A Modular AI-Driven Intrusion Detection System for Network Traffic Monitoring in Industry 4.0, Using Nvidia Morpheus and Generative Adversarial Networks
Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusio...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 1; p. 130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s25010130 |
Cover
Abstract | Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets. |
---|---|
AbstractList | Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets. Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets.Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the current context of the digital era, where industrial environments handle large data volumes, new cybersecurity solutions are required, and intrusion detection systems (IDSs) based on artificial intelligence (AI) algorithms are coming up with an answer to this critical issue. This paper presents an approach for implementing a generic model of a network-based intrusion detection system for Industry 4.0 by integrating the computational advantages of the Nvidia Morpheus open-source AI framework. The solution is modularly built with two pipelines for data analysis. The pipelines use a pre-trained XGBoost (eXtreme Gradient Boosting) model that achieved an accuracy score of up to 90%. The proposed IDS has a fast rate of analysis, managing more than 500,000 inputs in almost 10 s, due to the application of the federated learning methodology. The classification performance of the model was improved by integrating a generative adversarial network (GAN) that generates polymorphic network traffic packets. |
Audience | Academic |
Author | Vasilică, Bogdan-Valentin Anton, Florin-Daniel Chiriac, Beatrice-Nicoleta Ioniță, Anca-Daniela |
AuthorAffiliation | Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Sciences, National University of Science and Technology Polithenica Bucharest, 313 Spl. Independenței, RO060042 Bucharest, Romania; anca.ionita@upb.ro (A.-D.I.); bogdan.vasilica@upb.ro (B.-V.V.) |
AuthorAffiliation_xml | – name: Department of Automation and Industrial Informatics, Faculty of Automatic Control and Computer Sciences, National University of Science and Technology Polithenica Bucharest, 313 Spl. Independenței, RO060042 Bucharest, Romania; anca.ionita@upb.ro (A.-D.I.); bogdan.vasilica@upb.ro (B.-V.V.) |
Author_xml | – sequence: 1 givenname: Beatrice-Nicoleta surname: Chiriac fullname: Chiriac, Beatrice-Nicoleta – sequence: 2 givenname: Florin-Daniel surname: Anton fullname: Anton, Florin-Daniel – sequence: 3 givenname: Anca-Daniela orcidid: 0000-0002-8966-6196 surname: Ioniță fullname: Ioniță, Anca-Daniela – sequence: 4 givenname: Bogdan-Valentin surname: Vasilică fullname: Vasilică, Bogdan-Valentin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39796921$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gwQsgS2xAIqlvMxmvUNRCiVTKgnY9OmOfSR0mdmp7gvImPC4OaaO2Ql7YOv7Ofy76j4sD5x0WxVtGx0Ioehp5SRllgr4ojpjkclRzTg8evQ-L4xgXlHIhRP2qOBRqoirF2VHxZ0q-ezP0EMh0NjoPdo2OzFwKQ7TekXNMqNP29XMTEy5J5wO5wvTbh1_kOkDXWZ0FnE0-WDcndptshpjChsgx_URu4jZ8tbbGQgbD6haHSMAZcoEOA6RckEzNGkOEYKF_EI-vi5cd9BHf3N8nxc3XL9dn30aXPy5mZ9PLkS6pSiNQolZKlgJM2UqgtWQToKZVvOK15qxlTCroOAMhUdUKW4ZSG6oMrUtaGXFSzHa6xsOiWQW7hLBpPNjmX8CHeQMhWd1jU-btUSU4GEBZY6taBrVpjW47UZUIWevzTms1tEs0GvMeoX8i-vTH2dtm7tcNYxMuJJ1khQ_3CsHfDRhTs7RRY9-DQz_ERrBSSlpWjGb0_TN04Yfg8q62lKhqVZV1psY7ag55Aus6nwvrfAwurc426myOT2suSiayX3LCu8cz7Jt_sEwGPu4AHXyMAbs9wmiztWOzt2NmT5-x2ibY-il3Yfv_ZPwFUtjhKg |
CitedBy_id | crossref_primary_10_1016_j_jisa_2025_104013 |
Cites_doi | 10.1016/j.comcom.2022.06.015 10.1145/3339474 10.1016/j.comcom.2022.10.001 10.1109/ACCESS.2021.3056650 10.1016/j.comcom.2021.08.026 10.1016/j.patcog.2022.108912 10.1016/j.ijleo.2022.170417 10.3390/computers12020034 10.3390/en15176276 10.3390/s23249869 10.1109/YEF-ECE.2019.8740818 10.1007/s11590-023-02007-7 10.1016/j.cose.2021.102367 10.3390/s23125644 10.1109/COMST.2017.2782482 10.32604/csse.2023.030635 10.1016/j.future.2010.12.017 10.1016/j.ins.2023.119000 10.1145/2939672.2939785 10.1007/s11571-022-09780-8 10.1007/s10462-020-09942-2 10.1016/j.micpro.2022.104752 10.3390/electronics9020219 10.1109/JIOT.2018.2869847 10.1016/j.future.2022.03.001 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s25010130 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_53330932adae48eb9b1a8dbdcbf365ea PMC11723407 A823513142 39796921 10_3390_s25010130 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c509t-a93899453ad5b4a08417a0db92628c21b1149af21a34e989eb1e4cd09d08506d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:06:46 EDT 2025 Thu Aug 21 18:28:38 EDT 2025 Fri Sep 05 10:15:47 EDT 2025 Fri Jul 25 22:46:15 EDT 2025 Tue Jun 10 20:57:18 EDT 2025 Mon Jul 21 06:00:36 EDT 2025 Tue Jul 01 02:10:08 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Internet of Things (IoT) neural networks event monitoring Industry 4.0 networking intrusion detection and protection system artificial intelligence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-a93899453ad5b4a08417a0db92628c21b1149af21a34e989eb1e4cd09d08506d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8966-6196 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s25010130 |
PMID | 39796921 |
PQID | 3153689658 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53330932adae48eb9b1a8dbdcbf365ea pubmedcentral_primary_oai_pubmedcentral_nih_gov_11723407 proquest_miscellaneous_3154405610 proquest_journals_3153689658 gale_infotracacademiconefile_A823513142 pubmed_primary_39796921 crossref_primary_10_3390_s25010130 crossref_citationtrail_10_3390_s25010130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Jasim (ref_16) 2023; 273 Tabassum (ref_19) 2022; 192 Kilincer (ref_15) 2023; 96 Ramana (ref_22) 2022; 196 ref_13 Chiriac (ref_29) 2023; 85 ref_12 ref_11 Martins (ref_10) 2022; 133 ref_32 ref_31 ref_30 Tomar (ref_5) 2023; 45 Rao (ref_14) 2021; 180 ref_17 Idrees (ref_1) 2022; 132 Alohali (ref_7) 2022; 16 Mullet (ref_4) 2021; 9 Herrero (ref_20) 2013; 29 ref_25 ref_24 (ref_21) 2023; 18 Kehk (ref_23) 2023; 639 Lu (ref_9) 2018; 6 Yang (ref_26) 2019; 10 Bannour (ref_2) 2017; 20 Gama (ref_6) 2021; 54 ref_3 ref_28 Duy (ref_18) 2021; 109 ref_27 ref_8 Chale (ref_33) 2023; 18 |
References_xml | – volume: 192 start-page: 299 year: 2022 ident: ref_19 article-title: Fedgan-ids: Privacy-preserving ids using gan and federated learning publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.06.015 – ident: ref_30 – ident: ref_32 – ident: ref_3 – volume: 10 start-page: 1 year: 2019 ident: ref_26 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. (TIST) doi: 10.1145/3339474 – volume: 196 start-page: 195 year: 2022 ident: ref_22 article-title: WOGRU-IDS—An intelligent intrusion detection system for IoT assisted Wireless Sensor Networks publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.10.001 – volume: 9 start-page: 23235 year: 2021 ident: ref_4 article-title: A review of cybersecurity guidelines for manufacturing factories in industry 4.0 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056650 – volume: 180 start-page: 77 year: 2021 ident: ref_14 article-title: A hybrid intrusion detection system based on sparse autoencoder and deep neural network publication-title: Comput. Commun. doi: 10.1016/j.comcom.2021.08.026 – volume: 132 start-page: 108912 year: 2022 ident: ref_1 article-title: Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108912 – volume: 273 start-page: 170417 year: 2023 ident: ref_16 article-title: New automatic (IDS) in IoTs with artificial intelligence technique publication-title: Optik doi: 10.1016/j.ijleo.2022.170417 – ident: ref_13 doi: 10.3390/computers12020034 – volume: 85 start-page: 77 year: 2023 ident: ref_29 article-title: A Hybrid IDS Architecture publication-title: Univ. Politeh. Buchar. Sci. Bull. C-Electr. Eng. Comput. Sci. – ident: ref_11 doi: 10.3390/en15176276 – ident: ref_12 doi: 10.3390/s23249869 – ident: ref_17 doi: 10.1109/YEF-ECE.2019.8740818 – volume: 18 start-page: 2169 year: 2023 ident: ref_33 article-title: Constrained optimization based adversarial example generation for transfer attacks in network intrusion detection systems publication-title: Optim. Lett. doi: 10.1007/s11590-023-02007-7 – volume: 109 start-page: 102367 year: 2021 ident: ref_18 article-title: DIGFuPAS: Deceive IDS with GAN and function-preserving on adversarial samples in SDN-enabled networks publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102367 – ident: ref_24 doi: 10.3390/s23125644 – volume: 20 start-page: 333 year: 2017 ident: ref_2 article-title: Distributed SDN control: Survey, taxonomy, and challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2782482 – volume: 45 start-page: 1495 year: 2023 ident: ref_5 article-title: Real Time Automation and Ratio Control Using PLC & SCADA in Industry 4.0 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.030635 – ident: ref_8 – volume: 29 start-page: 250 year: 2013 ident: ref_20 article-title: RT-MOVICAB-IDS: Addressing real-time intrusion detection publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2010.12.017 – ident: ref_25 – ident: ref_31 – volume: 639 start-page: 119000 year: 2023 ident: ref_23 article-title: An explainable deep learning-enabled intrusion detection framework in IoT networks publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119000 – ident: ref_27 doi: 10.1145/2939672.2939785 – volume: 16 start-page: 1045 year: 2022 ident: ref_7 article-title: Artificial intelligence enabled intrusion detection systems for cognitive cyber-physical systems in industry 4.0 environment publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-022-09780-8 – volume: 54 start-page: 3849 year: 2021 ident: ref_6 article-title: Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09942-2 – volume: 96 start-page: 104752 year: 2023 ident: ref_15 article-title: SPA-IDS: An intelligent intrusion detection system based on vertical mode decomposition and iterative feature selection in computer networks publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2022.104752 – ident: ref_28 doi: 10.3390/electronics9020219 – volume: 6 start-page: 2103 year: 2018 ident: ref_9 article-title: Internet of Things (IoT) cybersecurity research: A review of current research topics publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2869847 – volume: 18 start-page: 16 year: 2023 ident: ref_21 article-title: Securecyber: An SDN-enabled SIEM for enhanced cybersecurity in the industrial internet of things publication-title: MMTC Commun.-Front. – volume: 133 start-page: 95 year: 2022 ident: ref_10 article-title: Host-based IDS: A review and open issues of an anomaly detection system in IoT publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.03.001 |
SSID | ssj0023338 |
Score | 2.4417658 |
Snippet | Every day, a considerable number of new cybersecurity attacks are reported, and the traditional methods of defense struggle to keep up with them. In the... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 130 |
SubjectTerms | Algorithms Analysis Artificial intelligence Classification Cybersecurity Datasets Deep learning Detectors Efficiency event monitoring Flexibility Industrial Internet of Things Industry 4.0 Information management Infrastructure Internet of Things (IoT) intrusion detection and protection system Intrusion detection systems Machine learning networking Neural networks Open source software Performance evaluation Security software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kT3oQ30ZXKUXQg3HTj8Tu4-i67Ao7Jxf21vRrcGDJiJkV_Cf-XKu6M2GCghdhTpNK6HR91VWVrv6KsVdSrKILVIrTdqFWKFVr9CO1FuiLncNfpIPC58vu9EJ9vmwv91p9UU1YoQcuE3eE4Qht1gkXXVI6eeO509HH4Feya1MOjRrT7JKpMdXCm3ThEZKY1B8N6Og57dHNvE8m6f9zKd7zRfM6yT3Hc3KH3R4jRliUkd5lN1J_j93a4xG8z34t4HwTqaAUFmf18XdaweCsp_MUOO1wnLa54KqHwk8OGKjCstR_AzorYpGAYtz0PFjTzbmjx09Q75q3kOsKYPljjWBCQVRNuh7A9REKazUtmZBbOw-OAL17-PCAXZx8-vLxtB5bLtQBI4dt7Qzx7alWuth65Rqt-HvXRE-sgjoI7jF9Mm4luJMqGW1wpU8qxMbETH0X5UN20G_69JhB5ElziYutcR1GfdEpDLaIYUw1PpgkK_ZmpwobRj5yaotxZTEvIa3ZSWsVezmJfiskHH8T-kD6nASINzv_gWiyI5rsv9BUsdeEBkvWjYMJbjykgK9EPFl2oYVsueRKVOxwBxg7mv1gJfqPThOfTsVeTJfRYGkXxvVpc51llKK8DUf8qOBrGjNtsnZG8IrpGfJmLzW_0q-_ZlJwjpGoxOz8yf-YhqfspqA-x_lT0yE7QLymZxh8bf3zbGe_AYxyL88 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIcCA0jp1gn9BCWVqk7olKvVnjx5aVUNI2WyT-CT-XGScbNgIh5ZTMRs7O2zP-hrGXslwG8NSKU9U-V0iVa_QjuS7RFwPgFeig8PGiPjxRX06r02HDrRvaKjc2MRnq0HraI9-XqJq1JqiS9-cXOU2NourqMELjOrsh0NOQnOv55zHhkph_9WhCElP7_Q7dvaBK3cQHJaj-vw3ylkeadktuuZ_5HXZ7iBv5rGf0XXYtNvfYrS00wfvs14wft4HaSvnsKD-4JDvGjxo6VYF_Pj-I69R21fAepZxjuMoXfRc4R5dFWBK8V3F6H1_Rj9Ncj59cvS3e8NRdwBc_VihSSIgMilcdhybwHruaDCdPA547ILHevLx7wE7mn75-PMyHwQu5x_hhnYMh1D1VSQiVU1BoJd5BERxhC2pfCodJlIFlKUCqaLRBex-VD4UJCQAvyIdsp2mb-JjxIKIWEk2ugRpjvwAKQy7CGVOF8ybKjL3esML6AZWchmN8t5idENfsyLWMvRhJz3sojn8RfSB-jgSEnp1utJdndlBGiyEuFYBLCBCVjs44ATq44N1S1lWEjL0iabCk47gYD8NRBfwkQsuyM13KSkihyoztbQTGDsrf2T-imrHn42NUW6rFQBPbq0SjFGVvuOJHvXyNa6ZSa21KkTE9kbzJR02fNKtvCRpcYDwqMUff_f-6nrCbJc0xTltJe2wHJTE-xeBq7Z4lDfoNLhgl3w priority: 102 providerName: ProQuest |
Title | A Modular AI-Driven Intrusion Detection System for Network Traffic Monitoring in Industry 4.0, Using Nvidia Morpheus and Generative Adversarial Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39796921 https://www.proquest.com/docview/3153689658 https://www.proquest.com/docview/3154405610 https://pubmed.ncbi.nlm.nih.gov/PMC11723407 https://doaj.org/article/53330932adae48eb9b1a8dbdcbf365ea |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYED4o1LiRaEBAfceh921geEUtrQIiVCiEi5WWvvBiJVTolTRP8JP5eZ9UOx6AEpyiEeW7uZ2f1mPLPfALyWYmFNQaU4cVKECqVCjTgSaoFYbAx-LB0UnkyT85n6PI_nO9D22Gz-wOrW0I76Sc3Wl0e_f958wAX_niJODNmPK4RxThm4XdhHQEooBpuoLpkgpPQNrelMF45BRDXBUP_WHix59v5_9-gtkOoXUG4h0vg-3GtcSTaqdf8Adlz5EO5uEQw-gj8jNllZqjRlo4vwdE1bG7so6aAF6oOduo2vxCpZTVzO0INl07ownCGKEb0Eq1c9PY8t6Wbf6uOGqaPoHfMFB2z6a4lWhoKoM3ddMVNaVtNZ017KfM_nypCltw-vHsNsfPbt43nY9GIIC3QpNqFJiYhPxdLYOFcm0ooPTWRzohvUheA5xlWpWQhupHKpThECnCpslFrPiWflE9grV6V7Bsxyp7nEXTg1CWrLGoVeGFGPqSgvUicDeNuqIisaonLql3GZYcBCWss6rQXwqhO9qtk5bhM6IX12AkSo7X9Yrb9nzfrM0OulnLAw1jilXZ7m3Gib2yJfyCR2JoA3ZA0ZGSIOpjDN6QWcEhFoZSMtZMwl2lgAh63BZK05ZxKBJdFEtBPAy-4yrmRKz5jSra69jFIU0OGIn9b21Y2Zsq9JKngAumd5vUn1r5TLH54tnKOLKjFsP_jvGTyHO4K6HPsXTYewh0bpXqDrtckHsDucD_Fbjz8NYP_kbPrl68C_xhj4JfcXsi0xbg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwQFT78PO-oBQIFQJbXJqpdzM2ruBSMgudQrqP-FX8BuZWT-aCMStUk7xeLXWvHdmvwF4LsXCmoJaceKkCBVShRr9SKgF-mJj8GfpovB0loyP1Kd5PN-C391dGGqr7GyiN9S2KuiMfFeiaiaaoEreHX8PaWoUVVe7ERqNWOy7s5-YstVvJyPk7wsh9j4efhiH7VSBsEDnuApNSpByKpbGxrkykVZ8YCKbE3CeLgTPMUNIzUJwI5VLdYrGzKnCRqn16G5W4rqX4LKik3HUn8H8PMGTmO816EVSptFujeEFp8rghs_zowH-dgBrHnCzO3PN3e3dgOttnMqGjWDdhC1X3oJra-iFt-HXkE0rS22sbDgJRydkN9mkpFscyGw2civf5lWyBhWdYXjMZk3XOUMXSdgVrDEptB5b0st-jsgZU2-i18x3M7DZjyWKMBKiQLjTmpnSsgYrmww18wOla0Nq1C1e34GjC2HJXdguq9LdB2a501yiiU9NgrGmNQpDPMI1U1FepE4G8KpjRVa0KOg0jONbhtkQcS3ruRbAs570uIH--BfRe-JnT0Bo3f6P6uRL1ip_hiE1FZyFscYp7fI050bb3Bb5QiaxMwG8JGnIyKbgZgrTXo3ATyJ0rmyohYy55EoEsNMJTNYamzo7V40AnvaP0UxQ7ceUrjr1NEpRtog7vtfIV79nKu0mqeAB6A3J2_iozSfl8quHIucY_0oVDR78f19P4Mr4cHqQHUxm-w_hqqAZyv4Yawe2USrdIwzsVvljr00MPl-0-v4BBQdhVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN4YCiwIBIeaeB921geEAiFqKI04UCk3s_ZuIBKyS52C-k_4Lfw6ZtaPJgJxq5RTPLbWmplvZryz3wA8lWJhTUGtOHFShAqlQo1xJNQCY7Ex-LN0UPhgluwdqvfzeL4Fv7uzMNRW2WGiB2pbFfSNfCDRNRNNVCWDRdsW8XE8eX30PaQJUrTT2o3TaExk353-xPKtfjUdo66fCTF59-ntXthOGAgLDJSr0KREL6diaWycKxNpxYcmsjmR6OlC8ByrhdQsBDdSuVSnCGxOFTZKrWd6sxKfewEuDiVmVehLw_lZsSex9muYjKRMo0GNqQanXcKN-OfHBPwdDNai4Wan5lrom1yDq23OykaNkV2HLVfegCtrTIY34deIHVSWWlrZaBqOjwlD2bSkEx2oeDZ2K9_yVbKGIZ1hqsxmTQc6w3BJPBasgRd6HlvSzX6myClTL6Nd5jsb2OzHEs0ZBdE43EnNTGlZw5tNoM38cOnakEt1D69vweG5qOQ2bJdV6e4Cs9xpLhHuU5Ng3mmNwnSPOM5UlBepkwG86FSRFS0jOg3m-JZhZURay3qtBfCkFz1qaED-JfSG9NkLEHO3_6M6_pK1QJBhek2bz8JY45R2eZpzo21ui3whk9iZAJ6TNWSEL7iYwrTHJPCViKkrG2khYy65EgHsdAaTtcBTZ2duEsDj_jJCBu0DmdJVJ15GKaocccV3Gvvq10zbvEkqeAB6w_I2XmrzSrn86mnJOebCUkXDe_9f1yO4hI6bfZjO9u_DZUHjlP0XrR3YRqN0DzDHW-UPvTMx-Hze3vsHmChllQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modular+AI-Driven+Intrusion+Detection+System+for+Network+Traffic+Monitoring+in+Industry+4.0%2C+Using+Nvidia+Morpheus+and+Generative+Adversarial+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chiriac%2C+Beatrice-Nicoleta&rft.au=Anton%2C+Florin-Daniel&rft.au=Ioni%C8%9B%C4%83%2C+Anca-Daniela&rft.au=Vasilic%C4%83%2C+Bogdan-Valentin&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fs25010130&rft.externalDocID=A823513142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |