Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance
The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 116; no. 19; pp. 9433 - 9442 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.05.2019
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach,we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo bymitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. |
---|---|
AbstractList | Significance
RAS
genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly regarding the relative contributions of oxidant versus antioxidant pathways. Here, we report that the cystine/glutamate transporter xCT is essential for RAS-induced tumorigenicity by enhancing antioxidant glutathione synthesis. Our findings uncover that RAS controls
xCT
transcription by downstream activation of ETS-1 to synergize with ATF4. This has clinical relevance since
xCT
expression is upregulated in human cancers exhibiting an activated RAS pathway. Therefore, oncogenic RAS transformation is supported by induction of an antioxidant program, highlighting xCT as a potential vulnerability for therapeutic targeting.
The
RAS
family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of
xCT
, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the
xCT
promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of
xCT
strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach,we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo bymitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly regarding the relative contributions of oxidant versus antioxidant pathways. Here, we report that the cystine/glutamate transporter xCT is essential for RAS-induced tumorigenicity by enhancing antioxidant glutathione synthesis. Our findings uncover that RAS controls xCT transcription by downstream activation of ETS-1 to synergize with ATF4. This has clinical relevance since xCT expression is upregulated in human cancers exhibiting an activated RAS pathway. Therefore, oncogenic RAS transformation is supported by induction of an antioxidant program, highlighting xCT as a potential vulnerability for therapeutic targeting. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT , the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. The family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of , the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity. |
Author | Lim, Jonathan K. M. Colovic, Milena Leprivier, Gabriel Zhang, Hai-Feng Yang, Hua von Karstedt, Silvia Delaidelli, Alberto Minaker, Sean W. Lockwood, William W. Schaffer, Paul Negri, Gian Luca Sorensen, Poul H. |
Author_xml | – sequence: 1 givenname: Jonathan K. M. surname: Lim fullname: Lim, Jonathan K. M. – sequence: 2 givenname: Alberto surname: Delaidelli fullname: Delaidelli, Alberto – sequence: 3 givenname: Sean W. surname: Minaker fullname: Minaker, Sean W. – sequence: 4 givenname: Hai-Feng surname: Zhang fullname: Zhang, Hai-Feng – sequence: 5 givenname: Milena surname: Colovic fullname: Colovic, Milena – sequence: 6 givenname: Hua surname: Yang fullname: Yang, Hua – sequence: 7 givenname: Gian Luca surname: Negri fullname: Negri, Gian Luca – sequence: 8 givenname: Silvia surname: von Karstedt fullname: von Karstedt, Silvia – sequence: 9 givenname: William W. surname: Lockwood fullname: Lockwood, William W. – sequence: 10 givenname: Paul surname: Schaffer fullname: Schaffer, Paul – sequence: 11 givenname: Gabriel surname: Leprivier fullname: Leprivier, Gabriel – sequence: 12 givenname: Poul H. surname: Sorensen fullname: Sorensen, Poul H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31000598$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1r3DAQxUVJaTZpzz21CHpJDpvVSJZtXQqLadPCQqFJz0KS5a0Wr-RKdsge-r9XZtPtx0mD3m8e83gX6MwHbxF6DeQGSMVWg1fpBmoKjDKA8hlaABGwLAtBztCCEFot64IW5-gipR0hRPCavEDnDPLMRb1AP5tDGp23q20_jWqvRouVH90Q4mgjfmzu8dXdpqnWANe4U8b1bsxMwsGbsLXeGfx1fYfHqHzqQsz7LnisD3iINtn44PwWO59lY_t-6lXE0bbhEWvVK2_sS_S8U32yr57eS_Tt44f75tNy8-X2c7PeLA0nYlyKuq4E50xA1TGiVauNLkoGmlNb6aprK9IVrS5NCUrrlrWKgmFlYW1rDCkUu0Tvj77DpPf5084n9XKIbq_iQQbl5L-Kd9_lNjzIkgOQgmeDqyeDGH5MNo1y79KcSXkbpiQpBRA8VwIZffcfugtT9DlephipQQgyG66OlIkhpWi70zFA5FytnKuVf6rNG2__znDif3eZgTdHYJfGEE86LSvCgQr2C0mirdc |
CitedBy_id | crossref_primary_10_1016_j_bioorg_2021_104729 crossref_primary_10_3389_fphar_2022_963066 crossref_primary_10_1016_j_tcb_2023_07_009 crossref_primary_10_1016_j_redox_2021_102093 crossref_primary_10_3389_fcvm_2023_1185924 crossref_primary_10_1021_acsnano_0c00764 crossref_primary_10_1186_s13229_021_00447_5 crossref_primary_10_1111_febs_15842 crossref_primary_10_1007_s00408_023_00639_1 crossref_primary_10_1038_s41417_020_0170_2 crossref_primary_10_1016_j_celrep_2023_113110 crossref_primary_10_1002_1878_0261_13649 crossref_primary_10_1016_j_lfs_2023_122411 crossref_primary_10_1038_s41419_019_2192_y crossref_primary_10_1038_s41580_020_00324_8 crossref_primary_10_3389_fonc_2022_997919 crossref_primary_10_1371_journal_pone_0235204 crossref_primary_10_1038_s41598_020_62853_8 crossref_primary_10_1038_s41416_020_01156_1 crossref_primary_10_1016_j_ejmech_2023_115233 crossref_primary_10_1016_j_drup_2024_101057 crossref_primary_10_1186_s13148_023_01578_7 crossref_primary_10_1016_j_placenta_2021_05_009 crossref_primary_10_3390_ijms21176156 crossref_primary_10_1016_j_molmed_2020_08_010 crossref_primary_10_1080_23723556_2019_1654814 crossref_primary_10_3389_fmolb_2022_889688 crossref_primary_10_37349_etat_2022_00101 crossref_primary_10_1016_j_gendis_2020_11_010 crossref_primary_10_3389_fgstr_2022_966957 crossref_primary_10_1016_j_biopha_2023_114241 crossref_primary_10_1016_j_cmet_2019_10_009 crossref_primary_10_1186_s12974_023_02768_z crossref_primary_10_1007_s11684_023_0992_z crossref_primary_10_1016_j_bbi_2024_03_001 crossref_primary_10_15252_embr_202050635 crossref_primary_10_1038_s43018_024_00738_9 crossref_primary_10_3389_fonc_2022_994672 crossref_primary_10_1016_j_redox_2024_103211 crossref_primary_10_1093_narcan_zcac031 crossref_primary_10_1186_s13578_023_00977_w crossref_primary_10_1053_j_gastro_2024_01_051 crossref_primary_10_1158_2159_8290_CD_20_1690 crossref_primary_10_3389_fimmu_2023_1137107 crossref_primary_10_1002_cbf_3869 crossref_primary_10_1016_j_abb_2020_108438 crossref_primary_10_1186_s12935_021_02121_5 crossref_primary_10_1038_s43018_021_00184_x crossref_primary_10_1016_j_canlet_2024_216728 crossref_primary_10_1016_j_phymed_2023_154921 crossref_primary_10_3390_ijms22094376 crossref_primary_10_1007_s00408_022_00537_y crossref_primary_10_3389_fonc_2022_858480 crossref_primary_10_1016_j_jddst_2021_103022 crossref_primary_10_1002_1878_0261_12999 crossref_primary_10_3389_fonc_2020_00722 crossref_primary_10_1146_annurev_nutr_120420_032437 crossref_primary_10_3390_ijms22010023 crossref_primary_10_3389_fonc_2023_1098357 crossref_primary_10_3390_antiox9030193 crossref_primary_10_1007_s00018_020_03569_w crossref_primary_10_1038_s43018_023_00715_8 crossref_primary_10_1038_s41598_020_61692_x crossref_primary_10_1016_j_ccell_2024_03_011 crossref_primary_10_3390_antiox11122444 crossref_primary_10_1016_j_bcp_2022_115241 crossref_primary_10_1038_s41388_021_01899_y crossref_primary_10_3389_fonc_2020_00276 crossref_primary_10_3390_biom10050791 crossref_primary_10_2967_jnumed_122_265254 crossref_primary_10_1016_j_jep_2023_116409 crossref_primary_10_3389_fonc_2020_00947 crossref_primary_10_3892_ijo_2022_5447 crossref_primary_10_1186_s12935_021_02433_6 crossref_primary_10_1073_pnas_1919250117 crossref_primary_10_3390_pharmaceutics16020197 crossref_primary_10_1016_j_biopha_2023_115251 crossref_primary_10_1080_17476348_2023_2223985 crossref_primary_10_3389_fonc_2022_858462 crossref_primary_10_3390_metabo14010028 crossref_primary_10_3390_toxics12020161 crossref_primary_10_1016_j_cmet_2020_10_011 crossref_primary_10_1016_j_ejphar_2022_175093 crossref_primary_10_3748_wjg_v29_i16_2433 crossref_primary_10_3390_cancers14020345 crossref_primary_10_1016_j_redox_2023_103011 crossref_primary_10_14336_AD_2022_01302 crossref_primary_10_1152_ajpendo_00260_2023 crossref_primary_10_1002_ijc_33711 crossref_primary_10_1038_s41568_022_00459_0 crossref_primary_10_1158_1078_0432_CCR_20_0644 crossref_primary_10_1038_s41419_020_2732_5 crossref_primary_10_1038_s41467_022_33377_8 crossref_primary_10_1111_imm_13789 crossref_primary_10_2144_fsoa_2023_0136 crossref_primary_10_3390_cancers15235573 crossref_primary_10_1002_pmic_202100007 crossref_primary_10_1038_s41418_024_01324_3 crossref_primary_10_1038_s41589_019_0408_1 crossref_primary_10_1016_j_cellsig_2020_109874 crossref_primary_10_1016_j_drup_2022_100916 crossref_primary_10_1186_s12957_023_03176_6 crossref_primary_10_1002_adhm_202301453 crossref_primary_10_1016_j_redox_2022_102407 crossref_primary_10_1016_j_cmet_2020_12_007 crossref_primary_10_1007_s43032_020_00284_6 crossref_primary_10_3389_fonc_2022_1023427 crossref_primary_10_3390_ijms24043719 crossref_primary_10_1155_2022_2634431 crossref_primary_10_1016_j_celrep_2023_112536 crossref_primary_10_1016_j_freeradbiomed_2024_04_208 crossref_primary_10_1093_carcin_bgad020 crossref_primary_10_3389_fonc_2024_1335401 crossref_primary_10_1155_2020_5047987 crossref_primary_10_1016_j_molcel_2021_12_001 crossref_primary_10_1002_1873_3468_14462 crossref_primary_10_3390_cancers14133059 crossref_primary_10_1172_JCI124049 crossref_primary_10_1002_adhm_202301345 crossref_primary_10_2174_1568009622666220211122745 crossref_primary_10_1016_j_ccell_2020_06_001 crossref_primary_10_3390_jpm13050719 crossref_primary_10_1080_1061186X_2022_2071909 crossref_primary_10_2174_1568009619666190802135714 crossref_primary_10_3389_fmolb_2021_706650 crossref_primary_10_1038_s41598_022_16372_3 crossref_primary_10_1134_S002689332304012X crossref_primary_10_1016_j_heliyon_2023_e23521 crossref_primary_10_1038_s41419_022_05022_1 crossref_primary_10_1186_s40478_023_01507_y crossref_primary_10_31857_S0026898423040158 crossref_primary_10_1002_advs_202100997 crossref_primary_10_3390_biom14070746 crossref_primary_10_3390_cancers15082363 crossref_primary_10_1093_nar_gkad506 crossref_primary_10_1016_j_jsbmb_2022_106234 crossref_primary_10_1073_pnas_2202736119 crossref_primary_10_1038_s44319_023_00038_w crossref_primary_10_1111_cas_14643 crossref_primary_10_1134_S0006297920080052 crossref_primary_10_3390_cancers13010125 crossref_primary_10_3389_fphys_2021_680544 crossref_primary_10_3390_biology10050399 crossref_primary_10_1016_j_biopha_2022_112668 crossref_primary_10_3389_fcell_2021_774957 crossref_primary_10_3390_cancers13020281 crossref_primary_10_3390_ijms24055041 crossref_primary_10_1097_MD_0000000000037421 crossref_primary_10_1158_0008_5472_CAN_20_0788 crossref_primary_10_1002_hep_31730 crossref_primary_10_1186_s40364_021_00338_0 crossref_primary_10_2147_CMAR_S263767 crossref_primary_10_1038_s41419_023_06063_w crossref_primary_10_1016_j_cnd_2020_09_003 crossref_primary_10_1016_j_ymthe_2020_08_021 crossref_primary_10_1080_14728222_2021_2011206 crossref_primary_10_1186_s12964_023_01170_9 crossref_primary_10_7554_eLife_71929 crossref_primary_10_1016_j_molcel_2023_08_004 crossref_primary_10_3389_fphar_2022_1043344 crossref_primary_10_1016_j_jconrel_2023_03_030 crossref_primary_10_1016_j_redox_2021_101870 crossref_primary_10_1016_j_pdpdt_2023_103612 crossref_primary_10_18632_oncotarget_28224 crossref_primary_10_3390_cancers13030425 crossref_primary_10_3390_cancers16061220 crossref_primary_10_3390_cancers12040825 crossref_primary_10_1016_j_cytogfr_2023_08_004 crossref_primary_10_1016_j_prp_2022_153778 crossref_primary_10_3389_fendo_2022_1029210 crossref_primary_10_3389_fcell_2021_675617 crossref_primary_10_3390_cancers12010164 crossref_primary_10_1038_s41419_024_06467_2 crossref_primary_10_1073_pnas_2302126120 crossref_primary_10_1016_j_jep_2022_116069 crossref_primary_10_1016_j_canlet_2021_09_033 crossref_primary_10_1007_s10495_023_01909_2 crossref_primary_10_1002_smll_202400326 crossref_primary_10_1042_BCJ20230317 crossref_primary_10_1016_j_tcb_2022_02_009 crossref_primary_10_1186_s12964_023_01449_x crossref_primary_10_1016_j_chembiol_2020_03_011 crossref_primary_10_1016_j_ccr_2023_215321 crossref_primary_10_1038_s41418_021_00890_0 crossref_primary_10_3389_fcell_2021_748925 crossref_primary_10_1016_j_heliyon_2023_e14179 crossref_primary_10_1089_ars_2020_8024 crossref_primary_10_1016_j_bbcan_2023_188872 crossref_primary_10_1038_s41568_021_00435_0 crossref_primary_10_1111_acel_14165 crossref_primary_10_1126_sciadv_adi5192 crossref_primary_10_1016_j_heliyon_2021_e08399 crossref_primary_10_1016_j_jgg_2022_06_002 crossref_primary_10_1007_s10557_021_07220_z crossref_primary_10_1002_cbf_3581 crossref_primary_10_1007_s13238_020_00789_5 crossref_primary_10_1038_s41575_021_00486_6 |
Cites_doi | 10.1038/nature14344 10.1186/1476-4598-2-29 10.1158/0008-5472.CAN-04-4267 10.1126/science.275.5306.1649 10.1016/j.canlet.2011.07.024 10.2967/jnumed.116.180661 10.1074/jbc.M208704200 10.1146/annurev.bi.62.070193.004223 10.1038/s41556-018-0178-0 10.1016/j.cell.2016.11.035 10.1038/ng0298-184 10.1002/cne.23889 10.1038/nrd2803 10.1158/0008-5472.CAN-03-3909 10.1126/scitranslmed.aad3740 10.1016/j.ccell.2017.12.003 10.1038/nature15726 10.1073/pnas.1003428107 10.1038/nature10189 10.1016/j.cell.2015.05.049 10.1101/gad.13.22.2905 10.1038/s41598-018-19213-4 10.1038/nrc969 10.1021/bi100199q 10.1038/nature12040 10.1074/jbc.274.17.11455 10.1016/0167-4889(91)90153-O 10.1158/0008-5472.CAN-12-3609-T 10.1101/gad.2016311 10.1038/nrc3106 10.1128/MCB.00221-14 10.1158/0008-5472.CAN-13-1803 10.1016/j.ccr.2011.01.038 10.1126/science.3277276 10.1126/scisignal.aao6604 10.1038/sj.bjc.6601048 10.1158/0008-5472.CAN-14-1439 10.1038/ncb2432 10.1038/sj.onc.1204383 10.2967/jnumed.113.126664 10.1126/science.aaa5004 10.1038/nature07733 10.1038/nature04296 10.1016/j.ccell.2014.11.019 10.1038/nature16967 10.1038/emboj.2010.7 10.1158/0008-5472.CAN-11-2612 10.1016/j.bbrc.2004.10.009 10.1016/j.ccr.2013.08.020 10.1038/onc.2011.323 10.1038/cdd.2011.119 10.1200/JCO.2005.02.857 10.1158/0008-5472.CAN-15-2121 10.1074/jbc.M506439200 10.1096/fj.05-4401fje 10.1038/cdd.2014.34 10.1038/s41388-018-0307-z |
ContentType | Journal Article |
Copyright | Copyright © 2019 the Author(s). Published by PNAS. Copyright National Academy of Sciences May 7, 2019 Copyright © 2019 the Author(s). Published by PNAS. 2019 |
Copyright_xml | – notice: Copyright © 2019 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences May 7, 2019 – notice: Copyright © 2019 the Author(s). Published by PNAS. 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1821323116 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 9442 |
ExternalDocumentID | 10_1073_pnas_1821323116 31000598 26705129 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: FDN-143280 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: LE 3751/2-1 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR) grantid: FDN-143280 – fundername: Deutsche Krebshilfe (German Cancer Aid) grantid: 70112550 – fundername: British Columbia Cancer Foundation grantid: BC-WD 12-13-6369 – fundername: Deutsche Krebshilfe (German Cancer Aid) grantid: 70112624 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-98879553917f30badbcb4631b52e7b7fd70f4db6c61abbd3da21c364eedcc04a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:50:58 EDT 2024 Fri Aug 16 22:13:07 EDT 2024 Thu Oct 10 16:06:30 EDT 2024 Fri Aug 23 01:45:51 EDT 2024 Sat Sep 28 08:34:39 EDT 2024 Fri Feb 02 07:30:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | xCT oncogene RAS antioxidants |
Language | English |
License | Copyright © 2019 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-98879553917f30badbcb4631b52e7b7fd70f4db6c61abbd3da21c364eedcc04a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: J.K.M.L., G.L., and P.H.S. designed research; J.K.M.L., A.D., S.W.M., H.-F.Z., M.C., G.L.N., S.v.K., and W.W.L. performed research; H.Y., S.v.K., W.W.L., and P.S. contributed new reagents/analytic tools; J.K.M.L. and G.L. analyzed data; and J.K.M.L., G.L., and P.H.S. wrote the paper. 1S.W.M. and H.-F.Z. contributed equally to this work. Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, and approved March 27, 2019 (received for review December 14, 2018) |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511045/ |
PMID | 31000598 |
PQID | 2230819905 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511045 proquest_miscellaneous_2211951071 proquest_journals_2230819905 crossref_primary_10_1073_pnas_1821323116 pubmed_primary_31000598 jstor_primary_26705129 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-07 |
PublicationDateYYYYMMDD | 2019-05-07 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2019 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 Rosell R (e_1_3_3_52_2) 1995; 22 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 Seth A (e_1_3_3_48_2) 1990; 5 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 Wang H (e_1_3_3_59_2) 2016; 8 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_27_2 doi: 10.1038/nature14344 – ident: e_1_3_3_46_2 doi: 10.1186/1476-4598-2-29 – ident: e_1_3_3_45_2 doi: 10.1158/0008-5472.CAN-04-4267 – ident: e_1_3_3_7_2 doi: 10.1126/science.275.5306.1649 – ident: e_1_3_3_21_2 doi: 10.1016/j.canlet.2011.07.024 – ident: e_1_3_3_35_2 doi: 10.2967/jnumed.116.180661 – ident: e_1_3_3_16_2 doi: 10.1074/jbc.M208704200 – ident: e_1_3_3_1_2 doi: 10.1146/annurev.bi.62.070193.004223 – ident: e_1_3_3_28_2 doi: 10.1038/s41556-018-0178-0 – ident: e_1_3_3_41_2 doi: 10.1016/j.cell.2016.11.035 – ident: e_1_3_3_29_2 doi: 10.1038/ng0298-184 – ident: e_1_3_3_33_2 doi: 10.1002/cne.23889 – ident: e_1_3_3_53_2 doi: 10.1038/nrd2803 – ident: e_1_3_3_8_2 doi: 10.1158/0008-5472.CAN-03-3909 – ident: e_1_3_3_58_2 doi: 10.1126/scitranslmed.aad3740 – ident: e_1_3_3_42_2 doi: 10.1016/j.ccell.2017.12.003 – ident: e_1_3_3_57_2 doi: 10.1038/nature15726 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.1003428107 – ident: e_1_3_3_11_2 doi: 10.1038/nature10189 – ident: e_1_3_3_39_2 doi: 10.1016/j.cell.2015.05.049 – ident: e_1_3_3_5_2 doi: 10.1101/gad.13.22.2905 – ident: e_1_3_3_26_2 doi: 10.1038/s41598-018-19213-4 – ident: e_1_3_3_3_2 doi: 10.1038/nrc969 – ident: e_1_3_3_37_2 doi: 10.1021/bi100199q – ident: e_1_3_3_13_2 doi: 10.1038/nature12040 – ident: e_1_3_3_14_2 doi: 10.1074/jbc.274.17.11455 – ident: e_1_3_3_15_2 doi: 10.1016/0167-4889(91)90153-O – ident: e_1_3_3_25_2 doi: 10.1158/0008-5472.CAN-12-3609-T – ident: e_1_3_3_43_2 doi: 10.1101/gad.2016311 – volume: 5 start-page: 1761 year: 1990 ident: e_1_3_3_48_2 article-title: The c-ets-1 proto-oncogene has oncogenic activity and is positively autoregulated publication-title: Oncogene contributor: fullname: Seth A – ident: e_1_3_3_6_2 doi: 10.1038/nrc3106 – ident: e_1_3_3_38_2 doi: 10.1128/MCB.00221-14 – ident: e_1_3_3_19_2 doi: 10.1158/0008-5472.CAN-13-1803 – ident: e_1_3_3_23_2 doi: 10.1016/j.ccr.2011.01.038 – volume: 8 start-page: 334ra351 year: 2016 ident: e_1_3_3_59_2 article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis publication-title: Sci Transl Med contributor: fullname: Wang H – ident: e_1_3_3_40_2 doi: 10.1126/science.3277276 – ident: e_1_3_3_49_2 doi: 10.1126/scisignal.aao6604 – ident: e_1_3_3_51_2 doi: 10.1038/sj.bjc.6601048 – ident: e_1_3_3_44_2 doi: 10.1158/0008-5472.CAN-14-1439 – volume: 22 start-page: 12 year: 1995 ident: e_1_3_3_52_2 article-title: Single-agent paclitaxel by 3-hour infusion in the treatment of non-small cell lung cancer: Links between p53 and K-ras gene status and chemosensitivity publication-title: Semin Oncol contributor: fullname: Rosell R – ident: e_1_3_3_24_2 doi: 10.1038/ncb2432 – ident: e_1_3_3_4_2 doi: 10.1038/sj.onc.1204383 – ident: e_1_3_3_34_2 doi: 10.2967/jnumed.113.126664 – ident: e_1_3_3_56_2 doi: 10.1126/science.aaa5004 – ident: e_1_3_3_54_2 doi: 10.1038/nature07733 – ident: e_1_3_3_31_2 doi: 10.1038/nature04296 – ident: e_1_3_3_55_2 doi: 10.1016/j.ccell.2014.11.019 – ident: e_1_3_3_12_2 doi: 10.1038/nature16967 – ident: e_1_3_3_32_2 doi: 10.1038/emboj.2010.7 – ident: e_1_3_3_2_2 doi: 10.1158/0008-5472.CAN-11-2612 – ident: e_1_3_3_17_2 doi: 10.1016/j.bbrc.2004.10.009 – ident: e_1_3_3_20_2 doi: 10.1016/j.ccr.2013.08.020 – ident: e_1_3_3_30_2 doi: 10.1038/onc.2011.323 – ident: e_1_3_3_60_2 doi: 10.1038/cdd.2011.119 – ident: e_1_3_3_50_2 doi: 10.1200/JCO.2005.02.857 – ident: e_1_3_3_22_2 doi: 10.1158/0008-5472.CAN-15-2121 – ident: e_1_3_3_36_2 doi: 10.1074/jbc.M506439200 – ident: e_1_3_3_47_2 doi: 10.1096/fj.05-4401fje – ident: e_1_3_3_9_2 doi: 10.1038/cdd.2014.34 – ident: e_1_3_3_18_2 doi: 10.1038/s41388-018-0307-z |
SSID | ssj0009580 |
Score | 2.687693 |
Snippet | The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying... The family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying... Significance RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood,... RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9433 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase AKT protein Amino Acid Transport System y+ - biosynthesis Amino Acid Transport System y+ - genetics Animals Antioxidants Biological Sciences Biosynthesis Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Cystine Downstream effects Endoplasmic reticulum Endoplasmic Reticulum Stress ETS protein Female Fibroblasts Fibroblasts - metabolism Fibroblasts - pathology Gene expression Gene regulation Genetic transformation Homeostasis Intracellular MAP Kinase Signaling System Mice Mice, Knockout Mice, Nude Neoplasms, Experimental - genetics Neoplasms, Experimental - metabolism Neoplasms, Experimental - pathology NIH 3T3 Cells Oxidation-Reduction Oxidative Stress PNAS Plus Proto-Oncogene Protein c-ets-1 - genetics Proto-Oncogene Protein c-ets-1 - metabolism Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Proto-oncogenes Raf protein Reactive oxygen species Signal transduction Signaling Transcription factors Transformed cells Tumorigenicity Tumors Xenografts Xenotransplantation |
Title | Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance |
URI | https://www.jstor.org/stable/26705129 https://www.ncbi.nlm.nih.gov/pubmed/31000598 https://www.proquest.com/docview/2230819905 https://search.proquest.com/docview/2211951071 https://pubmed.ncbi.nlm.nih.gov/PMC6511045 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAUy9VaUubFpAr9bAcsoljx06Oq6iIPqiqAhK3yK9ApOKs2EWCQ_87Y-dRtuqp5ziO5ZnxfON8_ozQx7LUimRKxlzbNGbUihjWPBEbyN4qL4xqlD-NfPqdn1ywL5f55RbKx7MwgbSvVTt3v27mrr0O3MrljU5Gnljy47TigBIAiiTbaBscdCzRJ6Xdoj93ksHyyzI26vkImiydXM0BUEMFRgnxtxeF7e28LDayUk9M_Bfk_Js5-SQVHb9AzwcMiRf9WHfRlnUv0e4QpSs8G6Skj16h39UDhLCzyRU4mARwajHMZBvEzG_xfXWOZ2ffKrEg5Ag3UveK3dBF53QHntVq_HNxhtdPwG3nsHrAnj3rFxl3hVs_RL_97_ms2MuP3mPl-ZLavkYXx5_Oq5N4uHAh1oAb1nFZ-KvHcwolXENTJY3SinFKVJ5ZoURjRNowo7jmRCplqJEZ0ZQzyLNap0zSPbTjOmffIsxMQXgmmSyg5LHclJapxivZGJJrnYsIzcYJr5e9rkYd_ocLWnsz1X_MFKG9YJCpXcZF6nFKhPZHC9VD5K1qgDse5ZRpHqEP02OIGT8T0tnuzrfxQnfwLRKhN71Bp85Hj4iQ2DD11MDrcW8-ATcNutyDW7777zffo2eAx8rApxT7aGd9e2cPAPOs1SGg_c9fD4OnPwKYdQM9 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUaAQKGAkDttDNnHs2MlxFVEtsFshupV6i_yVEok6q-5Wag_8d8b5oos4cY7jWJ4Zz5v4-Rmhj3muFUmUDLm2ccioFSGseSI0kL1VmhlVKX8aeXnK5-fsy0V6sYfS4SxMS9rXqp66n1dTV_9ouZXrKx0NPLHo27LggBIAikQP0EOI15gNRfqotZt1J08SWIBZwgZFH0GjtZObKUBqqMEoIf7-ovYHd5pnO3mpoyb-C3T-zZ28l4xOnqInPYrEs260B2jPumfooI_TDZ70YtLHz9Gv4g6C2NnoElxMAjy1GOaybuXMr_FtscKTs0UhZoQc40rqTrMbumicbsC3ao2_z87w9h68bRxWd9jzZ_0y4y5x7YfoNwA8oxV7AdJbrDxjUtsX6Pzk06qYh_2VC6EG5LAN88xfPp5SKOIqGitplFaMU6LSxAolKiPiihnFNSdSKUONTIimnEGm1Tpmkh6ifdc4-wphZjLCE8lkBkWP5Sa3TFVey8aQVOtUBGgyTHi57pQ1ynZHXNDSm6n8Y6YAHbYGGdslXMQeqQToaLBQ2cfepgTA43FOHqcB-jA-hqjxMyGdbW58Gy91B98iAXrZGXTsfPCIAIkdU48NvCL37hNw1FaZu3fM1__95nv0aL5aLsrF59Ovb9BjQGd5y64UR2h_e31j3wIC2qp3rb__BkOIBZo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLaoHS0AJG4rA9ZBPHjp0cV4FVgbaqaCv1FvkrJRJ1Vt2t1B7474zzxS7ixDmOY3lmPM_x8xuEPua5ViRRMuTaxiGjVoSw5onQQPZWaWZUpfxt5JNTfnTJvl6lV2ulvlrSvlb11P28mbr6R8utXNzoaOCJRWcnBQeUAFAkWpgqeoyeQMzGfNioj3q7WXf7JIFFmCVsUPURNFo4uZwCrIZ9GCXE1zBqf3KnebaRmzp64r-A59_8ybWENN9Gz3skiWfdiHfQI-teoJ0-Vpd40gtKH75Ev4oHCGRno2twMwkQ1WKYz7qVNL_F98UFnpwfF2JGyCGupO50u6GLxukG_KvW-PvsHK_WIG7jsHrAnkPrlxp3jWs_RH8I4Fmt2IuQ3mPlWZPavkKX888XxVHYl10INaCHVZhnvgB5SmEjV9FYSaO0YpwSlSZWKFEZEVfMKK45kUoZamRCNOUMsq3WMZN0F225xtk9hJnJCE8kkxlsfCw3uWWq8no2hqRapyJAk2HCy0WnrlG2p-KClt5M5R8zBWi3NcjYLuEi9mglQAeDhco-_pYlgB6PdfI4DdCH8TFEjp8J6Wxz59t4uTv4FgnQ686gY-eDRwRIbJh6bOBVuTefgLO26ty9c7757zffo6dnn-bl8ZfTb_voGQC0vCVYigO0tbq9s28BBK3Uu9bdfwMCPQat |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cystine%2Fglutamate+antiporter+xCT+%28SLC7A11%29+facilitates+oncogenic+RAS+transformation+by+preserving+intracellular+redox+balance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lim%2C+Jonathan+K+M&rft.au=Delaidelli%2C+Alberto&rft.au=Minaker%2C+Sean+W&rft.au=Zhang%2C+Hai-Feng&rft.date=2019-05-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=19&rft.spage=9433&rft_id=info:doi/10.1073%2Fpnas.1821323116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |