Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications

GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great prom...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 4; p. 1263
Main Authors Lin, Pin-Hao, Ghosh, Soumava, Chang, Guo-En
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.02.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron–hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type–I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.
AbstractList GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron–hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type–I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.
GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron-hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type-I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron-hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type-I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.
Audience Academic
Author Chang, Guo-En
Lin, Pin-Hao
Ghosh, Soumava
AuthorAffiliation Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan; arron@alum.ccu.edu.tw (P.-H.L.); sghosh@ccu.edu.tw (S.G.)
AuthorAffiliation_xml – name: Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan; arron@alum.ccu.edu.tw (P.-H.L.); sghosh@ccu.edu.tw (S.G.)
Author_xml – sequence: 1
  givenname: Pin-Hao
  surname: Lin
  fullname: Lin, Pin-Hao
– sequence: 2
  givenname: Soumava
  orcidid: 0000-0003-3233-004X
  surname: Ghosh
  fullname: Ghosh, Soumava
– sequence: 3
  givenname: Guo-En
  orcidid: 0000-0002-3739-5451
  surname: Chang
  fullname: Chang, Guo-En
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38400421$$D View this record in MEDLINE/PubMed
BookMark eNplkktvEzEQxy1URB9w4AuglbjQQ1q_dtc-oajQEqkSIHK3vN5x4mjXDra3Ur89TtJWbZEPHo3_8xvP4xQd-eABoY8EXzAm8WWiHHNCG_YGnRBO-UxQio-e2cfoNKUNxpQxJt6hYyY4xpySE7RYriFEyM7ooZp7Pdwnl6pgqxv446vfk_Z5GqtvIafKhlj9Wocceshgsgu-mm-3Q4nc2ek9emv1kODDw32Gltffl1c_Zrc_bxZX89uZqbHMM8kI462RtqFCihZqWmtdd9TImrSCC9a3hGPLG80Eodow3HdWs96CANlYdoYWB2wf9EZtoxt1vFdBO7V3hLhSOpZyBlASqNYAvG8pcC5awUhvjakllV1nKC-srwfWdupG6A34HPXwAvryxbu1WoU7RbCQDIsd4csDIYa_E6SsRpcMDIP2EKakqGQlD8e1KNLPr6SbMMXS8b2KEMxZswNeHFQrXSpw3oaS2JTTw-hMGbt1xT8vnSK4xliWgE_Pa3j6_OOIi-DyIDAxpBTBKuPyfmSF7IZSi9otkXpaohJx_iriEfq_9h9Sk8SS
CitedBy_id crossref_primary_10_1088_1361_6528_ada9a6
crossref_primary_10_3390_electronics13214142
crossref_primary_10_3390_qubs9010009
Cites_doi 10.1021/acsphotonics.2c00260
10.1364/OE.26.010305
10.7567/1882-0786/ab0993
10.1109/JQE.2006.889645
10.1016/S1386-9477(02)00292-8
10.1016/j.spmi.2018.02.038
10.1063/1.1688982
10.1109/JSTQE.2021.3065204
10.1021/acsphotonics.9b00845
10.1109/JSTQE.2012.2206802
10.1063/1.4943652
10.1063/5.0063179
10.1063/1.4812747
10.1109/LPT.2006.873458
10.1016/j.infrared.2014.10.012
10.1063/1.4759011
10.1002/9781119945161
10.1038/s41598-019-50349-z
10.1186/s11671-018-2587-1
10.1063/1.1515133
10.1109/JQE.2005.848901
10.1039/D3RA00805C
10.1007/s11664-014-3089-2
10.1088/1468-6996/16/4/043502
10.1109/LPT.2004.825974
10.3844/ajassp.2008.1071.1078
10.3390/nano12172993
10.1103/PhysRevB.39.1871
10.1364/OFC.2015.W4A.4
10.1063/1.1923766
10.1016/S1350-4495(02)00140-8
10.1016/j.apsusc.2021.152249
10.20944/preprints202204.0294.v1
10.1021/cm061696j
10.1109/JSTQE.2016.2553447
10.1088/1361-6641/aaf7a7
10.1088/0268-1242/21/5/010
10.1016/S0022-0248(03)01105-9
10.1109/IEDM.2017.8268402
10.3390/s23177531
10.1109/JQE.2010.2059000
10.1038/s41598-018-33161-z
10.1016/j.chip.2022.100006
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s24041263
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9e2aaee4d72e4487831dfcc5929bbc24
PMC10893084
A784105009
38400421
10_3390_s24041263
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: MOST 111-2636-E-194-002
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-931347c9f628987e525aa5b2c95178483d7140f46a3812ac30dbfa3dfe8e96f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:51 EDT 2025
Thu Aug 21 18:35:17 EDT 2025
Fri Jul 11 16:49:27 EDT 2025
Sat Jul 26 00:38:38 EDT 2025
Tue Jun 10 21:12:42 EDT 2025
Wed Feb 19 02:07:10 EST 2025
Tue Jul 01 03:50:45 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords photodetectors
quantum dots
image sensing
GeSn alloy
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-931347c9f628987e525aa5b2c95178483d7140f46a3812ac30dbfa3dfe8e96f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3233-004X
0000-0002-3739-5451
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24041263
PMID 38400421
PQID 2931104364
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9e2aaee4d72e4487831dfcc5929bbc24
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10893084
proquest_miscellaneous_2932434058
proquest_journals_2931104364
gale_infotracacademiconefile_A784105009
pubmed_primary_38400421
crossref_citationtrail_10_3390_s24041263
crossref_primary_10_3390_s24041263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240216
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 2
  year: 2024
  text: 20240216
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zaima (ref_21) 2015; 16
Chang (ref_39) 2010; 46
Wang (ref_13) 2021; 13
Gunapala (ref_29) 2007; 43
Brunner (ref_30) 2002; 13
Eales (ref_43) 2019; 9
McCarthy (ref_18) 2021; 130
Su (ref_25) 2005; 41
Santalla (ref_31) 2003; 253
Zhang (ref_36) 2019; 12
Kasiyan (ref_3) 2012; 112
ref_12
Atalla (ref_15) 2022; 9
ref_10
Nawwar (ref_16) 2023; 13
ref_32
Baira (ref_42) 2018; 13
Moto (ref_22) 2018; 8
Kuo (ref_38) 2006; 21
Rogalski (ref_1) 2002; 43
Mosleh (ref_23) 2014; 43
ref_19
Baira (ref_35) 2018; 117
Chizmeshya (ref_7) 2006; 18
(ref_41) 1989; 39
Arslan (ref_2) 2015; 70
Tran (ref_17) 2019; 6
Chakrabarti (ref_24) 2004; 16
Chang (ref_11) 2016; 22
Tran (ref_45) 2016; 119
Tang (ref_28) 2006; 18
Jiang (ref_26) 2004; 84
Zhang (ref_37) 2022; 579
Nejad (ref_20) 2008; 5
Gupta (ref_5) 2013; 102
Chang (ref_8) 2022; 28
ref_40
Bhattacharya (ref_27) 2005; 86
ref_9
Stepikhova (ref_34) 2019; 34
Wang (ref_14) 2018; 26
ref_4
Xu (ref_33) 2012; 18
Hu (ref_44) 2022; 1
Bauer (ref_6) 2002; 81
References_xml – volume: 9
  start-page: 1425
  year: 2022
  ident: ref_15
  article-title: High-bandwidth extended-SWIR GeSn photodetectors on silicon achieving ultrafast broadband spectroscopic response
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.2c00260
– volume: 26
  start-page: 10305
  year: 2018
  ident: ref_14
  article-title: High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform
  publication-title: Opt. Express
  doi: 10.1364/OE.26.010305
– volume: 12
  start-page: 055504
  year: 2019
  ident: ref_36
  article-title: High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab0993
– volume: 43
  start-page: 230
  year: 2007
  ident: ref_29
  article-title: 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2006.889645
– volume: 13
  start-page: 1018
  year: 2002
  ident: ref_30
  article-title: Ge quantum dots in Si: Self-assembly, stacking and level spectroscopy
  publication-title: Phys. E Low-Dimens. Syst. Nanostructures
  doi: 10.1016/S1386-9477(02)00292-8
– volume: 117
  start-page: 31
  year: 2018
  ident: ref_35
  article-title: Tuning direct bandgap GeSn/Ge quantum dots’ interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.02.038
– volume: 84
  start-page: 2166
  year: 2004
  ident: ref_26
  article-title: High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1688982
– volume: 28
  start-page: 3800611
  year: 2022
  ident: ref_8
  article-title: Achievable performance of uncooled homojunction GeSn mid-infrared Photodetectors
  publication-title: IEEE J. Sel. Quantum Electron.
  doi: 10.1109/JSTQE.2021.3065204
– volume: 6
  start-page: 2807
  year: 2019
  ident: ref_17
  article-title: Si-based GeSn photodetectors toward mid-Infrared imaging applications
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00845
– volume: 18
  start-page: 1830
  year: 2012
  ident: ref_33
  article-title: Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities
  publication-title: J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2012.2206802
– volume: 119
  start-page: 103106
  year: 2016
  ident: ref_45
  article-title: Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4943652
– volume: 130
  start-page: 223102
  year: 2021
  ident: ref_18
  article-title: Momentum (k)-space carrier separation using SiGeSn alloys for photodetector applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0063179
– volume: 102
  start-page: 251117
  year: 2013
  ident: ref_5
  article-title: Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4812747
– volume: 18
  start-page: 986
  year: 2006
  ident: ref_28
  article-title: High-temperature operation normal incident 256 × 256 InAs-GaAs quantum-dot infrared photodetector focal plane array
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2006.873458
– volume: 70
  start-page: 134
  year: 2015
  ident: ref_2
  article-title: Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2014.10.012
– ident: ref_40
– volume: 112
  start-page: 2013
  year: 2012
  ident: ref_3
  article-title: Infrared detectors based on semiconductor p-n junction of PbSe
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4759011
– ident: ref_4
  doi: 10.1002/9781119945161
– volume: 9
  start-page: 14077
  year: 2019
  ident: ref_43
  article-title: Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50349-z
– volume: 13
  start-page: 172
  year: 2018
  ident: ref_42
  article-title: Design of strain-engineered GeSn/GeSiSn quantum dots for mid-IR direct bandgap emission on Si substrate
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2587-1
– volume: 81
  start-page: 2992
  year: 2002
  ident: ref_6
  article-title: Ge-Sn semiconductors for band-gap and lattice engineering
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1515133
– volume: 13
  start-page: 6800809
  year: 2021
  ident: ref_13
  article-title: High-performance GeSn photodetector covering all telecommunication bands
  publication-title: IEEE Photonics J.
– volume: 41
  start-page: 974
  year: 2005
  ident: ref_25
  article-title: A resonant tunneling quantum dot infrared photodetector
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2005.848901
– volume: 13
  start-page: 9154
  year: 2023
  ident: ref_16
  article-title: Controlling barrier height and spectral responsivity of p-i-n based GeSn photodetectors via arsenic incorporation
  publication-title: RSC Adv.
  doi: 10.1039/D3RA00805C
– volume: 43
  start-page: 938
  year: 2014
  ident: ref_23
  article-title: Material characterization of Ge1−xSnx alloys grown by a commercial CVD system for optoelectronic device applications
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-014-3089-2
– volume: 16
  start-page: 43502
  year: 2015
  ident: ref_21
  article-title: Growth and applications of GeSn-related group-IV semiconductor materials
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/16/4/043502
– volume: 16
  start-page: 1361
  year: 2004
  ident: ref_24
  article-title: High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2004.825974
– volume: 5
  start-page: 1071
  year: 2008
  ident: ref_20
  article-title: Optimal dark current reduction in quantum well 9 µm GaAs/AlGaAs infrared photodetectors with improved detectivity
  publication-title: Am. J. Appl. Sci.
  doi: 10.3844/ajassp.2008.1071.1078
– ident: ref_32
  doi: 10.3390/nano12172993
– volume: 39
  start-page: 1871
  year: 1989
  ident: ref_41
  article-title: Band lineups and deformation potentials in the model-solid theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1871
– ident: ref_10
  doi: 10.1364/OFC.2015.W4A.4
– volume: 86
  start-page: 191106
  year: 2005
  ident: ref_27
  article-title: Characteristics of a tunneling quantum dot infrared photodetector operating at room temperature
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1923766
– volume: 43
  start-page: 187
  year: 2002
  ident: ref_1
  article-title: Infrared detectors: An overview
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/S1350-4495(02)00140-8
– volume: 579
  start-page: 152249
  year: 2022
  ident: ref_37
  article-title: Controllable synthesis of Si-based GeSn quantum dots with room-temperature photoluminescence
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.152249
– ident: ref_9
  doi: 10.20944/preprints202204.0294.v1
– volume: 18
  start-page: 6266
  year: 2006
  ident: ref_7
  article-title: Fundamental studies of P(GeH3)3, As(GeH3)3, and Sb(GeH3)3: Practical n-dopants for new group IV semiconductors
  publication-title: Chem. Mater.
  doi: 10.1021/cm061696j
– volume: 22
  start-page: 8200409
  year: 2016
  ident: ref_11
  article-title: Design and modeling of GeSn-based heterojunction phototransistors for communication applications
  publication-title: IEEE J. Sel. Quantum Electron.
  doi: 10.1109/JSTQE.2016.2553447
– volume: 34
  start-page: 024003
  year: 2019
  ident: ref_34
  article-title: Light emission from Ge(Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various periods with and without cavities
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aaf7a7
– volume: 21
  start-page: 626
  year: 2006
  ident: ref_38
  article-title: Two-step strain analysis of self-assembled InAs/GaAs quantum dots
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/21/5/010
– volume: 253
  start-page: 190
  year: 2003
  ident: ref_31
  article-title: Stranski–Krastanov growth mode in Ge/Si (001) self-assembled quantum dots
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(03)01105-9
– ident: ref_12
  doi: 10.1109/IEDM.2017.8268402
– ident: ref_19
  doi: 10.3390/s23177531
– volume: 46
  start-page: 1813
  year: 2010
  ident: ref_39
  article-title: Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.2010.2059000
– volume: 8
  start-page: 14832
  year: 2018
  ident: ref_22
  article-title: Improving carrier mobility of polycrystalline Ge by Sn doping
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33161-z
– volume: 1
  start-page: 100006
  year: 2022
  ident: ref_44
  article-title: Carrier localization enhanced high responsivity in graphene/semiconductor photodetectors
  publication-title: Chip
  doi: 10.1016/j.chip.2022.100006
SSID ssj0023338
Score 2.4279685
Snippet GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various...
GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1263
SubjectTerms Alloys
CMOS
Dielectric films
Electrons
GeSn alloy
image sensing
Molecular beam epitaxy
photodetectors
Quantum dots
Semiconductors
Thin films
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kn_RBvFtdJYqgL2WbTJqmj8fLugqK4hH2LaS5sAvaiqfn_ztpe2qLgi--NkNJZjL5viHJF4BnAUvbEM7m2IiYy2CLXGMo89o6LnnlbOXSfecPH9XZV_n-vDxfPPWVzoSN8sCj407qIKwNQfpKBColKo3cR-dKgvWmcWJQAiXMOxRTU6mFVHmNOkJIRf3JjnBLcqFwhT6DSP-fS_ECi9bnJBfAc3oDrk-MkW3Gnt6EK6G9BdcWOoK34d3293VEdpAZYV1kb8OXln3ek_f239nrrt8x4qjs00XXdz70wymslm0We9h3YHv6ZvvqLJ_eSMgdQX2f15jugro6KqqcdBVKUVpbNsIRc6q01OiTIl-UyhI0C-uw8E206GPQoVYR78JR27XhPjDrXeUbLjxhuiSWaDl6K5xUUUirNGbw4uA64yb98PSMxTdDdUTyspm9nMHT2fTHKJrxN6OXyf-zQdK5Hj5Q9M0UffOv6GfwPEXPpGykzjg7XSqgISVdK7NJ26pFSUQyg-NDgM2UpjtDXIfoj0RFP3oyN1OCpV0T24ZuP9gIicRrdQb3xvkw9xl1WgIFz0CvZspqUOuW9vJiEPHmBTHFQssH_8MND-GqILKVTpNzdQxH_c99eERkqW8eD3nxC0c2E1s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4k2gIIOQ4BI19jiJ94SWx7YggUAsUm-W40eLBEnbzf5_xllvuhGIazwHezz29008_gzw0mNpGsLZHBsRculNkSv0ZT4zlkteW1PbeN_585fq-If8dFKepB9uq1RWud0Th43adTb-Iz8kWCKkkljJN-cXeXw1Kp6upic0rsMNTkgTS7rU4mhMuJDyr42aEFJqf7gi9JJkhxMMGqT6_96QdxBpWi25Az-L27CfeCObbyb6Dlzz7V24taMmeA8-Lq8uJbKt2AjrAjvy31v2bU0-XP9m77t-xYipsq9nXd853w-1WC2b75xk34fl4sPy3XGeXkrILQF-n5NvUNZ2FirKn1TtS1EaUzbCEn-qlVTooi5fkJUhgBbGYuGaYNAFr_ysCvgA9tqu9Y-AGWdr13DhCNklcUXD0RlhZRWENJXCDF5vXadtUhGPj1n80pRNRC_r0csZvBhNzzfSGf8yehv9PxpEtevhQ3d5qtPi0TMvjPFeulp4SidrhdwFa0uidk1jhczgVZw9HdckdcaadLWAhhTVrfQ8Hq4WJdHJDA62E6zTYl3pq9DK4PnYTMssnp2Y1nfrwUZIJHarMni4iYexz6jiRih4BmoSKZNBTVvan2eDlDcviC8WSj7-f7-ewE1BZCpWi_PqAPb6y7V_SmSob54NEf8Hi48J3w
  priority: 102
  providerName: ProQuest
Title Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/38400421
https://www.proquest.com/docview/2931104364
https://www.proquest.com/docview/2932434058
https://pubmed.ncbi.nlm.nih.gov/PMC10893084
https://doaj.org/article/9e2aaee4d72e4487831dfcc5929bbc24
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4lWaUlYGIcElED8SOweEttBtQWpV6FbaW-TYDotUkrKbleDfM84mYSN64JJD7ETxeMbzTez5BuCl47HO0c-GPGdFKJyOQsVdHKbaUEGl0dL4fOez8-T0SnyexbMt6GpstgJc3hra-XpSV4vrN79-_n6PBv_OR5wYsr9dolcSlCV8G3bRIUlfyOBM9JsJjPOmoLXP6QrRH0ZrgqHhowO31LD3_7tGbzip4QHKDY80uQ_3WihJxuu5fwBbrnwIdzcIBh_Bp-nfPEXS8Y-QqiAn7rIkX1Yo1tUP8rGqlwTBK7mYV3VlXd0czyrJeGNz-zFMJ8fTD6dhWzwhNIgB6jDlPknUpEWCIZWSLmax1nHODEIqqYTi1lP1FSLR6LOZNjyyeaG5LZxyaVLwPdgpq9LtA9HWSJtTZlG2AuGjptxqZkRSMKETxQN43YkuMy2xuK9vcZ1hgOGlnPVSDuBF3_VmzaZxW6cjL_--gyfAbm5Ui29Za09Z6pjWzgkrmcMIUypObWFMjGgvzw0TAbzys5d5xcGPMbrNNsAhecKrbOz3W6MYEWYAh90EZ536ZQiCEBcJnuCLnvfNaHl-O0WXrlo1fZjgCHhVAE_W-tB_M1d-bWQ0ADXQlMGghi3l93nD7k0jhJCREgf_I6uncIchyvLHyGlyCDv1YuWeIUqq8xFsy5nEq5qcjGD36Pj84uuo-eMwaqzjD3AjEvA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGebUsAgEFyixo8k3gNCC2W7Sx8CsZV6sxzboUg0Kd2sED-K_8g4r24E4tZrbFn2eDzfN7FnBuCF47HOEGdDnrE8FE5HoeQuDkfaUEFTo1Pj450Pj5Lpsfh4Ep-swe8uFsY_q-xsYm2obWn8P_IdhCVEKsET8fb8R-irRvnb1a6ERqMW--7XT3TZFm9mu7i_LxmbfJi_n4ZtVYHQIDhWIY7DRWpGeYK-hkxdzGKt44wZ5BqpFJJbn8MuF4lGMGPa8MhmueY2d9KNkpzjsNfguuAI5D4wfbLX-3cc3b0meRE2RjsLBEtBWcIHkFdXBvjb_q8A4PBx5graTe7A7ZamknGjV3dhzRX34NZK8sL7MJtfxkCSLrcJKXOy574U5PMSt2x5RnbLakGQGJNPp2VVWlfVT78KMl65OH8A86sQ4UNYL8rCbQLR1qQ2o8wikRBITTXlVjMjkpwJnUgewOtOdMq0Sct97YzvCp0XL2XVSzmA533X8yZTx786vfPy7zv45Nr1h_Liq2rPqho5prVzwqbMofeaSk5tbkyMTDLLDBMBvPK7p7wJwMkY3UYy4JJ8Mi019ne5UYzsNYDtboNVaxsW6lKTA3jWN-Op9lc1unDlsu7DBEcyLQPYaPShnzOX3u4yGoAcaMpgUcOW4ttpnTmcRkhPIym2_j-vp3BjOj88UAezo_1HcJMhj_MP1WmyDevVxdI9Rh5WZU9q7Segrvi0_QGUMEUz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPhNYIBBIHiJmthO4jwg1NGVlUFVoJP2Zjm2wyaNZKypEH8a_x3n_ForEG97bazIOZ_v-64-fwfwwrJIZYizPsto7nOrAl8wG_mp0iEPE60S7e47f5rF-4f8w1F0tAW_u7swrqyyi4l1oDaldv-RDxGWEKk4i_kwb8si5uPJ27Mfvusg5U5au3YajYsc2F8_MX1bvpmOca1fUjrZW7zb99sOA75GoKx8fCfjiU7zGPMOkdiIRkpFGdXIOxLBBTNOzy7nsUJgo0qzwGS5Yia3wqZxzvC1V2A7cUnRALZ392bzL322xzD5a6SMGEuD4RKhk4c0ZhsAWPcJ-BsN1uBws1RzDfsmN-FGS1rJqPGyW7Bli9twfU3K8A5MFxc3IkmndELKnLy3XwvyeYULuPpOxmW1JEiTyfy4rEpjq7oQrCCjtWP0u7C4DCPeg0FRFvYBEGV0YrKQGqQVHImqCplRVPM4p1zFgnnwujOd1K2EueukcSoxlXFWlr2VPXjeDz1rdDv-NWjX2b8f4KS26x_K82-y3bkytVQpa7lJqMVcNhEsNLnWEfLKLNOUe_DKrZ50AQEno1V7rwE_yUlryZE72Q0i5LIe7HQLLNtIsZQXfu3Bs_4x7nF3cKMKW67qMZQzpNbCg_uNP_RzZsJFYRp6IDY8ZeOjNp8UJ8e1jngYIFkNBH_4_3k9hau40-TH6ezgEVyjSOpc1XoY78CgOl_Zx0jKquxJ6_4E5CVvuD8a5krF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Analysis+of+GeSn+Quantum+Dots+for+Photodetection+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Pin-Hao&rft.au=Ghosh%2C+Soumava&rft.au=Chang%2C+Guo-En&rft.date=2024-02-16&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=4&rft.spage=1263&rft_id=info:doi/10.3390%2Fs24041263&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24041263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon