Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration
Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning refl...
Saved in:
Published in | The Journal of neuroscience Vol. 29; no. 5; pp. 1538 - 1543 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
04.02.2009
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D
2
receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D
2
receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity. |
---|---|
AbstractList | Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D
2
receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D
2
receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity. Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity. Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity. |
Author | Frank, Michael J Cools, Roshan Jagust, William Gibbs, Sasha E D'Esposito, Mark Miyakawa, Asako |
Author_xml | – sequence: 1 fullname: Cools, Roshan – sequence: 2 fullname: Frank, Michael J – sequence: 3 fullname: Gibbs, Sasha E – sequence: 4 fullname: Miyakawa, Asako – sequence: 5 fullname: Jagust, William – sequence: 6 fullname: D'Esposito, Mark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19193900$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU2P0zAUtNAitlv4C6ucuKU8O2lsSwhp1V2gqKJoy54tx3FSo8QuttNq_z0uW8rHhZNlvZl582au0IV1ViN0jWGG56R48-nz3cP9erNYzsqyojmwGQHgz9AkTXlOSsAXaAKEQl6VtLxEVyF8AwAKmL5Al5hjXnCACRo30RsZZZ_dup0cjNXZF68bo2LI1mNUbtD5ZqeVaY3K7vVe-5CwKy29NbbLpG2yZYJutA0mmr2Jj1l0Zy3fJdatH7vspkl_E6KX0Tj7Ej1vZR_0q9M7RQ_v774uPuar9Yfl4maVqznwmEuquGokKWtV1JjNeYUJpoxSWknGCTBSa9ZwXdeqhZYzVfKatXXdkgKDKopiit496e7GetCN0jYZ6MXOm0H6R-GkEX9PrNmKzu0F4SXQlNEUvT4JePd91CGKwQSl-15a7cYgqoolO0WVgNd_bjqv-JV0AlRPAOVdCF63vyEgjpWKc6XiWKkAJo6VJuLbf4jKxJ8pJsem_z_9dMHWdNuD8VqEQfZ9sonF4XAgXMwTv2DFDyMuuTo |
CitedBy_id | crossref_primary_10_1016_j_bbr_2012_02_006 crossref_primary_10_1016_j_neuroimage_2012_04_024 crossref_primary_10_3389_fnins_2023_1267901 crossref_primary_10_1016_j_neuro_2022_08_013 crossref_primary_10_1016_j_physbeh_2016_04_020 crossref_primary_10_1016_j_neuroscience_2011_02_008 crossref_primary_10_1016_j_tics_2010_08_002 crossref_primary_10_1016_j_nicl_2016_05_019 crossref_primary_10_1016_j_neuron_2019_09_035 crossref_primary_10_1038_s41386_021_01100_8 crossref_primary_10_1002_mds_25687 crossref_primary_10_1038_s41386_020_0617_z crossref_primary_10_1038_s41398_024_02839_6 crossref_primary_10_1016_j_dcn_2022_101100 crossref_primary_10_1038_npp_2013_100 crossref_primary_10_1523_JNEUROSCI_2405_16_2017 crossref_primary_10_1016_j_biopsych_2016_03_2104 crossref_primary_10_1017_S1041610213001762 crossref_primary_10_1016_j_nlm_2011_08_006 crossref_primary_10_1097_JCP_0000000000000076 crossref_primary_10_1371_journal_pbio_1002575 crossref_primary_10_1016_j_biopsych_2011_03_028 crossref_primary_10_1016_j_nlm_2015_08_011 crossref_primary_10_1007_s00213_010_2087_1 crossref_primary_10_1016_j_bbr_2016_10_019 crossref_primary_10_1016_j_bbr_2018_06_016 crossref_primary_10_1371_journal_pcbi_1006707 crossref_primary_10_1038_npp_2010_121 crossref_primary_10_3390_ijms23073452 crossref_primary_10_1016_j_euroneuro_2024_08_511 crossref_primary_10_1016_j_neuropsychologia_2011_12_012 crossref_primary_10_1016_j_pharmthera_2010_06_002 crossref_primary_10_1093_scan_nsaa088 crossref_primary_10_1016_j_ijpsycho_2015_04_010 crossref_primary_10_1523_JNEUROSCI_2051_14_2014 crossref_primary_10_1038_s44159_024_00304_1 crossref_primary_10_1016_j_jmp_2013_08_003 crossref_primary_10_1016_j_cobeha_2024_101389 crossref_primary_10_1016_j_conb_2011_04_002 crossref_primary_10_1017_S1355617715001241 crossref_primary_10_3389_fnut_2014_00019 crossref_primary_10_1038_npp_2010_157 crossref_primary_10_1002_da_20897 crossref_primary_10_1038_s42003_022_03690_5 crossref_primary_10_1089_brain_2012_0081 crossref_primary_10_1016_j_neucli_2021_08_001 crossref_primary_10_1093_ijnp_pyaa007 crossref_primary_10_1017_S0033291717000769 crossref_primary_10_1016_j_neuropharm_2013_05_044 crossref_primary_10_1016_j_dcn_2022_101126 crossref_primary_10_1016_j_cobeha_2024_101375 crossref_primary_10_1038_npp_2014_240 crossref_primary_10_7554_eLife_83161 crossref_primary_10_1093_brain_awr147 crossref_primary_10_1016_j_cobeha_2024_101371 crossref_primary_10_1523_JNEUROSCI_4172_09_2009 crossref_primary_10_1007_s00213_015_3986_y crossref_primary_10_1016_j_bbr_2013_05_060 crossref_primary_10_1093_cercor_bhr114 crossref_primary_10_1016_j_biopsych_2019_09_002 crossref_primary_10_3389_fendo_2018_00060 crossref_primary_10_3758_s13415_019_00752_w crossref_primary_10_1007_s00213_011_2340_2 crossref_primary_10_1093_cercor_bhz313 crossref_primary_10_1523_JNEUROSCI_6486_10_2011 crossref_primary_10_1007_s00213_011_2579_7 crossref_primary_10_1007_s00213_010_1880_1 crossref_primary_10_1523_JNEUROSCI_2326_15_2016 crossref_primary_10_1371_journal_pcbi_1008659 crossref_primary_10_1002_hbm_20979 crossref_primary_10_1016_j_biopsych_2011_12_028 crossref_primary_10_1371_journal_pone_0166675 crossref_primary_10_1007_s12311_011_0288_8 crossref_primary_10_1016_j_biopsych_2012_10_032 crossref_primary_10_1093_scan_nsz006 crossref_primary_10_7554_eLife_91650_3 crossref_primary_10_1007_s00213_015_4141_5 crossref_primary_10_1016_j_cortex_2024_06_005 crossref_primary_10_1038_npp_2010_165 crossref_primary_10_1007_s10071_020_01399_8 crossref_primary_10_1038_s41386_018_0272_9 crossref_primary_10_1038_s41386_021_00993_9 crossref_primary_10_1523_JNEUROSCI_0810_09_2009 crossref_primary_10_1016_j_neubiorev_2009_11_019 crossref_primary_10_1016_j_appet_2018_08_029 crossref_primary_10_1523_JNEUROSCI_1979_16_2016 crossref_primary_10_1093_cercor_bhs344 crossref_primary_10_1152_physrev_00041_2012 crossref_primary_10_3389_fnana_2017_00066 crossref_primary_10_1038_npp_2010_96 crossref_primary_10_1093_cercor_bhac028 crossref_primary_10_1016_j_neuroimage_2015_10_067 crossref_primary_10_1177_1073858417717210 crossref_primary_10_1152_jn_00261_2015 crossref_primary_10_3389_fpsyg_2014_01101 crossref_primary_10_1016_j_neubiorev_2020_11_004 crossref_primary_10_1016_j_cortex_2013_02_014 crossref_primary_10_1080_03036758_2020_1784240 crossref_primary_10_1016_j_cobeha_2018_03_010 crossref_primary_10_3389_fpsyt_2021_799548 crossref_primary_10_1093_cercor_bhs144 crossref_primary_10_1038_npp_2012_207 crossref_primary_10_1038_s41467_022_32679_1 crossref_primary_10_1523_JNEUROSCI_5066_10_2011 crossref_primary_10_1016_j_psyneuen_2011_06_004 crossref_primary_10_1080_00222895_2013_817380 crossref_primary_10_1159_000514074 crossref_primary_10_1016_j_bandc_2013_09_011 crossref_primary_10_1038_npp_2016_43 crossref_primary_10_1007_s00213_014_3741_9 crossref_primary_10_1007_s00213_014_3749_1 crossref_primary_10_1016_j_neunet_2012_02_031 crossref_primary_10_1371_journal_pone_0176205 crossref_primary_10_1038_s41598_022_26980_8 crossref_primary_10_1007_s00429_021_02227_6 crossref_primary_10_1016_j_tics_2021_06_001 crossref_primary_10_1093_brain_aww128 crossref_primary_10_1371_journal_pcbi_1005171 crossref_primary_10_1038_s41598_018_24001_1 crossref_primary_10_7554_eLife_75474 crossref_primary_10_1007_s00213_010_2147_6 crossref_primary_10_1016_j_bbr_2019_112393 crossref_primary_10_1007_s00213_011_2543_6 crossref_primary_10_1111_nyas_14656 crossref_primary_10_1016_j_neuroimage_2011_01_068 crossref_primary_10_1371_journal_pone_0068177 crossref_primary_10_1016_j_neubiorev_2015_06_015 crossref_primary_10_1016_j_drugalcdep_2012_03_017 crossref_primary_10_1523_JNEUROSCI_0363_11_2011 crossref_primary_10_1523_JNEUROSCI_2382_18_2019 crossref_primary_10_1016_j_neuroimage_2010_03_036 crossref_primary_10_1007_s43440_023_00563_4 crossref_primary_10_1016_j_neuropsychologia_2013_07_026 crossref_primary_10_1523_JNEUROSCI_2631_10_2010 crossref_primary_10_1162_jocn_a_00706 crossref_primary_10_3389_fncir_2016_00053 crossref_primary_10_1007_s11172_023_3846_1 crossref_primary_10_1016_j_cortex_2017_08_022 crossref_primary_10_1016_j_cortex_2013_04_002 crossref_primary_10_1021_acs_orglett_6b02911 crossref_primary_10_1080_21622965_2012_709422 crossref_primary_10_1152_jn_00817_2018 crossref_primary_10_1016_j_drugalcdep_2013_09_029 crossref_primary_10_1017_S0033291710001960 crossref_primary_10_1016_j_bpsgos_2022_08_005 crossref_primary_10_1162_jocn_a_00237 crossref_primary_10_1177_0956797613517240 crossref_primary_10_31857_S0044467723020090 crossref_primary_10_1016_j_jad_2019_09_031 crossref_primary_10_1016_j_neuroimage_2017_12_022 crossref_primary_10_1016_j_nlm_2024_107985 crossref_primary_10_1016_j_biopsych_2011_01_014 crossref_primary_10_1016_j_ynstr_2017_03_003 crossref_primary_10_1177_0269881116665328 crossref_primary_10_1093_scan_nsae050 crossref_primary_10_1093_brain_aws068 crossref_primary_10_1038_s41386_020_0779_8 crossref_primary_10_1093_cercor_bhr185 crossref_primary_10_7554_eLife_22169 crossref_primary_10_1093_cercor_bhu210 crossref_primary_10_1016_j_neubiorev_2017_11_022 crossref_primary_10_1017_S1092852914000108 crossref_primary_10_1371_journal_pone_0096319 crossref_primary_10_5127_jep_041814 crossref_primary_10_1016_j_conb_2011_02_013 crossref_primary_10_1016_j_neubiorev_2017_06_003 crossref_primary_10_1016_j_bbr_2016_08_054 crossref_primary_10_1097_FBP_0000000000000536 crossref_primary_10_1038_npp_2017_302 crossref_primary_10_1016_j_neuroscience_2016_06_005 crossref_primary_10_1016_j_physbeh_2017_04_001 crossref_primary_10_1162_jocn_a_01784 crossref_primary_10_1016_j_neuroimage_2017_04_005 crossref_primary_10_1016_j_yhbeh_2017_02_006 crossref_primary_10_1007_s11031_017_9633_7 crossref_primary_10_1038_s41467_024_54395_8 crossref_primary_10_1093_braincomms_fcz013 crossref_primary_10_1093_scan_nsx122 crossref_primary_10_1016_j_tics_2010_11_002 crossref_primary_10_1523_ENEURO_0229_17_2018 crossref_primary_10_1038_s41386_022_01291_8 crossref_primary_10_1007_s00213_012_2774_1 crossref_primary_10_1007_s00213_023_06460_1 crossref_primary_10_1026_0033_3042_a000599 crossref_primary_10_3390_cells10113157 crossref_primary_10_1016_j_addicn_2022_100045 crossref_primary_10_1016_j_dcn_2011_06_007 crossref_primary_10_1111_ejn_13768 crossref_primary_10_1523_JNEUROSCI_3524_09_2009 crossref_primary_10_1016_j_euroneuro_2016_03_011 crossref_primary_10_1016_j_neuropharm_2020_107996 crossref_primary_10_7554_eLife_61844 crossref_primary_10_1016_j_bbr_2015_11_016 crossref_primary_10_1016_j_ijpsycho_2019_09_016 crossref_primary_10_1371_journal_pone_0226790 crossref_primary_10_1146_annurev_psych_022024_103901 crossref_primary_10_1162_jocn_a_01317 crossref_primary_10_1016_j_neuron_2013_08_030 crossref_primary_10_1016_j_euroneuro_2017_02_004 crossref_primary_10_1016_j_pbb_2015_01_014 crossref_primary_10_1142_S021963521650028X crossref_primary_10_1016_j_neuroimage_2015_08_036 crossref_primary_10_1176_appi_ajp_2011_11010137 crossref_primary_10_1038_ncomms6394 crossref_primary_10_1016_j_neubiorev_2018_10_008 crossref_primary_10_1073_pnas_1006068107 crossref_primary_10_1177_0269881116668591 crossref_primary_10_1007_s00213_016_4322_x crossref_primary_10_1038_s41467_019_10800_1 crossref_primary_10_7554_eLife_91650 crossref_primary_10_1038_s41598_020_80765_5 crossref_primary_10_1093_cercor_bhp247 crossref_primary_10_1038_npp_2016_192 crossref_primary_10_1093_ijnp_pyab041 crossref_primary_10_1016_j_cobeha_2018_01_027 crossref_primary_10_1007_s00213_020_05515_x crossref_primary_10_1007_s11055_013_9869_y crossref_primary_10_1016_j_neubiorev_2017_02_014 crossref_primary_10_1016_j_yhbeh_2015_06_001 crossref_primary_10_3389_fpsyg_2015_01044 crossref_primary_10_1007_s00213_022_06068_x crossref_primary_10_1523_JNEUROSCI_5828_12_2013 crossref_primary_10_1093_cercor_bhz144 crossref_primary_10_1523_JNEUROSCI_1294_12_2013 crossref_primary_10_1007_s00213_021_05897_6 crossref_primary_10_1016_j_physbeh_2019_01_013 crossref_primary_10_1016_j_cobeha_2015_08_004 crossref_primary_10_1111_bph_15613 crossref_primary_10_1016_j_cobeha_2015_08_006 crossref_primary_10_1016_j_neuroimage_2013_11_020 crossref_primary_10_1007_s00213_013_3398_9 crossref_primary_10_1038_npp_2009_155 crossref_primary_10_1016_j_bpsc_2016_12_003 crossref_primary_10_1016_j_neuroimage_2023_119983 crossref_primary_10_1016_j_neuropsychologia_2015_03_028 crossref_primary_10_7554_eLife_29088 crossref_primary_10_2147_NDT_S286102 crossref_primary_10_1371_journal_pone_0082169 crossref_primary_10_1016_j_yhbeh_2021_105022 crossref_primary_10_1007_s00213_013_3000_5 crossref_primary_10_1017_S1461145710000775 crossref_primary_10_1038_s41386_019_0454_0 crossref_primary_10_1007_s00213_011_2426_x crossref_primary_10_1016_j_neuroscience_2009_04_048 crossref_primary_10_3389_fnbeh_2014_00368 crossref_primary_10_1016_j_cortex_2018_11_031 crossref_primary_10_1016_j_concog_2024_103700 crossref_primary_10_1016_j_neunet_2011_02_006 crossref_primary_10_1024_1016_264X_a000245 crossref_primary_10_1111_ejn_14414 crossref_primary_10_1523_JNEUROSCI_0718_14_2014 crossref_primary_10_3758_s13415_018_0584_6 crossref_primary_10_1038_s41386_019_0455_z crossref_primary_10_1093_cercor_bhv243 crossref_primary_10_1038_s41598_020_72329_4 crossref_primary_10_1162_jocn_a_00544 crossref_primary_10_1038_npp_2014_335 crossref_primary_10_12968_hmed_2013_74_3_160 crossref_primary_10_1007_s00702_011_0723_5 crossref_primary_10_1002_erv_2876 crossref_primary_10_1038_s41467_023_44358_w crossref_primary_10_1038_mp_2016_121 crossref_primary_10_1016_j_pbb_2013_01_013 |
Cites_doi | 10.1007/BF00558250 10.1523/JNEUROSCI.0601-07.2007 10.1162/jocn.1992.4.1.58 10.1016/S1364-6613(98)01240-6 10.1016/S0278-5846(97)00106-1 10.1038/jcbfm.1985.87 10.1038/376572a0 10.1038/sj.npp.1301598 10.1162/jocn.1997.9.3.330 10.1523/JNEUROSCI.16-05-01936.1996 10.1162/0898929052880093 10.1038/sj.npp.1301278 10.1016/j.neuropsychologia.2006.03.030 10.1007/s00213-005-0077-5 10.1038/1124 10.1006/nimg.1996.0066 10.1073/pnas.0706111104 10.1126/science.275.5306.1593 10.1523/JNEUROSCI.4475-07.2008 10.1523/JNEUROSCI.17-21-08528.1997 10.1016/0969-8043(93)90165-7 10.1007/s00213-007-0957-y 10.1126/science.1102941 10.1523/JNEUROSCI.2496-07.2007 10.1093/cercor/11.12.1136 10.1109/42.611350 10.1016/S0028-3908(98)00085-9 10.1097/00004728-199605000-00020 10.1126/science.482929 10.1016/S1474-6670(17)38315-5 10.1037/0735-7044.120.3.497 10.1038/nature05051 10.1111/j.1460-9568.2007.05947.x 10.1097/00001756-199711100-00032 10.1098/rsta.2004.1468 10.1523/JNEUROSCI.4653-03.2004 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society for Neuroscience 0270-6474/09/291538-06$15.00/0 2009 |
Copyright_xml | – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/291538-06$15.00/0 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.4467-08.2009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1543 |
ExternalDocumentID | PMC2940719 19193900 10_1523_JNEUROSCI_4467_08_2009 www29_5_1538 |
Genre | Comparative Study Randomized Controlled Trial Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA020600 – fundername: NIMH NIH HHS grantid: R01 MH063901 – fundername: NINDS NIH HHS grantid: NS40813 – fundername: NIA NIH HHS grantid: AG027984 – fundername: NIA NIH HHS grantid: R01 AG027984 – fundername: NIDA NIH HHS grantid: DA02060 – fundername: NINDS NIH HHS grantid: P01 NS040813 – fundername: NIMH NIH HHS grantid: MH63901 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c509t-a7c9cda24bc3b18596121787776a892082be8d9ebbcf0f98c49b8fbbf2310c333 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:06:50 EDT 2025 Fri Jul 11 00:11:56 EDT 2025 Fri May 30 11:02:16 EDT 2025 Tue Jul 01 02:59:01 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Tue Nov 10 19:19:54 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-a7c9cda24bc3b18596121787776a892082be8d9ebbcf0f98c49b8fbbf2310c333 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/29/5/1538.full.pdf |
PMID | 19193900 |
PQID | 66887736 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2940719 proquest_miscellaneous_66887736 pubmed_primary_19193900 crossref_primary_10_1523_JNEUROSCI_4467_08_2009 crossref_citationtrail_10_1523_JNEUROSCI_4467_08_2009 highwire_smallpub1_www29_5_1538 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090204 2009-02-04 2009-Feb-04 |
PublicationDateYYYYMMDD | 2009-02-04 |
PublicationDate_xml | – month: 02 year: 2009 text: 20090204 day: 04 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2009 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Eberling (2023041303363408000_29.5.1538.10) 2007; 1 Zahrt (2023041303363408000_29.5.1538.40) 1997; 17 Gibbs (2023041303363408000_29.5.1538.16) 2005; 180 2023041303363408000_29.5.1538.21 2023041303363408000_29.5.1538.20 2023041303363408000_29.5.1538.29 2023041303363408000_29.5.1538.27 2023041303363408000_29.5.1538.26 Montague (2023041303363408000_29.5.1538.24) 1996; 16 2023041303363408000_29.5.1538.25 2023041303363408000_29.5.1538.23 2023041303363408000_29.5.1538.22 2023041303363408000_29.5.1538.19 2023041303363408000_29.5.1538.4 2023041303363408000_29.5.1538.5 2023041303363408000_29.5.1538.6 2023041303363408000_29.5.1538.7 Vingerhoets (2023041303363408000_29.5.1538.36) 1994; 35 2023041303363408000_29.5.1538.1 2023041303363408000_29.5.1538.2 2023041303363408000_29.5.1538.3 2023041303363408000_29.5.1538.32 2023041303363408000_29.5.1538.31 2023041303363408000_29.5.1538.30 Volkow (2023041303363408000_29.5.1538.37) 1998; 155 2023041303363408000_29.5.1538.8 2023041303363408000_29.5.1538.9 2023041303363408000_29.5.1538.18 2023041303363408000_29.5.1538.17 Phillips (2023041303363408000_29.5.1538.28) 2004; 14 2023041303363408000_29.5.1538.39 2023041303363408000_29.5.1538.38 2023041303363408000_29.5.1538.15 2023041303363408000_29.5.1538.14 2023041303363408000_29.5.1538.13 2023041303363408000_29.5.1538.35 2023041303363408000_29.5.1538.12 2023041303363408000_29.5.1538.34 2023041303363408000_29.5.1538.11 2023041303363408000_29.5.1538.33 |
References_xml | – ident: 2023041303363408000_29.5.1538.9 doi: 10.1007/BF00558250 – ident: 2023041303363408000_29.5.1538.6 doi: 10.1523/JNEUROSCI.0601-07.2007 – ident: 2023041303363408000_29.5.1538.22 doi: 10.1162/jocn.1992.4.1.58 – ident: 2023041303363408000_29.5.1538.1 doi: 10.1016/S1364-6613(98)01240-6 – ident: 2023041303363408000_29.5.1538.23 doi: 10.1016/S0278-5846(97)00106-1 – ident: 2023041303363408000_29.5.1538.26 doi: 10.1038/jcbfm.1985.87 – ident: 2023041303363408000_29.5.1538.39 doi: 10.1038/376572a0 – ident: 2023041303363408000_29.5.1538.7 doi: 10.1038/sj.npp.1301598 – ident: 2023041303363408000_29.5.1538.21 doi: 10.1162/jocn.1997.9.3.330 – volume: 16 start-page: 1936 year: 1996 ident: 2023041303363408000_29.5.1538.24 article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-05-01936.1996 – volume: 35 start-page: 18 year: 1994 ident: 2023041303363408000_29.5.1538.36 article-title: Reproducibility of fluorine-18–6-fluorodopa positron emission tomography in normal human subjects publication-title: J Nucl Med – ident: 2023041303363408000_29.5.1538.11 doi: 10.1162/0898929052880093 – ident: 2023041303363408000_29.5.1538.14 doi: 10.1038/sj.npp.1301278 – volume: 155 start-page: 344 year: 1998 ident: 2023041303363408000_29.5.1538.37 article-title: Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals publication-title: Am J Psychiatr – ident: 2023041303363408000_29.5.1538.5 doi: 10.1016/j.neuropsychologia.2006.03.030 – volume: 180 start-page: 644 year: 2005 ident: 2023041303363408000_29.5.1538.16 article-title: A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory publication-title: Psychopharmacology doi: 10.1007/s00213-005-0077-5 – ident: 2023041303363408000_29.5.1538.17 doi: 10.1038/1124 – ident: 2023041303363408000_29.5.1538.20 doi: 10.1006/nimg.1996.0066 – ident: 2023041303363408000_29.5.1538.15 doi: 10.1073/pnas.0706111104 – ident: 2023041303363408000_29.5.1538.31 doi: 10.1126/science.275.5306.1593 – ident: 2023041303363408000_29.5.1538.8 doi: 10.1523/JNEUROSCI.4475-07.2008 – volume: 1 start-page: 9 year: 2007 ident: 2023041303363408000_29.5.1538.10 article-title: PET 6-[F]fluoro-L-m-tyrosine studies of dopaminergic function in human and nonhuman primates publication-title: Front Hum Neurosci – volume: 17 start-page: 8528 year: 1997 ident: 2023041303363408000_29.5.1538.40 article-title: Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-21-08528.1997 – ident: 2023041303363408000_29.5.1538.25 doi: 10.1016/0969-8043(93)90165-7 – ident: 2023041303363408000_29.5.1538.29 doi: 10.1007/s00213-007-0957-y – ident: 2023041303363408000_29.5.1538.13 doi: 10.1126/science.1102941 – ident: 2023041303363408000_29.5.1538.30 doi: 10.1523/JNEUROSCI.2496-07.2007 – ident: 2023041303363408000_29.5.1538.4 doi: 10.1093/cercor/11.12.1136 – ident: 2023041303363408000_29.5.1538.19 doi: 10.1109/42.611350 – ident: 2023041303363408000_29.5.1538.34 – ident: 2023041303363408000_29.5.1538.35 doi: 10.1016/S0028-3908(98)00085-9 – ident: 2023041303363408000_29.5.1538.38 doi: 10.1097/00004728-199605000-00020 – ident: 2023041303363408000_29.5.1538.32 doi: 10.1126/science.482929 – ident: 2023041303363408000_29.5.1538.33 doi: 10.1016/S1474-6670(17)38315-5 – ident: 2023041303363408000_29.5.1538.12 doi: 10.1037/0735-7044.120.3.497 – ident: 2023041303363408000_29.5.1538.27 doi: 10.1038/nature05051 – ident: 2023041303363408000_29.5.1538.2 doi: 10.1111/j.1460-9568.2007.05947.x – ident: 2023041303363408000_29.5.1538.18 doi: 10.1097/00001756-199711100-00032 – ident: 2023041303363408000_29.5.1538.3 doi: 10.1098/rsta.2004.1468 – volume: 14 start-page: 547 year: 2004 ident: 2023041303363408000_29.5.1538.28 article-title: Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4653-03.2004 |
SSID | ssj0007017 |
Score | 2.4504445 |
Snippet | Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1538 |
SubjectTerms | Bromocriptine - administration & dosage Corpus Striatum - drug effects Corpus Striatum - metabolism Cross-Over Studies Dopamine - metabolism Dopamine - pharmacology Dopamine Agonists - administration & dosage Double-Blind Method Female Humans Photic Stimulation Positron-Emission Tomography Predictive Value of Tests Reversal Learning - drug effects Reversal Learning - physiology Reward Young Adult |
Title | Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration |
URI | http://www.jneurosci.org/cgi/content/abstract/29/5/1538 https://www.ncbi.nlm.nih.gov/pubmed/19193900 https://www.proquest.com/docview/66887736 https://pubmed.ncbi.nlm.nih.gov/PMC2940719 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIzz0gLpFTv-09VgnQFjUgpZV6s3b9oFETu4ptReVP8peYWXvtTRSpwMWKbK-9yfdldmZ2HoR89BLX99LANszUAgMl8ZnBEpMbIfbq5nbCeYrZyOcz_-TSPbvyrgaD31rUUl2Jcfxrb17J_6AK5wBXzJL9B2S7h8IJ-Az4whEQhuNfYTzHnhuYzTgF03eF-uKPNW68VOXoe13BG1ND9pfPZLQ8BmCg21o5Q2QkMNw6xxj2tokEaKLqWWuQiaPpuv65U2BXV2f7xDKp0mrFMTu-TIpi2XhzivK6p6JsFq_F7ffbU18XQpSNsxoG9JkS54s7fsM3jR-45DfFlsOCyRhnzWFZxKPZ7nQagWcHYMq6TdeecdoKZFvuAFm6xG59JAt9T1yKXxTfe9cFT9anOJtheOR8cjp2cX0wQ5n8qQ8AfG9Xki1gxzKHmWa_TqrYgJ3lswtq3Gw2Nou8CCfxgDy0wW7BlhrT02-dahCYsgV090XblHWY3dH-ucmats1EthUnVcx6n2G0G9-rKUwXT8jjlhb0uKHtUzJI82fk8DjnVbG6o5-ojD2WmzqHpFZMpop9VDGZ7jKZKiZTxWQKTKbAZKoxmVYF1ZlMkcl0m8nPyeWXzxeTE6NtCGLEoNdWBg9iFifcdkXsCFA0GZa_C7Cipc9DZoM2K9IwYakQcWZmLIxdJsJMiAyNmNhxnBfkIC_y9BWhHMyWMMkSP_G5myaCW2ESO77PQmEJywuHxFO_dhS31fKxacsyQqsZAIs6wCIELDJD7OjKhuSoG3fb1Iu5d8QHBWZUrvhyCdhZkU4muENhHIHwxx09nqdFXUa-DzpC4PhD8rJBvH9ny5ohCba40N2AZeW3r-SLa1le3mbo5GGv753XG_Ko_3-_JQfVuk7fgYpeifeS9n8ANrLpyw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striatal+Dopamine+Predicts+Outcome-Specific+Reversal+Learning+and+Its+Sensitivity+to+Dopaminergic+Drug+Administration&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cools%2C+Roshan&rft.au=Frank%2C+Michael+J&rft.au=Gibbs%2C+Sasha+E&rft.au=Miyakawa%2C+Asako&rft.date=2009-02-04&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=29&rft.issue=5&rft.spage=1538&rft_id=info:doi/10.1523%2FJNEUROSCI.4467-08.2009&rft_id=info%3Apmid%2F19193900&rft.externalDBID=n%2Fa&rft.externalDocID=www29_5_1538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |