Assembly of long error-prone reads using de Bruijn graphs

The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph appr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 52; pp. E8396 - E8405
Main Authors Lin, Yu, Yuan, Jeffrey, Kolmogorov, Mikhail, Shen, Max W., Chaisson, Mark, Pevzner, Pavel A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.12.2016
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.
AbstractList The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.
When the long reads generated using single-molecule se-quencing (SMS) technology were made available, most researchers were skeptical about the ability of existing algorithms to generate high-quality assemblies from long error-prone reads. Nevertheless, recent algorithmic breakthroughs resulted in many successful SMS sequencing projects. However, as the recent assemblies of important plant pathogens illustrate, the problem of assembling long error-prone reads is far from being resolved even in the case of relatively short bacterial genomes. We propose an algorithmic approach for assembling long error-prone reads and describe the ABruijn assembler, which results in accurate genome reconstructions. The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.
The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of the alternative de Bruijn graph approach to genome assembly. Moreover, these studies often assume that applications of the de Bruijn graph approach are limited to short and accurate reads and that the OLC approach is the only practical paradigm for assembling long error-prone reads. We show how to generalize de Bruijn graphs for assembling long error-prone reads and describe the ABruijn assembler, which combines the de Bruijn graph and the OLC approaches and results in accurate genome reconstructions.
Author Lin, Yu
Pevzner, Pavel A.
Kolmogorov, Mikhail
Shen, Max W.
Chaisson, Mark
Yuan, Jeffrey
Author_xml – sequence: 1
  givenname: Yu
  surname: Lin
  fullname: Lin, Yu
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092
– sequence: 2
  givenname: Jeffrey
  surname: Yuan
  fullname: Yuan, Jeffrey
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092
– sequence: 3
  givenname: Mikhail
  surname: Kolmogorov
  fullname: Kolmogorov, Mikhail
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092
– sequence: 4
  givenname: Max W.
  surname: Shen
  fullname: Shen, Max W.
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092
– sequence: 5
  givenname: Mark
  surname: Chaisson
  fullname: Chaisson, Mark
  organization: Department of Genome Sciences, University of Washington, Seattle, WA 98105
– sequence: 6
  givenname: Pavel A.
  surname: Pevzner
  fullname: Pevzner, Pavel A.
  organization: Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27956617$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYMoOj7WrpSCGzfVmzRJJxtBxRcIbnQd0jYZM3SSmrSC_96UmfEFrgK53zk5N2cXbTrvNEKHGM4wlMV551Q8wxwo44BxsYEmGATOORWwiSYApMynlNAdtBvjHAAEm8I22iGlYJzjcoLEZYx6UbUfmTdZ690s0yH4kHchPZQFrZqYDdGm-0ZnV2Gwc5fNgupe4z7aMqqN-mB17qGX25vn6_v88enu4fryMa8ZiD4XSjFdCKYKjFnFdMNKUwsGFLjQFTXEYJUGNa5TTkpL0EB4BZVQRjSmMcUeulj6dkO10E2tXR9UK7tgFyp8SK-s_D1x9lXO_LtkBDgjJBmcrgyCfxt07OXCxlq3rXLaD1HiKSOcl1hAQk_-oHM_BJfWGylKCkbYaHj8M9FXlPWvJoAtgTr4GIM2sra96q0fA9pWYpBje3JsT363l3Tnf3Rr6_8VR0vFPPY-fCfhtCyATotPNBelsQ
CitedBy_id crossref_primary_10_3389_fmicb_2021_667356
crossref_primary_10_1093_bioinformatics_btaa237
crossref_primary_10_1093_molbev_msad258
crossref_primary_10_1128_mbio_02224_23
crossref_primary_10_1186_s12864_023_09375_5
crossref_primary_10_1111_tpj_16764
crossref_primary_10_1093_bioinformatics_btaa1017
crossref_primary_10_1099_ijsem_0_005319
crossref_primary_10_1101_gr_276871_122
crossref_primary_10_1099_mgen_0_000695
crossref_primary_10_1128_mbio_03538_22
crossref_primary_10_1007_s10462_020_09951_1
crossref_primary_10_1111_1755_0998_12955
crossref_primary_10_1111_tpj_14349
crossref_primary_10_1038_s41467_024_50991_w
crossref_primary_10_1099_ijsem_0_006496
crossref_primary_10_2147_IDR_S361761
crossref_primary_10_1093_aesa_saae023
crossref_primary_10_1093_bioinformatics_bty290
crossref_primary_10_3389_fpls_2021_813036
crossref_primary_10_1093_g3journal_jkab255
crossref_primary_10_1186_s12864_021_08260_3
crossref_primary_10_1128_msphere_00423_24
crossref_primary_10_1111_jfd_14011
crossref_primary_10_1128_aem_01869_22
crossref_primary_10_1128_mra_01037_24
crossref_primary_10_1101_gr_216465_116
crossref_primary_10_1016_j_tplants_2019_05_003
crossref_primary_10_1093_bioinformatics_bty279
crossref_primary_10_1016_j_cub_2023_12_032
crossref_primary_10_3389_fmicb_2024_1448958
crossref_primary_10_1186_s40168_020_00937_3
crossref_primary_10_1128_spectrum_04140_23
crossref_primary_10_1099_jgv_0_001983
crossref_primary_10_1128_mra_00156_24
crossref_primary_10_1053_j_gastro_2021_06_077
crossref_primary_10_1093_ismejo_wrae182
crossref_primary_10_1007_s11427_018_9458_0
crossref_primary_10_1099_mgen_0_001284
crossref_primary_10_1186_s13059_024_03414_4
crossref_primary_10_3389_fmicb_2022_1089092
crossref_primary_10_1016_j_csbj_2022_06_019
crossref_primary_10_1093_aob_mcac066
crossref_primary_10_3390_antibiotics12091463
crossref_primary_10_1111_dgd_12608
crossref_primary_10_3389_ffunb_2021_802511
crossref_primary_10_1038_s41576_024_00718_w
crossref_primary_10_1128_mra_00986_23
crossref_primary_10_1128_mra_00732_24
crossref_primary_10_1093_ismeco_ycae008
crossref_primary_10_1186_s12859_020_03856_0
crossref_primary_10_1111_1755_0998_14038
crossref_primary_10_1186_s12859_024_05878_4
crossref_primary_10_1016_j_micres_2023_127572
crossref_primary_10_1099_mgen_0_000234
crossref_primary_10_1016_j_syapm_2022_126319
crossref_primary_10_1038_s41538_024_00269_8
crossref_primary_10_1093_bib_bbx062
crossref_primary_10_1038_s41467_024_54102_7
crossref_primary_10_1099_ijsem_0_005066
crossref_primary_10_3201_eid2909_230069
crossref_primary_10_1038_s41587_020_0582_4
crossref_primary_10_3389_fmicb_2022_933388
crossref_primary_10_1038_s41598_024_56373_y
crossref_primary_10_1111_1462_2920_16640
crossref_primary_10_3390_ani14111609
crossref_primary_10_1038_s41598_019_46580_3
crossref_primary_10_3389_fbioe_2024_1426208
crossref_primary_10_1016_j_rhisph_2017_05_001
crossref_primary_10_1099_jmm_0_001710
crossref_primary_10_1128_mbio_02852_24
crossref_primary_10_1146_annurev_animal_020518_115344
crossref_primary_10_1093_bib_bbab022
crossref_primary_10_1128_MRA_01360_20
crossref_primary_10_1186_s12864_021_08249_y
crossref_primary_10_1016_j_cels_2021_08_009
crossref_primary_10_1093_bioinformatics_bty850
crossref_primary_10_3389_fmicb_2020_00857
crossref_primary_10_1128_MRA_00699_21
crossref_primary_10_1186_s12864_018_5067_1
crossref_primary_10_1099_ijsem_0_005333
crossref_primary_10_1094_PHYTOFR_12_22_0151_R
crossref_primary_10_1128_MRA_01266_20
crossref_primary_10_1089_cmb_2019_0310
crossref_primary_10_1099_ijsem_0_006385
crossref_primary_10_1038_s41598_021_94068_w
crossref_primary_10_1128_mbio_03713_24
crossref_primary_10_1038_s41586_024_07970_4
crossref_primary_10_1007_s10142_023_01023_1
crossref_primary_10_1099_mgen_0_001106
crossref_primary_10_1016_j_dci_2020_103952
crossref_primary_10_3390_antibiotics14020145
crossref_primary_10_1093_bioinformatics_btz219
crossref_primary_10_1186_s13059_023_03112_7
crossref_primary_10_3390_ijms21239161
crossref_primary_10_1111_plb_13670
crossref_primary_10_1099_mgen_0_001065
crossref_primary_10_1186_s12864_020_07041_8
crossref_primary_10_1128_MRA_00192_21
crossref_primary_10_1534_g3_120_401059
crossref_primary_10_1093_nargab_lqaa101
crossref_primary_10_1186_s12864_021_07666_3
crossref_primary_10_56093_ijas_v90i5_104327
crossref_primary_10_1093_infdis_jiae453
crossref_primary_10_1109_TCBB_2021_3108843
crossref_primary_10_1093_jac_dkac302
crossref_primary_10_1101_gr_278232_123
crossref_primary_10_1016_j_jip_2024_108229
crossref_primary_10_1038_s41467_021_27917_x
crossref_primary_10_1099_mgen_0_000426
crossref_primary_10_3389_fgene_2024_1495657
crossref_primary_10_1093_dnares_dsac003
crossref_primary_10_1007_s13127_024_00662_x
crossref_primary_10_3389_fmicb_2023_1147846
crossref_primary_10_1016_j_xinn_2021_100153
crossref_primary_10_1093_bioinformatics_btaa440
crossref_primary_10_1093_bioinformatics_btaa441
crossref_primary_10_1128_MRA_00842_20
crossref_primary_10_1186_s12864_021_07493_6
crossref_primary_10_1093_gbe_evae217
crossref_primary_10_1038_s41596_020_00424_x
crossref_primary_10_1007_s00439_019_02064_y
crossref_primary_10_1080_14737159_2018_1523723
crossref_primary_10_1093_gbe_evaf022
crossref_primary_10_1038_s41576_018_0003_4
crossref_primary_10_1128_mra_01038_23
crossref_primary_10_1094_MPMI_09_22_0175_A
crossref_primary_10_1186_s12864_021_07926_2
crossref_primary_10_3390_vaccines11091443
crossref_primary_10_1093_dnares_dsac013
crossref_primary_10_1111_1758_2229_13022
crossref_primary_10_1186_s44330_025_00024_9
crossref_primary_10_1007_s40484_019_0181_x
crossref_primary_10_3389_fmicb_2023_1254692
crossref_primary_10_1038_s10038_019_0659_4
crossref_primary_10_1093_bioinformatics_bty266
crossref_primary_10_1099_ijsem_0_005778
crossref_primary_10_1099_mgen_0_000312
crossref_primary_10_3390_genes10090708
crossref_primary_10_1093_dnares_dsae033
crossref_primary_10_1099_mgen_0_001244
crossref_primary_10_1007_s00299_023_03126_2
crossref_primary_10_1099_ijsem_0_006514
crossref_primary_10_1128_msphere_00525_20
crossref_primary_10_1093_bioinformatics_btaa180
crossref_primary_10_1002_2211_5463_13868
crossref_primary_10_3389_fmars_2023_1186809
crossref_primary_10_1128_mra_01058_24
crossref_primary_10_1093_bib_bbx147
crossref_primary_10_1128_mra_00311_24
crossref_primary_10_1128_mra_01563_19
crossref_primary_10_1186_s13071_021_04933_w
crossref_primary_10_1038_nbt_4266
crossref_primary_10_1038_s41598_020_73549_4
crossref_primary_10_1038_s41598_021_96404_6
crossref_primary_10_1093_bioinformatics_btad218
crossref_primary_10_1016_j_csbj_2019_11_002
crossref_primary_10_1038_s41587_023_01983_6
crossref_primary_10_1534_g3_117_300128
crossref_primary_10_1016_j_jiph_2024_05_051
crossref_primary_10_1038_s41396_023_01504_y
crossref_primary_10_1109_ACCESS_2022_3144113
crossref_primary_10_1186_s13059_022_02743_6
crossref_primary_10_3389_fmicb_2022_1035651
crossref_primary_10_3390_microorganisms11092274
crossref_primary_10_1128_MRA_01466_19
crossref_primary_10_1093_bioinformatics_bty255
crossref_primary_10_1128_mra_00563_24
crossref_primary_10_3390_antibiotics13050433
crossref_primary_10_1186_s12864_022_08436_5
crossref_primary_10_1038_s41587_019_0072_8
crossref_primary_10_1099_ijsem_0_004047
crossref_primary_10_1093_bib_bbaa403
crossref_primary_10_1093_g3journal_jkae172
crossref_primary_10_1093_hr_uhac161
crossref_primary_10_1128_mra_01265_24
crossref_primary_10_1186_s13071_020_3968_8
crossref_primary_10_1016_j_ijpara_2025_01_004
crossref_primary_10_1038_s41592_023_01993_x
crossref_primary_10_1128_mra_00328_23
crossref_primary_10_3390_microorganisms10112298
crossref_primary_10_3390_biology13020089
crossref_primary_10_1186_s13059_021_02297_z
crossref_primary_10_3390_genes13050923
crossref_primary_10_1093_g3journal_jkad125
crossref_primary_10_12688_f1000research_12012_1
crossref_primary_10_12688_f1000research_12012_2
crossref_primary_10_3390_ijms241310605
Cites_doi 10.1007/BF01188580
10.1186/gb-2013-14-9-r101
10.3201/eid2202.151332
10.1007/978-3-662-44753-6_22
10.1186/gb-2012-13-12-r122
10.1093/bioinformatics/bti1114
10.1038/nmeth.2474
10.1038/nbt.2280
10.1093/bioinformatics/btt086
10.1089/cmb.2016.0010
10.1038/nature13907
10.1101/015552
10.1126/science.287.5461.2196
10.1093/bioinformatics/btu266
10.1093/nar/gkr466
10.1007/978-3-662-44753-6_5
10.1093/bioinformatics/bts219
10.1073/pnas.171285098
10.1101/gr.2395204
10.1038/ng.1028
10.1080/07391102.1989.10507752
10.1016/j.tcb.2013.04.003
10.1038/nbt1208-1336
10.1101/gr.089532.108
10.1186/1471-2105-13-238
10.1074/mcp.M700001-MCP200
10.1038/nature07543
10.1101/gr.7337908
10.1038/nmeth.3444
10.1093/bfgp/elr035
10.1038/nbt.3238
10.1093/bioinformatics/btm071
10.1016/j.mib.2014.11.014
10.1089/cmb.1995.2.291
10.1101/gr.168450.113
10.1038/nbt.3103
10.1093/bioinformatics/btu437
10.1186/1471-2164-15-S6-S6
10.1016/j.chembiol.2008.09.013
10.1038/ismej.2015.48
10.1101/056887
10.1093/bioinformatics/btv337
10.1093/bioinformatics/btv688
10.1186/1471-2164-9-204
10.1101/gr.074492.107
10.1038/sdata.2014.45
10.1128/JB.05262-11
10.1093/bioinformatics/btv280
10.1146/annurev-phyto-082712-102255
10.1101/gr.191395.115
10.1186/s13742-015-0101-6
10.1093/bioinformatics/btq465
10.1089/cmb.2012.0021
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Dec 27, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Dec 27, 2016
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1604560113
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
DocumentTitleAlternate Assembly of long reads using de Bruijn graphs
EISSN 1091-6490
EndPage E8405
ExternalDocumentID PMC5206522
4290046891
27956617
10_1073_pnas_1604560113
26473048
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
AFOSN
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-9aa5e395a3115b5ed57fc9504069eb4f2f1a15bc1c4244470e026b0b9af9dfdf3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:18:08 EDT 2025
Thu Jul 10 21:08:17 EDT 2025
Mon Jun 30 08:07:35 EDT 2025
Wed Feb 19 02:42:18 EST 2025
Tue Jul 01 03:19:27 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Sun Aug 24 12:10:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords de Bruijn graph
single-molecule sequencing
genome assembly
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-9aa5e395a3115b5ed57fc9504069eb4f2f1a15bc1c4244470e026b0b9af9dfdf3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved October 6, 2016 (received for review March 23, 2016)
Author contributions: Y.L., J.Y., M.K., and P.A.P. designed research; Y.L., J.Y., M.K., M.W.S., and P.A.P. performed research; Y.L., M.K., and M.C. analyzed data; and Y.L., M.K., and P.A.P. wrote the paper.
1Y.L., J.Y., and M.K. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/113/52/E8396.full.pdf
PMID 27956617
PQID 1854235252
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5206522
proquest_miscellaneous_1852667190
proquest_journals_1854235252
pubmed_primary_27956617
crossref_citationtrail_10_1073_pnas_1604560113
crossref_primary_10_1073_pnas_1604560113
jstor_primary_26473048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-27
PublicationDateYYYYMMDD 2016-12-27
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
Compeau PEC (e_1_3_3_36_2) 2014
e_1_3_3_55_2
e_1_3_3_30_2
e_1_3_3_53_2
Booher NJ (e_1_3_3_11_2) 2015; 1
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
25977796 - Sci Data. 2014 Nov 25;1:140045
20736338 - Bioinformatics. 2010 Oct 15;26(20):2509-16
19037312 - Nature. 2008 Nov 27;456(7221):485-8
10731133 - Science. 2000 Mar 24;287(5461):2196-204
21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
23259615 - Genome Biol. 2012 Dec 22;13(12):R122
16204131 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii79-85
25028725 - Bioinformatics. 2014 Dec 15;30(24):3491-8
25572416 - BMC Genomics. 2014;15 Suppl 6:S6
23707478 - Trends Cell Biol. 2013 Aug;23(8):390-8
26040454 - Bioinformatics. 2015 Oct 1;31(19):3207-9
22750884 - Nat Biotechnol. 2012 Jul 01;30(7):693-700
22506599 - J Comput Biol. 2012 May;19(5):455-77
26640692 - Gigascience. 2015 Dec 04;4:60
25383537 - Nature. 2015 Jan 29;517(7536):608-11
25848873 - ISME J. 2015 Nov;9(11):2386-99
22689760 - Bioinformatics. 2012 Jun 15;28(12):i188-96
19060866 - Nat Biotechnol. 2008 Dec;26(12):1336-8
24034426 - Genome Biol. 2013;14(9):R101
22231483 - Nat Genet. 2012 Jan 08;44(2):226-32
24418700 - Genome Res. 2014 Apr;24(4):688-96
26076426 - Nat Methods. 2015 Aug;12(8):733-5
17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
26040456 - Bioinformatics. 2015 Oct 15;31(20):3262-8
26589280 - Bioinformatics. 2016 Apr 1;32(7):1009-15
23725472 - Annu Rev Phytopathol. 2013;51:383-406
7497130 - J Comput Biol. 1995 Summer;2(2):291-306
22184334 - Brief Funct Genomics. 2012 Jan;11(1):25-37
23644548 - Nat Methods. 2013 Jun;10(6):563-9
18340039 - Genome Res. 2008 May;18(5):810-20
25485618 - Nat Biotechnol. 2015 Mar;33(3):296-300
26006009 - Nat Biotechnol. 2015 Jun;33(6):623-30
25461581 - Curr Opin Microbiol. 2015 Feb;23:110-20
22988817 - BMC Bioinformatics. 2012 Sep 19;13:238
23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5
17446555 - Mol Cell Proteomics. 2007 Jul;6(7):1123-34
11504945 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53
2684223 - J Biomol Struct Dyn. 1989 Aug;7(1):63-73
26812174 - Emerg Infect Dis. 2016 Feb;22(2):319-22
19251739 - Genome Res. 2009 Jun;19(6):1117-23
19022178 - Chem Biol. 2008 Nov 24;15(11):1175-86
27149636 - J Comput Biol. 2016 Jun;23(6):483-94
27148456 - Microb Genom. 2015 Oct;1(4):null
15342561 - Genome Res. 2004 Sep;14(9):1786-96
18452608 - BMC Genomics. 2008 May 01;9:204
18349386 - Genome Res. 2008 May;18(5):821-9
21784931 - J Bacteriol. 2011 Oct;193(19):5450-64
26447147 - Genome Res. 2015 Nov;25(11):1750-6
24931996 - Bioinformatics. 2014 Jun 15;30(12):i293-301
References_xml – ident: e_1_3_3_12_2
  doi: 10.1007/BF01188580
– ident: e_1_3_3_5_2
  doi: 10.1186/gb-2013-14-9-r101
– ident: e_1_3_3_35_2
  doi: 10.3201/eid2202.151332
– ident: e_1_3_3_30_2
  doi: 10.1007/978-3-662-44753-6_22
– ident: e_1_3_3_37_2
  doi: 10.1186/gb-2012-13-12-r122
– ident: e_1_3_3_13_2
  doi: 10.1093/bioinformatics/bti1114
– ident: e_1_3_3_2_2
  doi: 10.1038/nmeth.2474
– ident: e_1_3_3_45_2
  doi: 10.1038/nbt.2280
– ident: e_1_3_3_52_2
  doi: 10.1093/bioinformatics/btt086
– ident: e_1_3_3_28_2
  doi: 10.1089/cmb.2016.0010
– ident: e_1_3_3_8_2
  doi: 10.1038/nature13907
– ident: e_1_3_3_53_2
  doi: 10.1101/015552
– ident: e_1_3_3_31_2
  doi: 10.1126/science.287.5461.2196
– ident: e_1_3_3_38_2
  doi: 10.1093/bioinformatics/btu266
– ident: e_1_3_3_54_2
  doi: 10.1093/nar/gkr466
– ident: e_1_3_3_14_2
  doi: 10.1007/978-3-662-44753-6_5
– ident: e_1_3_3_51_2
  doi: 10.1093/bioinformatics/bts219
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.171285098
– ident: e_1_3_3_18_2
  doi: 10.1101/gr.2395204
– ident: e_1_3_3_27_2
  doi: 10.1038/ng.1028
– ident: e_1_3_3_25_2
  doi: 10.1080/07391102.1989.10507752
– ident: e_1_3_3_34_2
  doi: 10.1016/j.tcb.2013.04.003
– ident: e_1_3_3_20_2
  doi: 10.1038/nbt1208-1336
– ident: e_1_3_3_22_2
  doi: 10.1101/gr.089532.108
– ident: e_1_3_3_44_2
  doi: 10.1186/1471-2105-13-238
– ident: e_1_3_3_19_2
  doi: 10.1074/mcp.M700001-MCP200
– ident: e_1_3_3_49_2
  doi: 10.1038/nature07543
– volume: 1
  start-page: 1
  year: 2015
  ident: e_1_3_3_11_2
  article-title: Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships
  publication-title: Microb Genom
– ident: e_1_3_3_21_2
  doi: 10.1101/gr.7337908
– ident: e_1_3_3_4_2
  doi: 10.1038/nmeth.3444
– ident: e_1_3_3_16_2
  doi: 10.1093/bfgp/elr035
– volume-title: Bioinformatics Algorithms: An Active-Learning Approach
  year: 2014
  ident: e_1_3_3_36_2
– ident: e_1_3_3_1_2
  doi: 10.1038/nbt.3238
– ident: e_1_3_3_55_2
  doi: 10.1093/bioinformatics/btm071
– ident: e_1_3_3_6_2
  doi: 10.1016/j.mib.2014.11.014
– ident: e_1_3_3_15_2
  doi: 10.1089/cmb.1995.2.291
– ident: e_1_3_3_9_2
  doi: 10.1101/gr.168450.113
– ident: e_1_3_3_42_2
  doi: 10.1038/nbt.3103
– ident: e_1_3_3_10_2
  doi: 10.1093/bioinformatics/btu437
– ident: e_1_3_3_29_2
  doi: 10.1186/1471-2164-15-S6-S6
– ident: e_1_3_3_50_2
  doi: 10.1016/j.chembiol.2008.09.013
– ident: e_1_3_3_41_2
  doi: 10.1038/ismej.2015.48
– ident: e_1_3_3_32_2
  doi: 10.1101/056887
– ident: e_1_3_3_39_2
  doi: 10.1093/bioinformatics/btv337
– ident: e_1_3_3_40_2
  doi: 10.1093/bioinformatics/btv688
– ident: e_1_3_3_48_2
  doi: 10.1186/1471-2164-9-204
– ident: e_1_3_3_23_2
  doi: 10.1101/gr.074492.107
– ident: e_1_3_3_46_2
  doi: 10.1038/sdata.2014.45
– ident: e_1_3_3_47_2
  doi: 10.1128/JB.05262-11
– ident: e_1_3_3_7_2
  doi: 10.1093/bioinformatics/btv280
– ident: e_1_3_3_33_2
  doi: 10.1146/annurev-phyto-082712-102255
– ident: e_1_3_3_3_2
  doi: 10.1101/gr.191395.115
– ident: e_1_3_3_43_2
  doi: 10.1186/s13742-015-0101-6
– ident: e_1_3_3_26_2
  doi: 10.1093/bioinformatics/btq465
– ident: e_1_3_3_24_2
  doi: 10.1089/cmb.2012.0021
– reference: 25028725 - Bioinformatics. 2014 Dec 15;30(24):3491-8
– reference: 26076426 - Nat Methods. 2015 Aug;12(8):733-5
– reference: 26640692 - Gigascience. 2015 Dec 04;4:60
– reference: 24418700 - Genome Res. 2014 Apr;24(4):688-96
– reference: 19251739 - Genome Res. 2009 Jun;19(6):1117-23
– reference: 2684223 - J Biomol Struct Dyn. 1989 Aug;7(1):63-73
– reference: 26589280 - Bioinformatics. 2016 Apr 1;32(7):1009-15
– reference: 22231483 - Nat Genet. 2012 Jan 08;44(2):226-32
– reference: 7497130 - J Comput Biol. 1995 Summer;2(2):291-306
– reference: 23707478 - Trends Cell Biol. 2013 Aug;23(8):390-8
– reference: 25977796 - Sci Data. 2014 Nov 25;1:140045
– reference: 24034426 - Genome Biol. 2013;14(9):R101
– reference: 26040454 - Bioinformatics. 2015 Oct 1;31(19):3207-9
– reference: 18340039 - Genome Res. 2008 May;18(5):810-20
– reference: 25485618 - Nat Biotechnol. 2015 Mar;33(3):296-300
– reference: 27148456 - Microb Genom. 2015 Oct;1(4):null
– reference: 23422339 - Bioinformatics. 2013 Apr 15;29(8):1072-5
– reference: 26812174 - Emerg Infect Dis. 2016 Feb;22(2):319-22
– reference: 20736338 - Bioinformatics. 2010 Oct 15;26(20):2509-16
– reference: 22689760 - Bioinformatics. 2012 Jun 15;28(12):i188-96
– reference: 27149636 - J Comput Biol. 2016 Jun;23(6):483-94
– reference: 15342561 - Genome Res. 2004 Sep;14(9):1786-96
– reference: 25572416 - BMC Genomics. 2014;15 Suppl 6:S6
– reference: 26040456 - Bioinformatics. 2015 Oct 15;31(20):3262-8
– reference: 19022178 - Chem Biol. 2008 Nov 24;15(11):1175-86
– reference: 16204131 - Bioinformatics. 2005 Sep 1;21 Suppl 2:ii79-85
– reference: 25848873 - ISME J. 2015 Nov;9(11):2386-99
– reference: 22506599 - J Comput Biol. 2012 May;19(5):455-77
– reference: 18349386 - Genome Res. 2008 May;18(5):821-9
– reference: 25461581 - Curr Opin Microbiol. 2015 Feb;23:110-20
– reference: 22750884 - Nat Biotechnol. 2012 Jul 01;30(7):693-700
– reference: 22988817 - BMC Bioinformatics. 2012 Sep 19;13:238
– reference: 11504945 - Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9748-53
– reference: 24931996 - Bioinformatics. 2014 Jun 15;30(12):i293-301
– reference: 18452608 - BMC Genomics. 2008 May 01;9:204
– reference: 21672958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W339-46
– reference: 26006009 - Nat Biotechnol. 2015 Jun;33(6):623-30
– reference: 17446555 - Mol Cell Proteomics. 2007 Jul;6(7):1123-34
– reference: 23259615 - Genome Biol. 2012 Dec 22;13(12):R122
– reference: 26447147 - Genome Res. 2015 Nov;25(11):1750-6
– reference: 22184334 - Brief Funct Genomics. 2012 Jan;11(1):25-37
– reference: 19060866 - Nat Biotechnol. 2008 Dec;26(12):1336-8
– reference: 25383537 - Nature. 2015 Jan 29;517(7536):608-11
– reference: 19037312 - Nature. 2008 Nov 27;456(7221):485-8
– reference: 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
– reference: 10731133 - Science. 2000 Mar 24;287(5461):2196-204
– reference: 21784931 - J Bacteriol. 2011 Oct;193(19):5450-64
– reference: 23644548 - Nat Methods. 2013 Jun;10(6):563-9
– reference: 23725472 - Annu Rev Phytopathol. 2013;51:383-406
SSID ssj0009580
Score 2.6209383
Snippet The recent breakthroughs in assembling long error-prone reads were based on the overlap-layout-consensus (OLC) approach and did not utilize the strengths of...
When the long reads generated using single-molecule se-quencing (SMS) technology were made available, most researchers were skeptical about the ability of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E8396
SubjectTerms Biological Sciences
Computer science
Errors
Genomes
Graph representations
Physical Sciences
PNAS Plus
Title Assembly of long error-prone reads using de Bruijn graphs
URI https://www.jstor.org/stable/26473048
https://www.ncbi.nlm.nih.gov/pubmed/27956617
https://www.proquest.com/docview/1854235252
https://www.proquest.com/docview/1852667190
https://pubmed.ncbi.nlm.nih.gov/PMC5206522
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILsMEgMJCReBiqUlI3TurHCXWqUFcm0UrlKXISmw26BCUNQvwf_L-cP_I1FQS8RFXsfPTucr473_0OoVcilWCzTalLiOCuTwRzuZcylwnwmBORSKpxui-WwXztv9vQzWDws5O1VO3iUfJjb13J_3AVzgFfVZXsP3C2uSmcgN_AXzgCh-H4VzxWO7Y38VZvkm9V0yBRFHnhglLMVDcUnpbDSscCUpUEUF1_zoYaoLrsmqSXzRJW1gkDyzpCeNbWm1glUA7d4eWy7V68MBgEH6tGfVQmpGpLxBqFnm9v8k95kX8zyfpfrjrJHR9sicgF_24S_uo4xFh37zFl_V0Y771v1lXABBZF35RNj4TRuWCyuIFvuoY2StlUqFrpMyC3VsfOwKYL9mp_UFeqZXHGSxU085WzaW_Tw9levo_O14tFtJptVv1Rva7DCq2iBlOFiXCHgCTrfNF5F8t5aiqb7H-pEaPCyZtbz-4ZOybfdZ8nczsht2PhrB6ge9Y1wWdGzg7RQGRH6H7d9gNbMh-hw5rg-NSClr9-iFgtiziXWMki7sgi1rKItSziVGAji9jI4iO0Pp-t3s5d25bDTcC63LmMcyomjHIF1BRTkdJQJox6qoZaxL4kcsxhIBknqojSDz0Bfn7sxYxLlspUTo7RQQbPfoJwwoTkfpDGIU98LyYxTcEjCYCSUgrwlR00qukXJRazXrVO2UY6dyKcRIrgUUtwB502F3w1cC2_n3qsGdLMA9cAljt_6qCTmkOR_djhuikFx4MSShz0shkGVaz213gm8krPAXM3BBPbQY8NQ9ubhwwcp3HooLDH6maCgnnvj2TXVxrunRJwEwh5-ufXeobutl_lCTrYFZV4DvbyLn6hpfcXOHu__w
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+of+long+error-prone+reads+using+de+Bruijn+graphs&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lin%2C+Yu&rft.au=Yuan%2C+Jeffrey&rft.au=Kolmogorov%2C+Mikhail&rft.au=Shen%2C+Max+W&rft.date=2016-12-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=52&rft.spage=E8396&rft_id=info:doi/10.1073%2Fpnas.1604560113&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4290046891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon