeW7uZ2f1mPLPfALyWYmFNQaU4cVKECqVCjTgSaoFYbAx-LB0UnkyT85n6PI_nO9D22Gz-wOrW0I76Sc3Wl0e_f958wAX_niJODNmPK4RxThm4XdhHQEooBpuoLpkgpPQNrelMF45BRDXBUP_WHix59v5_9-gtkOoXUG4h0vg-3GtcSTaqdf8Adlz5EO5uEQw-gj8jNllZqjRlo4vwdE1bG7so6aAF6oOduo2vxCpZTVzO0INl07ownCGKEb0Eq1c9PY8t6Wbf6uOGqaPoHfMFB2z6a4lWhoKoM3ddMVNaVtNZ017KfM_nypCltw-vHsNsfPbt43nY9GIIC3QpNqFJiYhPxdLYOFcm0ooPTWRzohvUheA5xlWpWQhupHKpThECnCpslFrPiWflE9grV6V7Bsxyp7nEXTg1CWrLGoVeGFGPqSgvUicDeNuqIisaonLql3GZYcBCWss6rQXwqhO9qtk5bhM6IX12AkSo7X9Yrb9nzfrM0OulnLAw1jilXZ7m3Gib2yJfyCR2JoA3ZA0ZGSIOpjDN6QWcEhFoZSMtZMwl2lgAh63BZK05ZxKBJdFEtBPAy-4yrmRKz5jSra69jFIU0OGIn9b21Y2Zsq9JKngAumd5vUn1r5TLH54tnKOLKjFsP_jvGTyHO4K6HPsXTYewh0bpXqDrtckHsDucD_Fbjz8NYP_kbPrl68C_xhj4JfcXsi0xbg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwQFT78PO-oBQIFQJbXJqpdzM2ruBSMgudQrqP-FX8BuZWT-aCMStUk7xeLXWvHdmvwF4LsXCmoJaceKkCBVShRr9SKgF-mJj8GfpovB0loyP1Kd5PN-C391dGGqr7GyiN9S2KuiMfFeiaiaaoEreHX8PaWoUVVe7ERqNWOy7s5-YstVvJyPk7wsh9j4efhiH7VSBsEDnuApNSpByKpbGxrkykVZ8YCKbE3CeLgTPMUNIzUJwI5VLdYrGzKnCRqn16G5W4rqX4LKik3HUn8H8PMGTmO816EVSptFujeEFp8rghs_zowH-dgBrHnCzO3PN3e3dgOttnMqGjWDdhC1X3oJra-iFt-HXkE0rS22sbDgJRydkN9mkpFscyGw2civf5lWyBhWdYXjMZk3XOUMXSdgVrDEptB5b0st-jsgZU2-i18x3M7DZjyWKMBKiQLjTmpnSsgYrmww18wOla0Nq1C1e34GjC2HJXdguq9LdB2a501yiiU9NgrGmNQpDPMI1U1FepE4G8KpjRVa0KOg0jONbhtkQcS3ruRbAs570uIH--BfRe-JnT0Bo3f6P6uRL1ip_hiE1FZyFscYp7fI050bb3Bb5QiaxMwG8JGnIyKbgZgrTXo3ATyJ0rmyohYy55EoEsNMJTNYamzo7V40AnvaP0UxQ7ceUrjr1NEpRtog7vtfIV79nKu0mqeAB6A3J2_iozSfl8quHIucY_0oVDR78f19P4Mr4cHqQHUxm-w_hqqAZyv4Yawe2USrdIwzsVvljr00MPl-0-v4BBQdhVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBIeaeB921geEAiFqKI04UCk3s_ZuIBKyS52C-k_4Lfw6ZtaPJgJxq5RTPLbWmplvZryz3wA8lWJhTUGtOHFShAqlQo1xJNQCY7Ex-LN0UPhgluwdqvfzeL4Fv7uzMNRW2WGiB2pbFfSNfCDRNRNNVCWDRdsW8XE8eX30PaQJUrTT2o3TaExk353-xPKtfjUdo66fCTF59-ntXthOGAgLDJSr0KREL6diaWycKxNpxYcmsjmR6OlC8ByrhdQsBDdSuVSnCGxOFTZKrWd6sxKfewEuDiVmVehLw_lZsSex9muYjKRMo0GNqQanXcKN-OfHBPwdDNai4Wan5lrom1yDq23OykaNkV2HLVfegCtrTIY34deIHVSWWlrZaBqOjwlD2bSkEx2oeDZ2K9_yVbKGIZ1hqsxmTQc6w3BJPBasgRd6HlvSzX6myClTL6Nd5jsb2OzHEs0ZBdE43EnNTGlZw5tNoM38cOnakEt1D69vweG5qOQ2bJdV6e4Cs9xpLhHuU5Ng3mmNwnSPOM5UlBepkwG86FSRFS0jOg3m-JZhZURay3qtBfCkFz1qaED-JfSG9NkLEHO3_6M6_pK1QJBhek2bz8JY45R2eZpzo21ui3whk9iZAJ6TNWSEL7iYwrTHJPCViKkrG2khYy65EgHsdAaTtcBTZ2duEsDj_jJCBu0DmdJVJ15GKaocccV3Gvvq10zbvEkqeAB6w_I2XmrzSrn86mnJOebCUkXDe_9f1yO4hI6bfZjO9u_DZUHjlP0XrR3YRqN0DzDHW-UPvTMx-Hze3vsHmChllQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modular+AI-Driven+Intrusion+Detection+System+for+Network+Traffic+Monitoring+in+Industry+4.0%2C+Using+Nvidia+Morpheus+and+Generative+Adversarial+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chiriac%2C+Beatrice-Nicoleta&rft.au=Anton%2C+Florin-Daniel&rft.au=Ioni%C8%9B%C4%83%2C+Anca-Daniela&rft.au=Vasilic%C4%83%2C+Bogdan-Valentin&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fs25010130&rft.externalDocID=A823513142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon