Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance

The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 19; pp. 9433 - 9442
Main Authors Lim, Jonathan K. M., Delaidelli, Alberto, Minaker, Sean W., Zhang, Hai-Feng, Colovic, Milena, Yang, Hua, Negri, Gian Luca, von Karstedt, Silvia, Lockwood, William W., Schaffer, Paul, Leprivier, Gabriel, Sorensen, Poul H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.05.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach,we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo bymitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
AbstractList Significance RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly regarding the relative contributions of oxidant versus antioxidant pathways. Here, we report that the cystine/glutamate transporter xCT is essential for RAS-induced tumorigenicity by enhancing antioxidant glutathione synthesis. Our findings uncover that RAS controls xCT transcription by downstream activation of ETS-1 to synergize with ATF4. This has clinical relevance since xCT expression is upregulated in human cancers exhibiting an activated RAS pathway. Therefore, oncogenic RAS transformation is supported by induction of an antioxidant program, highlighting xCT as a potential vulnerability for therapeutic targeting. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT , the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach,we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo bymitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly regarding the relative contributions of oxidant versus antioxidant pathways. Here, we report that the cystine/glutamate transporter xCT is essential for RAS-induced tumorigenicity by enhancing antioxidant glutathione synthesis. Our findings uncover that RAS controls xCT transcription by downstream activation of ETS-1 to synergize with ATF4. This has clinical relevance since xCT expression is upregulated in human cancers exhibiting an activated RAS pathway. Therefore, oncogenic RAS transformation is supported by induction of an antioxidant program, highlighting xCT as a potential vulnerability for therapeutic targeting. The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT , the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
The family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of , the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.
Author Lim, Jonathan K. M.
Colovic, Milena
Leprivier, Gabriel
Zhang, Hai-Feng
Yang, Hua
von Karstedt, Silvia
Delaidelli, Alberto
Minaker, Sean W.
Lockwood, William W.
Schaffer, Paul
Negri, Gian Luca
Sorensen, Poul H.
Author_xml – sequence: 1
  givenname: Jonathan K. M.
  surname: Lim
  fullname: Lim, Jonathan K. M.
– sequence: 2
  givenname: Alberto
  surname: Delaidelli
  fullname: Delaidelli, Alberto
– sequence: 3
  givenname: Sean W.
  surname: Minaker
  fullname: Minaker, Sean W.
– sequence: 4
  givenname: Hai-Feng
  surname: Zhang
  fullname: Zhang, Hai-Feng
– sequence: 5
  givenname: Milena
  surname: Colovic
  fullname: Colovic, Milena
– sequence: 6
  givenname: Hua
  surname: Yang
  fullname: Yang, Hua
– sequence: 7
  givenname: Gian Luca
  surname: Negri
  fullname: Negri, Gian Luca
– sequence: 8
  givenname: Silvia
  surname: von Karstedt
  fullname: von Karstedt, Silvia
– sequence: 9
  givenname: William W.
  surname: Lockwood
  fullname: Lockwood, William W.
– sequence: 10
  givenname: Paul
  surname: Schaffer
  fullname: Schaffer, Paul
– sequence: 11
  givenname: Gabriel
  surname: Leprivier
  fullname: Leprivier, Gabriel
– sequence: 12
  givenname: Poul H.
  surname: Sorensen
  fullname: Sorensen, Poul H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31000598$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1r3DAQxUVJaTZpzz21CHpJDpvVSJZtXQqLadPCQqFJz0KS5a0Wr-RKdsge-r9XZtPtx0mD3m8e83gX6MwHbxF6DeQGSMVWg1fpBmoKjDKA8hlaABGwLAtBztCCEFot64IW5-gipR0hRPCavEDnDPLMRb1AP5tDGp23q20_jWqvRouVH90Q4mgjfmzu8dXdpqnWANe4U8b1bsxMwsGbsLXeGfx1fYfHqHzqQsz7LnisD3iINtn44PwWO59lY_t-6lXE0bbhEWvVK2_sS_S8U32yr57eS_Tt44f75tNy8-X2c7PeLA0nYlyKuq4E50xA1TGiVauNLkoGmlNb6aprK9IVrS5NCUrrlrWKgmFlYW1rDCkUu0Tvj77DpPf5084n9XKIbq_iQQbl5L-Kd9_lNjzIkgOQgmeDqyeDGH5MNo1y79KcSXkbpiQpBRA8VwIZffcfugtT9DlephipQQgyG66OlIkhpWi70zFA5FytnKuVf6rNG2__znDif3eZgTdHYJfGEE86LSvCgQr2C0mirdc
CitedBy_id crossref_primary_10_1016_j_bioorg_2021_104729
crossref_primary_10_3389_fphar_2022_963066
crossref_primary_10_1016_j_tcb_2023_07_009
crossref_primary_10_1016_j_redox_2021_102093
crossref_primary_10_3389_fcvm_2023_1185924
crossref_primary_10_1021_acsnano_0c00764
crossref_primary_10_1186_s13229_021_00447_5
crossref_primary_10_1111_febs_15842
crossref_primary_10_1007_s00408_023_00639_1
crossref_primary_10_1038_s41417_020_0170_2
crossref_primary_10_1016_j_celrep_2023_113110
crossref_primary_10_1002_1878_0261_13649
crossref_primary_10_1016_j_lfs_2023_122411
crossref_primary_10_1038_s41419_019_2192_y
crossref_primary_10_1038_s41580_020_00324_8
crossref_primary_10_3389_fonc_2022_997919
crossref_primary_10_1371_journal_pone_0235204
crossref_primary_10_1038_s41598_020_62853_8
crossref_primary_10_1038_s41416_020_01156_1
crossref_primary_10_1016_j_ejmech_2023_115233
crossref_primary_10_1016_j_drup_2024_101057
crossref_primary_10_1186_s13148_023_01578_7
crossref_primary_10_1016_j_placenta_2021_05_009
crossref_primary_10_3390_ijms21176156
crossref_primary_10_1016_j_molmed_2020_08_010
crossref_primary_10_1080_23723556_2019_1654814
crossref_primary_10_3389_fmolb_2022_889688
crossref_primary_10_37349_etat_2022_00101
crossref_primary_10_1016_j_gendis_2020_11_010
crossref_primary_10_3389_fgstr_2022_966957
crossref_primary_10_1016_j_biopha_2023_114241
crossref_primary_10_1016_j_cmet_2019_10_009
crossref_primary_10_1186_s12974_023_02768_z
crossref_primary_10_1007_s11684_023_0992_z
crossref_primary_10_1016_j_bbi_2024_03_001
crossref_primary_10_15252_embr_202050635
crossref_primary_10_1038_s43018_024_00738_9
crossref_primary_10_3389_fonc_2022_994672
crossref_primary_10_1016_j_redox_2024_103211
crossref_primary_10_1093_narcan_zcac031
crossref_primary_10_1186_s13578_023_00977_w
crossref_primary_10_1053_j_gastro_2024_01_051
crossref_primary_10_1158_2159_8290_CD_20_1690
crossref_primary_10_3389_fimmu_2023_1137107
crossref_primary_10_1002_cbf_3869
crossref_primary_10_1016_j_abb_2020_108438
crossref_primary_10_1186_s12935_021_02121_5
crossref_primary_10_1038_s43018_021_00184_x
crossref_primary_10_1016_j_canlet_2024_216728
crossref_primary_10_1016_j_phymed_2023_154921
crossref_primary_10_3390_ijms22094376
crossref_primary_10_1007_s00408_022_00537_y
crossref_primary_10_3389_fonc_2022_858480
crossref_primary_10_1016_j_jddst_2021_103022
crossref_primary_10_1002_1878_0261_12999
crossref_primary_10_3389_fonc_2020_00722
crossref_primary_10_1146_annurev_nutr_120420_032437
crossref_primary_10_3390_ijms22010023
crossref_primary_10_3389_fonc_2023_1098357
crossref_primary_10_3390_antiox9030193
crossref_primary_10_1007_s00018_020_03569_w
crossref_primary_10_1038_s43018_023_00715_8
crossref_primary_10_1038_s41598_020_61692_x
crossref_primary_10_1016_j_ccell_2024_03_011
crossref_primary_10_3390_antiox11122444
crossref_primary_10_1016_j_bcp_2022_115241
crossref_primary_10_1038_s41388_021_01899_y
crossref_primary_10_3389_fonc_2020_00276
crossref_primary_10_3390_biom10050791
crossref_primary_10_2967_jnumed_122_265254
crossref_primary_10_1016_j_jep_2023_116409
crossref_primary_10_3389_fonc_2020_00947
crossref_primary_10_3892_ijo_2022_5447
crossref_primary_10_1186_s12935_021_02433_6
crossref_primary_10_1073_pnas_1919250117
crossref_primary_10_3390_pharmaceutics16020197
crossref_primary_10_1016_j_biopha_2023_115251
crossref_primary_10_1080_17476348_2023_2223985
crossref_primary_10_3389_fonc_2022_858462
crossref_primary_10_3390_metabo14010028
crossref_primary_10_3390_toxics12020161
crossref_primary_10_1016_j_cmet_2020_10_011
crossref_primary_10_1016_j_ejphar_2022_175093
crossref_primary_10_3748_wjg_v29_i16_2433
crossref_primary_10_3390_cancers14020345
crossref_primary_10_1016_j_redox_2023_103011
crossref_primary_10_14336_AD_2022_01302
crossref_primary_10_1152_ajpendo_00260_2023
crossref_primary_10_1002_ijc_33711
crossref_primary_10_1038_s41568_022_00459_0
crossref_primary_10_1158_1078_0432_CCR_20_0644
crossref_primary_10_1038_s41419_020_2732_5
crossref_primary_10_1038_s41467_022_33377_8
crossref_primary_10_1111_imm_13789
crossref_primary_10_2144_fsoa_2023_0136
crossref_primary_10_3390_cancers15235573
crossref_primary_10_1002_pmic_202100007
crossref_primary_10_1038_s41418_024_01324_3
crossref_primary_10_1038_s41589_019_0408_1
crossref_primary_10_1016_j_cellsig_2020_109874
crossref_primary_10_1016_j_drup_2022_100916
crossref_primary_10_1186_s12957_023_03176_6
crossref_primary_10_1002_adhm_202301453
crossref_primary_10_1016_j_redox_2022_102407
crossref_primary_10_1016_j_cmet_2020_12_007
crossref_primary_10_1007_s43032_020_00284_6
crossref_primary_10_3389_fonc_2022_1023427
crossref_primary_10_3390_ijms24043719
crossref_primary_10_1155_2022_2634431
crossref_primary_10_1016_j_celrep_2023_112536
crossref_primary_10_1016_j_freeradbiomed_2024_04_208
crossref_primary_10_1093_carcin_bgad020
crossref_primary_10_3389_fonc_2024_1335401
crossref_primary_10_1155_2020_5047987
crossref_primary_10_1016_j_molcel_2021_12_001
crossref_primary_10_1002_1873_3468_14462
crossref_primary_10_3390_cancers14133059
crossref_primary_10_1172_JCI124049
crossref_primary_10_1002_adhm_202301345
crossref_primary_10_2174_1568009622666220211122745
crossref_primary_10_1016_j_ccell_2020_06_001
crossref_primary_10_3390_jpm13050719
crossref_primary_10_1080_1061186X_2022_2071909
crossref_primary_10_2174_1568009619666190802135714
crossref_primary_10_3389_fmolb_2021_706650
crossref_primary_10_1038_s41598_022_16372_3
crossref_primary_10_1134_S002689332304012X
crossref_primary_10_1016_j_heliyon_2023_e23521
crossref_primary_10_1038_s41419_022_05022_1
crossref_primary_10_1186_s40478_023_01507_y
crossref_primary_10_31857_S0026898423040158
crossref_primary_10_1002_advs_202100997
crossref_primary_10_3390_biom14070746
crossref_primary_10_3390_cancers15082363
crossref_primary_10_1093_nar_gkad506
crossref_primary_10_1016_j_jsbmb_2022_106234
crossref_primary_10_1073_pnas_2202736119
crossref_primary_10_1038_s44319_023_00038_w
crossref_primary_10_1111_cas_14643
crossref_primary_10_1134_S0006297920080052
crossref_primary_10_3390_cancers13010125
crossref_primary_10_3389_fphys_2021_680544
crossref_primary_10_3390_biology10050399
crossref_primary_10_1016_j_biopha_2022_112668
crossref_primary_10_3389_fcell_2021_774957
crossref_primary_10_3390_cancers13020281
crossref_primary_10_3390_ijms24055041
crossref_primary_10_1097_MD_0000000000037421
crossref_primary_10_1158_0008_5472_CAN_20_0788
crossref_primary_10_1002_hep_31730
crossref_primary_10_1186_s40364_021_00338_0
crossref_primary_10_2147_CMAR_S263767
crossref_primary_10_1038_s41419_023_06063_w
crossref_primary_10_1016_j_cnd_2020_09_003
crossref_primary_10_1016_j_ymthe_2020_08_021
crossref_primary_10_1080_14728222_2021_2011206
crossref_primary_10_1186_s12964_023_01170_9
crossref_primary_10_7554_eLife_71929
crossref_primary_10_1016_j_molcel_2023_08_004
crossref_primary_10_3389_fphar_2022_1043344
crossref_primary_10_1016_j_jconrel_2023_03_030
crossref_primary_10_1016_j_redox_2021_101870
crossref_primary_10_1016_j_pdpdt_2023_103612
crossref_primary_10_18632_oncotarget_28224
crossref_primary_10_3390_cancers13030425
crossref_primary_10_3390_cancers16061220
crossref_primary_10_3390_cancers12040825
crossref_primary_10_1016_j_cytogfr_2023_08_004
crossref_primary_10_1016_j_prp_2022_153778
crossref_primary_10_3389_fendo_2022_1029210
crossref_primary_10_3389_fcell_2021_675617
crossref_primary_10_3390_cancers12010164
crossref_primary_10_1038_s41419_024_06467_2
crossref_primary_10_1073_pnas_2302126120
crossref_primary_10_1016_j_jep_2022_116069
crossref_primary_10_1016_j_canlet_2021_09_033
crossref_primary_10_1007_s10495_023_01909_2
crossref_primary_10_1002_smll_202400326
crossref_primary_10_1042_BCJ20230317
crossref_primary_10_1016_j_tcb_2022_02_009
crossref_primary_10_1186_s12964_023_01449_x
crossref_primary_10_1016_j_chembiol_2020_03_011
crossref_primary_10_1016_j_ccr_2023_215321
crossref_primary_10_1038_s41418_021_00890_0
crossref_primary_10_3389_fcell_2021_748925
crossref_primary_10_1016_j_heliyon_2023_e14179
crossref_primary_10_1089_ars_2020_8024
crossref_primary_10_1016_j_bbcan_2023_188872
crossref_primary_10_1038_s41568_021_00435_0
crossref_primary_10_1111_acel_14165
crossref_primary_10_1126_sciadv_adi5192
crossref_primary_10_1016_j_heliyon_2021_e08399
crossref_primary_10_1016_j_jgg_2022_06_002
crossref_primary_10_1007_s10557_021_07220_z
crossref_primary_10_1002_cbf_3581
crossref_primary_10_1007_s13238_020_00789_5
crossref_primary_10_1038_s41575_021_00486_6
Cites_doi 10.1038/nature14344
10.1186/1476-4598-2-29
10.1158/0008-5472.CAN-04-4267
10.1126/science.275.5306.1649
10.1016/j.canlet.2011.07.024
10.2967/jnumed.116.180661
10.1074/jbc.M208704200
10.1146/annurev.bi.62.070193.004223
10.1038/s41556-018-0178-0
10.1016/j.cell.2016.11.035
10.1038/ng0298-184
10.1002/cne.23889
10.1038/nrd2803
10.1158/0008-5472.CAN-03-3909
10.1126/scitranslmed.aad3740
10.1016/j.ccell.2017.12.003
10.1038/nature15726
10.1073/pnas.1003428107
10.1038/nature10189
10.1016/j.cell.2015.05.049
10.1101/gad.13.22.2905
10.1038/s41598-018-19213-4
10.1038/nrc969
10.1021/bi100199q
10.1038/nature12040
10.1074/jbc.274.17.11455
10.1016/0167-4889(91)90153-O
10.1158/0008-5472.CAN-12-3609-T
10.1101/gad.2016311
10.1038/nrc3106
10.1128/MCB.00221-14
10.1158/0008-5472.CAN-13-1803
10.1016/j.ccr.2011.01.038
10.1126/science.3277276
10.1126/scisignal.aao6604
10.1038/sj.bjc.6601048
10.1158/0008-5472.CAN-14-1439
10.1038/ncb2432
10.1038/sj.onc.1204383
10.2967/jnumed.113.126664
10.1126/science.aaa5004
10.1038/nature07733
10.1038/nature04296
10.1016/j.ccell.2014.11.019
10.1038/nature16967
10.1038/emboj.2010.7
10.1158/0008-5472.CAN-11-2612
10.1016/j.bbrc.2004.10.009
10.1016/j.ccr.2013.08.020
10.1038/onc.2011.323
10.1038/cdd.2011.119
10.1200/JCO.2005.02.857
10.1158/0008-5472.CAN-15-2121
10.1074/jbc.M506439200
10.1096/fj.05-4401fje
10.1038/cdd.2014.34
10.1038/s41388-018-0307-z
ContentType Journal Article
Copyright Copyright © 2019 the Author(s). Published by PNAS.
Copyright National Academy of Sciences May 7, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright © 2019 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences May 7, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1821323116
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9442
ExternalDocumentID 10_1073_pnas_1821323116
31000598
26705129
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: FDN-143280
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: LE 3751/2-1
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (CIHR)
  grantid: FDN-143280
– fundername: Deutsche Krebshilfe (German Cancer Aid)
  grantid: 70112550
– fundername: British Columbia Cancer Foundation
  grantid: BC-WD 12-13-6369
– fundername: Deutsche Krebshilfe (German Cancer Aid)
  grantid: 70112624
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-98879553917f30badbcb4631b52e7b7fd70f4db6c61abbd3da21c364eedcc04a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:50:58 EDT 2024
Fri Aug 16 22:13:07 EDT 2024
Thu Oct 10 16:06:30 EDT 2024
Fri Aug 23 01:45:51 EDT 2024
Sat Sep 28 08:34:39 EDT 2024
Fri Feb 02 07:30:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords xCT
oncogene
RAS
antioxidants
Language English
License Copyright © 2019 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-98879553917f30badbcb4631b52e7b7fd70f4db6c61abbd3da21c364eedcc04a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.K.M.L., G.L., and P.H.S. designed research; J.K.M.L., A.D., S.W.M., H.-F.Z., M.C., G.L.N., S.v.K., and W.W.L. performed research; H.Y., S.v.K., W.W.L., and P.S. contributed new reagents/analytic tools; J.K.M.L. and G.L. analyzed data; and J.K.M.L., G.L., and P.H.S. wrote the paper.
1S.W.M. and H.-F.Z. contributed equally to this work.
Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, and approved March 27, 2019 (received for review December 14, 2018)
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511045/
PMID 31000598
PQID 2230819905
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6511045
proquest_miscellaneous_2211951071
proquest_journals_2230819905
crossref_primary_10_1073_pnas_1821323116
pubmed_primary_31000598
jstor_primary_26705129
PublicationCentury 2000
PublicationDate 2019-05-07
PublicationDateYYYYMMDD 2019-05-07
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
Rosell R (e_1_3_3_52_2) 1995; 22
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
Seth A (e_1_3_3_48_2) 1990; 5
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
Wang H (e_1_3_3_59_2) 2016; 8
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_27_2
  doi: 10.1038/nature14344
– ident: e_1_3_3_46_2
  doi: 10.1186/1476-4598-2-29
– ident: e_1_3_3_45_2
  doi: 10.1158/0008-5472.CAN-04-4267
– ident: e_1_3_3_7_2
  doi: 10.1126/science.275.5306.1649
– ident: e_1_3_3_21_2
  doi: 10.1016/j.canlet.2011.07.024
– ident: e_1_3_3_35_2
  doi: 10.2967/jnumed.116.180661
– ident: e_1_3_3_16_2
  doi: 10.1074/jbc.M208704200
– ident: e_1_3_3_1_2
  doi: 10.1146/annurev.bi.62.070193.004223
– ident: e_1_3_3_28_2
  doi: 10.1038/s41556-018-0178-0
– ident: e_1_3_3_41_2
  doi: 10.1016/j.cell.2016.11.035
– ident: e_1_3_3_29_2
  doi: 10.1038/ng0298-184
– ident: e_1_3_3_33_2
  doi: 10.1002/cne.23889
– ident: e_1_3_3_53_2
  doi: 10.1038/nrd2803
– ident: e_1_3_3_8_2
  doi: 10.1158/0008-5472.CAN-03-3909
– ident: e_1_3_3_58_2
  doi: 10.1126/scitranslmed.aad3740
– ident: e_1_3_3_42_2
  doi: 10.1016/j.ccell.2017.12.003
– ident: e_1_3_3_57_2
  doi: 10.1038/nature15726
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.1003428107
– ident: e_1_3_3_11_2
  doi: 10.1038/nature10189
– ident: e_1_3_3_39_2
  doi: 10.1016/j.cell.2015.05.049
– ident: e_1_3_3_5_2
  doi: 10.1101/gad.13.22.2905
– ident: e_1_3_3_26_2
  doi: 10.1038/s41598-018-19213-4
– ident: e_1_3_3_3_2
  doi: 10.1038/nrc969
– ident: e_1_3_3_37_2
  doi: 10.1021/bi100199q
– ident: e_1_3_3_13_2
  doi: 10.1038/nature12040
– ident: e_1_3_3_14_2
  doi: 10.1074/jbc.274.17.11455
– ident: e_1_3_3_15_2
  doi: 10.1016/0167-4889(91)90153-O
– ident: e_1_3_3_25_2
  doi: 10.1158/0008-5472.CAN-12-3609-T
– ident: e_1_3_3_43_2
  doi: 10.1101/gad.2016311
– volume: 5
  start-page: 1761
  year: 1990
  ident: e_1_3_3_48_2
  article-title: The c-ets-1 proto-oncogene has oncogenic activity and is positively autoregulated
  publication-title: Oncogene
  contributor:
    fullname: Seth A
– ident: e_1_3_3_6_2
  doi: 10.1038/nrc3106
– ident: e_1_3_3_38_2
  doi: 10.1128/MCB.00221-14
– ident: e_1_3_3_19_2
  doi: 10.1158/0008-5472.CAN-13-1803
– ident: e_1_3_3_23_2
  doi: 10.1016/j.ccr.2011.01.038
– volume: 8
  start-page: 334ra351
  year: 2016
  ident: e_1_3_3_59_2
  article-title: NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
  publication-title: Sci Transl Med
  contributor:
    fullname: Wang H
– ident: e_1_3_3_40_2
  doi: 10.1126/science.3277276
– ident: e_1_3_3_49_2
  doi: 10.1126/scisignal.aao6604
– ident: e_1_3_3_51_2
  doi: 10.1038/sj.bjc.6601048
– ident: e_1_3_3_44_2
  doi: 10.1158/0008-5472.CAN-14-1439
– volume: 22
  start-page: 12
  year: 1995
  ident: e_1_3_3_52_2
  article-title: Single-agent paclitaxel by 3-hour infusion in the treatment of non-small cell lung cancer: Links between p53 and K-ras gene status and chemosensitivity
  publication-title: Semin Oncol
  contributor:
    fullname: Rosell R
– ident: e_1_3_3_24_2
  doi: 10.1038/ncb2432
– ident: e_1_3_3_4_2
  doi: 10.1038/sj.onc.1204383
– ident: e_1_3_3_34_2
  doi: 10.2967/jnumed.113.126664
– ident: e_1_3_3_56_2
  doi: 10.1126/science.aaa5004
– ident: e_1_3_3_54_2
  doi: 10.1038/nature07733
– ident: e_1_3_3_31_2
  doi: 10.1038/nature04296
– ident: e_1_3_3_55_2
  doi: 10.1016/j.ccell.2014.11.019
– ident: e_1_3_3_12_2
  doi: 10.1038/nature16967
– ident: e_1_3_3_32_2
  doi: 10.1038/emboj.2010.7
– ident: e_1_3_3_2_2
  doi: 10.1158/0008-5472.CAN-11-2612
– ident: e_1_3_3_17_2
  doi: 10.1016/j.bbrc.2004.10.009
– ident: e_1_3_3_20_2
  doi: 10.1016/j.ccr.2013.08.020
– ident: e_1_3_3_30_2
  doi: 10.1038/onc.2011.323
– ident: e_1_3_3_60_2
  doi: 10.1038/cdd.2011.119
– ident: e_1_3_3_50_2
  doi: 10.1200/JCO.2005.02.857
– ident: e_1_3_3_22_2
  doi: 10.1158/0008-5472.CAN-15-2121
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.M506439200
– ident: e_1_3_3_47_2
  doi: 10.1096/fj.05-4401fje
– ident: e_1_3_3_9_2
  doi: 10.1038/cdd.2014.34
– ident: e_1_3_3_18_2
  doi: 10.1038/s41388-018-0307-z
SSID ssj0009580
Score 2.687693
Snippet The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying...
The family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying...
Significance RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood,...
RAS genes are among the most mutated proto-oncogenes in human cancer. The mechanisms supporting RAS transformation are not fully understood, particularly...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9433
SubjectTerms 1-Phosphatidylinositol 3-kinase
AKT protein
Amino Acid Transport System y+ - biosynthesis
Amino Acid Transport System y+ - genetics
Animals
Antioxidants
Biological Sciences
Biosynthesis
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - metabolism
Cell Transformation, Neoplastic - pathology
Cystine
Downstream effects
Endoplasmic reticulum
Endoplasmic Reticulum Stress
ETS protein
Female
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - pathology
Gene expression
Gene regulation
Genetic transformation
Homeostasis
Intracellular
MAP Kinase Signaling System
Mice
Mice, Knockout
Mice, Nude
Neoplasms, Experimental - genetics
Neoplasms, Experimental - metabolism
Neoplasms, Experimental - pathology
NIH 3T3 Cells
Oxidation-Reduction
Oxidative Stress
PNAS Plus
Proto-Oncogene Protein c-ets-1 - genetics
Proto-Oncogene Protein c-ets-1 - metabolism
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Proto-oncogenes
Raf protein
Reactive oxygen species
Signal transduction
Signaling
Transcription factors
Transformed cells
Tumorigenicity
Tumors
Xenografts
Xenotransplantation
Title Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance
URI https://www.jstor.org/stable/26705129
https://www.ncbi.nlm.nih.gov/pubmed/31000598
https://www.proquest.com/docview/2230819905
https://search.proquest.com/docview/2211951071
https://pubmed.ncbi.nlm.nih.gov/PMC6511045
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAUy9VaUubFpAr9bAcsoljx06Oq6iIPqiqAhK3yK9ApOKs2EWCQ_87Y-dRtuqp5ziO5ZnxfON8_ozQx7LUimRKxlzbNGbUihjWPBEbyN4qL4xqlD-NfPqdn1ywL5f55RbKx7MwgbSvVTt3v27mrr0O3MrljU5Gnljy47TigBIAiiTbaBscdCzRJ6Xdoj93ksHyyzI26vkImiydXM0BUEMFRgnxtxeF7e28LDayUk9M_Bfk_Js5-SQVHb9AzwcMiRf9WHfRlnUv0e4QpSs8G6Skj16h39UDhLCzyRU4mARwajHMZBvEzG_xfXWOZ2ffKrEg5Ag3UveK3dBF53QHntVq_HNxhtdPwG3nsHrAnj3rFxl3hVs_RL_97_ms2MuP3mPl-ZLavkYXx5_Oq5N4uHAh1oAb1nFZ-KvHcwolXENTJY3SinFKVJ5ZoURjRNowo7jmRCplqJEZ0ZQzyLNap0zSPbTjOmffIsxMQXgmmSyg5LHclJapxivZGJJrnYsIzcYJr5e9rkYd_ocLWnsz1X_MFKG9YJCpXcZF6nFKhPZHC9VD5K1qgDse5ZRpHqEP02OIGT8T0tnuzrfxQnfwLRKhN71Bp85Hj4iQ2DD11MDrcW8-ATcNutyDW7777zffo2eAx8rApxT7aGd9e2cPAPOs1SGg_c9fD4OnPwKYdQM9
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUaAQKGAkDttDNnHs2MlxFVEtsFshupV6i_yVEok6q-5Wag_8d8b5oos4cY7jWJ4Zz5v4-Rmhj3muFUmUDLm2ccioFSGseSI0kL1VmhlVKX8aeXnK5-fsy0V6sYfS4SxMS9rXqp66n1dTV_9ouZXrKx0NPLHo27LggBIAikQP0EOI15gNRfqotZt1J08SWIBZwgZFH0GjtZObKUBqqMEoIf7-ovYHd5pnO3mpoyb-C3T-zZ28l4xOnqInPYrEs260B2jPumfooI_TDZ70YtLHz9Gv4g6C2NnoElxMAjy1GOaybuXMr_FtscKTs0UhZoQc40rqTrMbumicbsC3ao2_z87w9h68bRxWd9jzZ_0y4y5x7YfoNwA8oxV7AdJbrDxjUtsX6Pzk06qYh_2VC6EG5LAN88xfPp5SKOIqGitplFaMU6LSxAolKiPiihnFNSdSKUONTIimnEGm1Tpmkh6ifdc4-wphZjLCE8lkBkWP5Sa3TFVey8aQVOtUBGgyTHi57pQ1ynZHXNDSm6n8Y6YAHbYGGdslXMQeqQToaLBQ2cfepgTA43FOHqcB-jA-hqjxMyGdbW58Gy91B98iAXrZGXTsfPCIAIkdU48NvCL37hNw1FaZu3fM1__95nv0aL5aLsrF59Ovb9BjQGd5y64UR2h_e31j3wIC2qp3rb__BkOIBZo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgSIgLaoHS0AJG4rA9ZBPHjp0cV4FVgbaqaCv1FvkrJRJ1Vt2t1B7474zzxS7ixDmOY3lmPM_x8xuEPua5ViRRMuTaxiGjVoSw5onQQPZWaWZUpfxt5JNTfnTJvl6lV2ulvlrSvlb11P28mbr6R8utXNzoaOCJRWcnBQeUAFAkWpgqeoyeQMzGfNioj3q7WXf7JIFFmCVsUPURNFo4uZwCrIZ9GCXE1zBqf3KnebaRmzp64r-A59_8ybWENN9Gz3skiWfdiHfQI-teoJ0-Vpd40gtKH75Ev4oHCGRno2twMwkQ1WKYz7qVNL_F98UFnpwfF2JGyCGupO50u6GLxukG_KvW-PvsHK_WIG7jsHrAnkPrlxp3jWs_RH8I4Fmt2IuQ3mPlWZPavkKX888XxVHYl10INaCHVZhnvgB5SmEjV9FYSaO0YpwSlSZWKFEZEVfMKK45kUoZamRCNOUMsq3WMZN0F225xtk9hJnJCE8kkxlsfCw3uWWq8no2hqRapyJAk2HCy0WnrlG2p-KClt5M5R8zBWi3NcjYLuEi9mglQAeDhco-_pYlgB6PdfI4DdCH8TFEjp8J6Wxz59t4uTv4FgnQ686gY-eDRwRIbJh6bOBVuTefgLO26ty9c7757zffo6dnn-bl8ZfTb_voGQC0vCVYigO0tbq9s28BBK3Uu9bdfwMCPQat
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cystine%2Fglutamate+antiporter+xCT+%28SLC7A11%29+facilitates+oncogenic+RAS+transformation+by+preserving+intracellular+redox+balance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lim%2C+Jonathan+K+M&rft.au=Delaidelli%2C+Alberto&rft.au=Minaker%2C+Sean+W&rft.au=Zhang%2C+Hai-Feng&rft.date=2019-05-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=19&rft.spage=9433&rft_id=info:doi/10.1073%2Fpnas.1821323116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon