Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration

Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning refl...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 29; no. 5; pp. 1538 - 1543
Main Authors Cools, Roshan, Frank, Michael J, Gibbs, Sasha E, Miyakawa, Asako, Jagust, William, D'Esposito, Mark
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 04.02.2009
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D 2 receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D 2 receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.
AbstractList Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D 2 receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D 2 receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.
Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.
Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence for this pervasive hypothesis has hitherto been unavailable. We demonstrate that individual differences in reward-based reversal learning reflect variation in baseline striatal dopamine synthesis capacity, as measured with neurochemical positron emission tomography. Subjects with high baseline dopamine synthesis in the striatum showed relatively better reversal learning from unexpected rewards than from unexpected punishments, whereas subjects with low baseline dopamine synthesis in the striatum showed the reverse pattern. In addition, baseline dopamine synthesis predicted the direction of dopaminergic drug effects. The D(2) receptor agonist bromocriptine improved reward-based relative to punishment-based reversal learning in subjects with low baseline dopamine synthesis capacity, while impairing it in subjects with high baseline dopamine synthesis capacity in the striatum. Finally, this pattern of drug effects was outcome-specific, and driven primarily by drug effects on punishment-, but not reward-based reversal learning. These data demonstrate that the effects of D(2) receptor stimulation on reversal learning in humans depend on task demands and baseline striatal dopamine synthesis capacity.
Author Frank, Michael J
Cools, Roshan
Jagust, William
Gibbs, Sasha E
D'Esposito, Mark
Miyakawa, Asako
Author_xml – sequence: 1
  fullname: Cools, Roshan
– sequence: 2
  fullname: Frank, Michael J
– sequence: 3
  fullname: Gibbs, Sasha E
– sequence: 4
  fullname: Miyakawa, Asako
– sequence: 5
  fullname: Jagust, William
– sequence: 6
  fullname: D'Esposito, Mark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19193900$$D View this record in MEDLINE/PubMed
BookMark eNqFUU2P0zAUtNAitlv4C6ucuKU8O2lsSwhp1V2gqKJoy54tx3FSo8QuttNq_z0uW8rHhZNlvZl582au0IV1ViN0jWGG56R48-nz3cP9erNYzsqyojmwGQHgz9AkTXlOSsAXaAKEQl6VtLxEVyF8AwAKmL5Al5hjXnCACRo30RsZZZ_dup0cjNXZF68bo2LI1mNUbtD5ZqeVaY3K7vVe-5CwKy29NbbLpG2yZYJutA0mmr2Jj1l0Zy3fJdatH7vspkl_E6KX0Tj7Ej1vZR_0q9M7RQ_v774uPuar9Yfl4maVqznwmEuquGokKWtV1JjNeYUJpoxSWknGCTBSa9ZwXdeqhZYzVfKatXXdkgKDKopiit496e7GetCN0jYZ6MXOm0H6R-GkEX9PrNmKzu0F4SXQlNEUvT4JePd91CGKwQSl-15a7cYgqoolO0WVgNd_bjqv-JV0AlRPAOVdCF63vyEgjpWKc6XiWKkAJo6VJuLbf4jKxJ8pJsem_z_9dMHWdNuD8VqEQfZ9sonF4XAgXMwTv2DFDyMuuTo
CitedBy_id crossref_primary_10_1016_j_bbr_2012_02_006
crossref_primary_10_1016_j_neuroimage_2012_04_024
crossref_primary_10_3389_fnins_2023_1267901
crossref_primary_10_1016_j_neuro_2022_08_013
crossref_primary_10_1016_j_physbeh_2016_04_020
crossref_primary_10_1016_j_neuroscience_2011_02_008
crossref_primary_10_1016_j_tics_2010_08_002
crossref_primary_10_1016_j_nicl_2016_05_019
crossref_primary_10_1016_j_neuron_2019_09_035
crossref_primary_10_1038_s41386_021_01100_8
crossref_primary_10_1002_mds_25687
crossref_primary_10_1038_s41386_020_0617_z
crossref_primary_10_1038_s41398_024_02839_6
crossref_primary_10_1016_j_dcn_2022_101100
crossref_primary_10_1038_npp_2013_100
crossref_primary_10_1523_JNEUROSCI_2405_16_2017
crossref_primary_10_1016_j_biopsych_2016_03_2104
crossref_primary_10_1017_S1041610213001762
crossref_primary_10_1016_j_nlm_2011_08_006
crossref_primary_10_1097_JCP_0000000000000076
crossref_primary_10_1371_journal_pbio_1002575
crossref_primary_10_1016_j_biopsych_2011_03_028
crossref_primary_10_1016_j_nlm_2015_08_011
crossref_primary_10_1007_s00213_010_2087_1
crossref_primary_10_1016_j_bbr_2016_10_019
crossref_primary_10_1016_j_bbr_2018_06_016
crossref_primary_10_1371_journal_pcbi_1006707
crossref_primary_10_1038_npp_2010_121
crossref_primary_10_3390_ijms23073452
crossref_primary_10_1016_j_euroneuro_2024_08_511
crossref_primary_10_1016_j_neuropsychologia_2011_12_012
crossref_primary_10_1016_j_pharmthera_2010_06_002
crossref_primary_10_1093_scan_nsaa088
crossref_primary_10_1016_j_ijpsycho_2015_04_010
crossref_primary_10_1523_JNEUROSCI_2051_14_2014
crossref_primary_10_1038_s44159_024_00304_1
crossref_primary_10_1016_j_jmp_2013_08_003
crossref_primary_10_1016_j_cobeha_2024_101389
crossref_primary_10_1016_j_conb_2011_04_002
crossref_primary_10_1017_S1355617715001241
crossref_primary_10_3389_fnut_2014_00019
crossref_primary_10_1038_npp_2010_157
crossref_primary_10_1002_da_20897
crossref_primary_10_1038_s42003_022_03690_5
crossref_primary_10_1089_brain_2012_0081
crossref_primary_10_1016_j_neucli_2021_08_001
crossref_primary_10_1093_ijnp_pyaa007
crossref_primary_10_1017_S0033291717000769
crossref_primary_10_1016_j_neuropharm_2013_05_044
crossref_primary_10_1016_j_dcn_2022_101126
crossref_primary_10_1016_j_cobeha_2024_101375
crossref_primary_10_1038_npp_2014_240
crossref_primary_10_7554_eLife_83161
crossref_primary_10_1093_brain_awr147
crossref_primary_10_1016_j_cobeha_2024_101371
crossref_primary_10_1523_JNEUROSCI_4172_09_2009
crossref_primary_10_1007_s00213_015_3986_y
crossref_primary_10_1016_j_bbr_2013_05_060
crossref_primary_10_1093_cercor_bhr114
crossref_primary_10_1016_j_biopsych_2019_09_002
crossref_primary_10_3389_fendo_2018_00060
crossref_primary_10_3758_s13415_019_00752_w
crossref_primary_10_1007_s00213_011_2340_2
crossref_primary_10_1093_cercor_bhz313
crossref_primary_10_1523_JNEUROSCI_6486_10_2011
crossref_primary_10_1007_s00213_011_2579_7
crossref_primary_10_1007_s00213_010_1880_1
crossref_primary_10_1523_JNEUROSCI_2326_15_2016
crossref_primary_10_1371_journal_pcbi_1008659
crossref_primary_10_1002_hbm_20979
crossref_primary_10_1016_j_biopsych_2011_12_028
crossref_primary_10_1371_journal_pone_0166675
crossref_primary_10_1007_s12311_011_0288_8
crossref_primary_10_1016_j_biopsych_2012_10_032
crossref_primary_10_1093_scan_nsz006
crossref_primary_10_7554_eLife_91650_3
crossref_primary_10_1007_s00213_015_4141_5
crossref_primary_10_1016_j_cortex_2024_06_005
crossref_primary_10_1038_npp_2010_165
crossref_primary_10_1007_s10071_020_01399_8
crossref_primary_10_1038_s41386_018_0272_9
crossref_primary_10_1038_s41386_021_00993_9
crossref_primary_10_1523_JNEUROSCI_0810_09_2009
crossref_primary_10_1016_j_neubiorev_2009_11_019
crossref_primary_10_1016_j_appet_2018_08_029
crossref_primary_10_1523_JNEUROSCI_1979_16_2016
crossref_primary_10_1093_cercor_bhs344
crossref_primary_10_1152_physrev_00041_2012
crossref_primary_10_3389_fnana_2017_00066
crossref_primary_10_1038_npp_2010_96
crossref_primary_10_1093_cercor_bhac028
crossref_primary_10_1016_j_neuroimage_2015_10_067
crossref_primary_10_1177_1073858417717210
crossref_primary_10_1152_jn_00261_2015
crossref_primary_10_3389_fpsyg_2014_01101
crossref_primary_10_1016_j_neubiorev_2020_11_004
crossref_primary_10_1016_j_cortex_2013_02_014
crossref_primary_10_1080_03036758_2020_1784240
crossref_primary_10_1016_j_cobeha_2018_03_010
crossref_primary_10_3389_fpsyt_2021_799548
crossref_primary_10_1093_cercor_bhs144
crossref_primary_10_1038_npp_2012_207
crossref_primary_10_1038_s41467_022_32679_1
crossref_primary_10_1523_JNEUROSCI_5066_10_2011
crossref_primary_10_1016_j_psyneuen_2011_06_004
crossref_primary_10_1080_00222895_2013_817380
crossref_primary_10_1159_000514074
crossref_primary_10_1016_j_bandc_2013_09_011
crossref_primary_10_1038_npp_2016_43
crossref_primary_10_1007_s00213_014_3741_9
crossref_primary_10_1007_s00213_014_3749_1
crossref_primary_10_1016_j_neunet_2012_02_031
crossref_primary_10_1371_journal_pone_0176205
crossref_primary_10_1038_s41598_022_26980_8
crossref_primary_10_1007_s00429_021_02227_6
crossref_primary_10_1016_j_tics_2021_06_001
crossref_primary_10_1093_brain_aww128
crossref_primary_10_1371_journal_pcbi_1005171
crossref_primary_10_1038_s41598_018_24001_1
crossref_primary_10_7554_eLife_75474
crossref_primary_10_1007_s00213_010_2147_6
crossref_primary_10_1016_j_bbr_2019_112393
crossref_primary_10_1007_s00213_011_2543_6
crossref_primary_10_1111_nyas_14656
crossref_primary_10_1016_j_neuroimage_2011_01_068
crossref_primary_10_1371_journal_pone_0068177
crossref_primary_10_1016_j_neubiorev_2015_06_015
crossref_primary_10_1016_j_drugalcdep_2012_03_017
crossref_primary_10_1523_JNEUROSCI_0363_11_2011
crossref_primary_10_1523_JNEUROSCI_2382_18_2019
crossref_primary_10_1016_j_neuroimage_2010_03_036
crossref_primary_10_1007_s43440_023_00563_4
crossref_primary_10_1016_j_neuropsychologia_2013_07_026
crossref_primary_10_1523_JNEUROSCI_2631_10_2010
crossref_primary_10_1162_jocn_a_00706
crossref_primary_10_3389_fncir_2016_00053
crossref_primary_10_1007_s11172_023_3846_1
crossref_primary_10_1016_j_cortex_2017_08_022
crossref_primary_10_1016_j_cortex_2013_04_002
crossref_primary_10_1021_acs_orglett_6b02911
crossref_primary_10_1080_21622965_2012_709422
crossref_primary_10_1152_jn_00817_2018
crossref_primary_10_1016_j_drugalcdep_2013_09_029
crossref_primary_10_1017_S0033291710001960
crossref_primary_10_1016_j_bpsgos_2022_08_005
crossref_primary_10_1162_jocn_a_00237
crossref_primary_10_1177_0956797613517240
crossref_primary_10_31857_S0044467723020090
crossref_primary_10_1016_j_jad_2019_09_031
crossref_primary_10_1016_j_neuroimage_2017_12_022
crossref_primary_10_1016_j_nlm_2024_107985
crossref_primary_10_1016_j_biopsych_2011_01_014
crossref_primary_10_1016_j_ynstr_2017_03_003
crossref_primary_10_1177_0269881116665328
crossref_primary_10_1093_scan_nsae050
crossref_primary_10_1093_brain_aws068
crossref_primary_10_1038_s41386_020_0779_8
crossref_primary_10_1093_cercor_bhr185
crossref_primary_10_7554_eLife_22169
crossref_primary_10_1093_cercor_bhu210
crossref_primary_10_1016_j_neubiorev_2017_11_022
crossref_primary_10_1017_S1092852914000108
crossref_primary_10_1371_journal_pone_0096319
crossref_primary_10_5127_jep_041814
crossref_primary_10_1016_j_conb_2011_02_013
crossref_primary_10_1016_j_neubiorev_2017_06_003
crossref_primary_10_1016_j_bbr_2016_08_054
crossref_primary_10_1097_FBP_0000000000000536
crossref_primary_10_1038_npp_2017_302
crossref_primary_10_1016_j_neuroscience_2016_06_005
crossref_primary_10_1016_j_physbeh_2017_04_001
crossref_primary_10_1162_jocn_a_01784
crossref_primary_10_1016_j_neuroimage_2017_04_005
crossref_primary_10_1016_j_yhbeh_2017_02_006
crossref_primary_10_1007_s11031_017_9633_7
crossref_primary_10_1038_s41467_024_54395_8
crossref_primary_10_1093_braincomms_fcz013
crossref_primary_10_1093_scan_nsx122
crossref_primary_10_1016_j_tics_2010_11_002
crossref_primary_10_1523_ENEURO_0229_17_2018
crossref_primary_10_1038_s41386_022_01291_8
crossref_primary_10_1007_s00213_012_2774_1
crossref_primary_10_1007_s00213_023_06460_1
crossref_primary_10_1026_0033_3042_a000599
crossref_primary_10_3390_cells10113157
crossref_primary_10_1016_j_addicn_2022_100045
crossref_primary_10_1016_j_dcn_2011_06_007
crossref_primary_10_1111_ejn_13768
crossref_primary_10_1523_JNEUROSCI_3524_09_2009
crossref_primary_10_1016_j_euroneuro_2016_03_011
crossref_primary_10_1016_j_neuropharm_2020_107996
crossref_primary_10_7554_eLife_61844
crossref_primary_10_1016_j_bbr_2015_11_016
crossref_primary_10_1016_j_ijpsycho_2019_09_016
crossref_primary_10_1371_journal_pone_0226790
crossref_primary_10_1146_annurev_psych_022024_103901
crossref_primary_10_1162_jocn_a_01317
crossref_primary_10_1016_j_neuron_2013_08_030
crossref_primary_10_1016_j_euroneuro_2017_02_004
crossref_primary_10_1016_j_pbb_2015_01_014
crossref_primary_10_1142_S021963521650028X
crossref_primary_10_1016_j_neuroimage_2015_08_036
crossref_primary_10_1176_appi_ajp_2011_11010137
crossref_primary_10_1038_ncomms6394
crossref_primary_10_1016_j_neubiorev_2018_10_008
crossref_primary_10_1073_pnas_1006068107
crossref_primary_10_1177_0269881116668591
crossref_primary_10_1007_s00213_016_4322_x
crossref_primary_10_1038_s41467_019_10800_1
crossref_primary_10_7554_eLife_91650
crossref_primary_10_1038_s41598_020_80765_5
crossref_primary_10_1093_cercor_bhp247
crossref_primary_10_1038_npp_2016_192
crossref_primary_10_1093_ijnp_pyab041
crossref_primary_10_1016_j_cobeha_2018_01_027
crossref_primary_10_1007_s00213_020_05515_x
crossref_primary_10_1007_s11055_013_9869_y
crossref_primary_10_1016_j_neubiorev_2017_02_014
crossref_primary_10_1016_j_yhbeh_2015_06_001
crossref_primary_10_3389_fpsyg_2015_01044
crossref_primary_10_1007_s00213_022_06068_x
crossref_primary_10_1523_JNEUROSCI_5828_12_2013
crossref_primary_10_1093_cercor_bhz144
crossref_primary_10_1523_JNEUROSCI_1294_12_2013
crossref_primary_10_1007_s00213_021_05897_6
crossref_primary_10_1016_j_physbeh_2019_01_013
crossref_primary_10_1016_j_cobeha_2015_08_004
crossref_primary_10_1111_bph_15613
crossref_primary_10_1016_j_cobeha_2015_08_006
crossref_primary_10_1016_j_neuroimage_2013_11_020
crossref_primary_10_1007_s00213_013_3398_9
crossref_primary_10_1038_npp_2009_155
crossref_primary_10_1016_j_bpsc_2016_12_003
crossref_primary_10_1016_j_neuroimage_2023_119983
crossref_primary_10_1016_j_neuropsychologia_2015_03_028
crossref_primary_10_7554_eLife_29088
crossref_primary_10_2147_NDT_S286102
crossref_primary_10_1371_journal_pone_0082169
crossref_primary_10_1016_j_yhbeh_2021_105022
crossref_primary_10_1007_s00213_013_3000_5
crossref_primary_10_1017_S1461145710000775
crossref_primary_10_1038_s41386_019_0454_0
crossref_primary_10_1007_s00213_011_2426_x
crossref_primary_10_1016_j_neuroscience_2009_04_048
crossref_primary_10_3389_fnbeh_2014_00368
crossref_primary_10_1016_j_cortex_2018_11_031
crossref_primary_10_1016_j_concog_2024_103700
crossref_primary_10_1016_j_neunet_2011_02_006
crossref_primary_10_1024_1016_264X_a000245
crossref_primary_10_1111_ejn_14414
crossref_primary_10_1523_JNEUROSCI_0718_14_2014
crossref_primary_10_3758_s13415_018_0584_6
crossref_primary_10_1038_s41386_019_0455_z
crossref_primary_10_1093_cercor_bhv243
crossref_primary_10_1038_s41598_020_72329_4
crossref_primary_10_1162_jocn_a_00544
crossref_primary_10_1038_npp_2014_335
crossref_primary_10_12968_hmed_2013_74_3_160
crossref_primary_10_1007_s00702_011_0723_5
crossref_primary_10_1002_erv_2876
crossref_primary_10_1038_s41467_023_44358_w
crossref_primary_10_1038_mp_2016_121
crossref_primary_10_1016_j_pbb_2013_01_013
Cites_doi 10.1007/BF00558250
10.1523/JNEUROSCI.0601-07.2007
10.1162/jocn.1992.4.1.58
10.1016/S1364-6613(98)01240-6
10.1016/S0278-5846(97)00106-1
10.1038/jcbfm.1985.87
10.1038/376572a0
10.1038/sj.npp.1301598
10.1162/jocn.1997.9.3.330
10.1523/JNEUROSCI.16-05-01936.1996
10.1162/0898929052880093
10.1038/sj.npp.1301278
10.1016/j.neuropsychologia.2006.03.030
10.1007/s00213-005-0077-5
10.1038/1124
10.1006/nimg.1996.0066
10.1073/pnas.0706111104
10.1126/science.275.5306.1593
10.1523/JNEUROSCI.4475-07.2008
10.1523/JNEUROSCI.17-21-08528.1997
10.1016/0969-8043(93)90165-7
10.1007/s00213-007-0957-y
10.1126/science.1102941
10.1523/JNEUROSCI.2496-07.2007
10.1093/cercor/11.12.1136
10.1109/42.611350
10.1016/S0028-3908(98)00085-9
10.1097/00004728-199605000-00020
10.1126/science.482929
10.1016/S1474-6670(17)38315-5
10.1037/0735-7044.120.3.497
10.1038/nature05051
10.1111/j.1460-9568.2007.05947.x
10.1097/00001756-199711100-00032
10.1098/rsta.2004.1468
10.1523/JNEUROSCI.4653-03.2004
ContentType Journal Article
Copyright Copyright © 2009 Society for Neuroscience 0270-6474/09/291538-06$15.00/0 2009
Copyright_xml – notice: Copyright © 2009 Society for Neuroscience 0270-6474/09/291538-06$15.00/0 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.4467-08.2009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1543
ExternalDocumentID PMC2940719
19193900
10_1523_JNEUROSCI_4467_08_2009
www29_5_1538
Genre Comparative Study
Randomized Controlled Trial
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA020600
– fundername: NIMH NIH HHS
  grantid: R01 MH063901
– fundername: NINDS NIH HHS
  grantid: NS40813
– fundername: NIA NIH HHS
  grantid: AG027984
– fundername: NIA NIH HHS
  grantid: R01 AG027984
– fundername: NIDA NIH HHS
  grantid: DA02060
– fundername: NINDS NIH HHS
  grantid: P01 NS040813
– fundername: NIMH NIH HHS
  grantid: MH63901
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c509t-a7c9cda24bc3b18596121787776a892082be8d9ebbcf0f98c49b8fbbf2310c333
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:06:50 EDT 2025
Fri Jul 11 00:11:56 EDT 2025
Fri May 30 11:02:16 EDT 2025
Tue Jul 01 02:59:01 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Tue Nov 10 19:19:54 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-a7c9cda24bc3b18596121787776a892082be8d9ebbcf0f98c49b8fbbf2310c333
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.jneurosci.org/content/jneuro/29/5/1538.full.pdf
PMID 19193900
PQID 66887736
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2940719
proquest_miscellaneous_66887736
pubmed_primary_19193900
crossref_primary_10_1523_JNEUROSCI_4467_08_2009
crossref_citationtrail_10_1523_JNEUROSCI_4467_08_2009
highwire_smallpub1_www29_5_1538
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090204
2009-02-04
2009-Feb-04
PublicationDateYYYYMMDD 2009-02-04
PublicationDate_xml – month: 02
  year: 2009
  text: 20090204
  day: 04
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2009
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Eberling (2023041303363408000_29.5.1538.10) 2007; 1
Zahrt (2023041303363408000_29.5.1538.40) 1997; 17
Gibbs (2023041303363408000_29.5.1538.16) 2005; 180
2023041303363408000_29.5.1538.21
2023041303363408000_29.5.1538.20
2023041303363408000_29.5.1538.29
2023041303363408000_29.5.1538.27
2023041303363408000_29.5.1538.26
Montague (2023041303363408000_29.5.1538.24) 1996; 16
2023041303363408000_29.5.1538.25
2023041303363408000_29.5.1538.23
2023041303363408000_29.5.1538.22
2023041303363408000_29.5.1538.19
2023041303363408000_29.5.1538.4
2023041303363408000_29.5.1538.5
2023041303363408000_29.5.1538.6
2023041303363408000_29.5.1538.7
Vingerhoets (2023041303363408000_29.5.1538.36) 1994; 35
2023041303363408000_29.5.1538.1
2023041303363408000_29.5.1538.2
2023041303363408000_29.5.1538.3
2023041303363408000_29.5.1538.32
2023041303363408000_29.5.1538.31
2023041303363408000_29.5.1538.30
Volkow (2023041303363408000_29.5.1538.37) 1998; 155
2023041303363408000_29.5.1538.8
2023041303363408000_29.5.1538.9
2023041303363408000_29.5.1538.18
2023041303363408000_29.5.1538.17
Phillips (2023041303363408000_29.5.1538.28) 2004; 14
2023041303363408000_29.5.1538.39
2023041303363408000_29.5.1538.38
2023041303363408000_29.5.1538.15
2023041303363408000_29.5.1538.14
2023041303363408000_29.5.1538.13
2023041303363408000_29.5.1538.35
2023041303363408000_29.5.1538.12
2023041303363408000_29.5.1538.34
2023041303363408000_29.5.1538.11
2023041303363408000_29.5.1538.33
References_xml – ident: 2023041303363408000_29.5.1538.9
  doi: 10.1007/BF00558250
– ident: 2023041303363408000_29.5.1538.6
  doi: 10.1523/JNEUROSCI.0601-07.2007
– ident: 2023041303363408000_29.5.1538.22
  doi: 10.1162/jocn.1992.4.1.58
– ident: 2023041303363408000_29.5.1538.1
  doi: 10.1016/S1364-6613(98)01240-6
– ident: 2023041303363408000_29.5.1538.23
  doi: 10.1016/S0278-5846(97)00106-1
– ident: 2023041303363408000_29.5.1538.26
  doi: 10.1038/jcbfm.1985.87
– ident: 2023041303363408000_29.5.1538.39
  doi: 10.1038/376572a0
– ident: 2023041303363408000_29.5.1538.7
  doi: 10.1038/sj.npp.1301598
– ident: 2023041303363408000_29.5.1538.21
  doi: 10.1162/jocn.1997.9.3.330
– volume: 16
  start-page: 1936
  year: 1996
  ident: 2023041303363408000_29.5.1538.24
  article-title: A framework for mesencephalic dopamine systems based on predictive Hebbian learning
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-05-01936.1996
– volume: 35
  start-page: 18
  year: 1994
  ident: 2023041303363408000_29.5.1538.36
  article-title: Reproducibility of fluorine-18–6-fluorodopa positron emission tomography in normal human subjects
  publication-title: J Nucl Med
– ident: 2023041303363408000_29.5.1538.11
  doi: 10.1162/0898929052880093
– ident: 2023041303363408000_29.5.1538.14
  doi: 10.1038/sj.npp.1301278
– volume: 155
  start-page: 344
  year: 1998
  ident: 2023041303363408000_29.5.1538.37
  article-title: Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals
  publication-title: Am J Psychiatr
– ident: 2023041303363408000_29.5.1538.5
  doi: 10.1016/j.neuropsychologia.2006.03.030
– volume: 180
  start-page: 644
  year: 2005
  ident: 2023041303363408000_29.5.1538.16
  article-title: A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-005-0077-5
– ident: 2023041303363408000_29.5.1538.17
  doi: 10.1038/1124
– ident: 2023041303363408000_29.5.1538.20
  doi: 10.1006/nimg.1996.0066
– ident: 2023041303363408000_29.5.1538.15
  doi: 10.1073/pnas.0706111104
– ident: 2023041303363408000_29.5.1538.31
  doi: 10.1126/science.275.5306.1593
– ident: 2023041303363408000_29.5.1538.8
  doi: 10.1523/JNEUROSCI.4475-07.2008
– volume: 1
  start-page: 9
  year: 2007
  ident: 2023041303363408000_29.5.1538.10
  article-title: PET 6-[F]fluoro-L-m-tyrosine studies of dopaminergic function in human and nonhuman primates
  publication-title: Front Hum Neurosci
– volume: 17
  start-page: 8528
  year: 1997
  ident: 2023041303363408000_29.5.1538.40
  article-title: Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.17-21-08528.1997
– ident: 2023041303363408000_29.5.1538.25
  doi: 10.1016/0969-8043(93)90165-7
– ident: 2023041303363408000_29.5.1538.29
  doi: 10.1007/s00213-007-0957-y
– ident: 2023041303363408000_29.5.1538.13
  doi: 10.1126/science.1102941
– ident: 2023041303363408000_29.5.1538.30
  doi: 10.1523/JNEUROSCI.2496-07.2007
– ident: 2023041303363408000_29.5.1538.4
  doi: 10.1093/cercor/11.12.1136
– ident: 2023041303363408000_29.5.1538.19
  doi: 10.1109/42.611350
– ident: 2023041303363408000_29.5.1538.34
– ident: 2023041303363408000_29.5.1538.35
  doi: 10.1016/S0028-3908(98)00085-9
– ident: 2023041303363408000_29.5.1538.38
  doi: 10.1097/00004728-199605000-00020
– ident: 2023041303363408000_29.5.1538.32
  doi: 10.1126/science.482929
– ident: 2023041303363408000_29.5.1538.33
  doi: 10.1016/S1474-6670(17)38315-5
– ident: 2023041303363408000_29.5.1538.12
  doi: 10.1037/0735-7044.120.3.497
– ident: 2023041303363408000_29.5.1538.27
  doi: 10.1038/nature05051
– ident: 2023041303363408000_29.5.1538.2
  doi: 10.1111/j.1460-9568.2007.05947.x
– ident: 2023041303363408000_29.5.1538.18
  doi: 10.1097/00001756-199711100-00032
– ident: 2023041303363408000_29.5.1538.3
  doi: 10.1098/rsta.2004.1468
– volume: 14
  start-page: 547
  year: 2004
  ident: 2023041303363408000_29.5.1538.28
  article-title: Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4653-03.2004
SSID ssj0007017
Score 2.4504445
Snippet Individual variability in reward-based learning has been ascribed to quantitative variation in baseline levels of striatal dopamine. However, direct evidence...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1538
SubjectTerms Bromocriptine - administration & dosage
Corpus Striatum - drug effects
Corpus Striatum - metabolism
Cross-Over Studies
Dopamine - metabolism
Dopamine - pharmacology
Dopamine Agonists - administration & dosage
Double-Blind Method
Female
Humans
Photic Stimulation
Positron-Emission Tomography
Predictive Value of Tests
Reversal Learning - drug effects
Reversal Learning - physiology
Reward
Young Adult
Title Striatal Dopamine Predicts Outcome-Specific Reversal Learning and Its Sensitivity to Dopaminergic Drug Administration
URI http://www.jneurosci.org/cgi/content/abstract/29/5/1538
https://www.ncbi.nlm.nih.gov/pubmed/19193900
https://www.proquest.com/docview/66887736
https://pubmed.ncbi.nlm.nih.gov/PMC2940719
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIIzz0gLpFTv-09VgnQFjUgpZV6s3b9oFETu4ptReVP8peYWXvtTRSpwMWKbK-9yfdldmZ2HoR89BLX99LANszUAgMl8ZnBEpMbIfbq5nbCeYrZyOcz_-TSPbvyrgaD31rUUl2Jcfxrb17J_6AK5wBXzJL9B2S7h8IJ-Az4whEQhuNfYTzHnhuYzTgF03eF-uKPNW68VOXoe13BG1ND9pfPZLQ8BmCg21o5Q2QkMNw6xxj2tokEaKLqWWuQiaPpuv65U2BXV2f7xDKp0mrFMTu-TIpi2XhzivK6p6JsFq_F7ffbU18XQpSNsxoG9JkS54s7fsM3jR-45DfFlsOCyRhnzWFZxKPZ7nQagWcHYMq6TdeecdoKZFvuAFm6xG59JAt9T1yKXxTfe9cFT9anOJtheOR8cjp2cX0wQ5n8qQ8AfG9Xki1gxzKHmWa_TqrYgJ3lswtq3Gw2Nou8CCfxgDy0wW7BlhrT02-dahCYsgV090XblHWY3dH-ucmats1EthUnVcx6n2G0G9-rKUwXT8jjlhb0uKHtUzJI82fk8DjnVbG6o5-ojD2WmzqHpFZMpop9VDGZ7jKZKiZTxWQKTKbAZKoxmVYF1ZlMkcl0m8nPyeWXzxeTE6NtCGLEoNdWBg9iFifcdkXsCFA0GZa_C7Cipc9DZoM2K9IwYakQcWZmLIxdJsJMiAyNmNhxnBfkIC_y9BWhHMyWMMkSP_G5myaCW2ESO77PQmEJywuHxFO_dhS31fKxacsyQqsZAIs6wCIELDJD7OjKhuSoG3fb1Iu5d8QHBWZUrvhyCdhZkU4muENhHIHwxx09nqdFXUa-DzpC4PhD8rJBvH9ny5ohCba40N2AZeW3r-SLa1le3mbo5GGv753XG_Ko_3-_JQfVuk7fgYpeifeS9n8ANrLpyw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striatal+Dopamine+Predicts+Outcome-Specific+Reversal+Learning+and+Its+Sensitivity+to+Dopaminergic+Drug+Administration&rft.jtitle=The+Journal+of+neuroscience&rft.au=Cools%2C+Roshan&rft.au=Frank%2C+Michael+J&rft.au=Gibbs%2C+Sasha+E&rft.au=Miyakawa%2C+Asako&rft.date=2009-02-04&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=29&rft.issue=5&rft.spage=1538&rft_id=info:doi/10.1523%2FJNEUROSCI.4467-08.2009&rft_id=info%3Apmid%2F19193900&rft.externalDBID=n%2Fa&rft.externalDocID=www29_5_1538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon