Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications
GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great prom...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 4; p. 1263 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.02.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron–hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type–I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications. |
---|---|
AbstractList | GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron–hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type–I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications. GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron-hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type-I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications.GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various photonic devices based on GeSn thin films have been developed, low-dimensional GeSn quantum structures with improved efficiencies hold great promise for optoelectronic applications. This study theoretically analyses Ge-capped GeSn pyramid quantum dots (QDs) on Ge substrates to explore their potential for such applications. Theoretical models are presented to calculate the effects of the Sn content and the sizes of the GeSn QDs on the strain distributions caused by lattice mismatch, the band structures, transition energies, wavefunctions of confined electrons and holes, and transition probabilities. The bandgap energies of the GeSn QDs decrease with the increasing Sn content, leading to higher band offsets and improved carrier confinement, in addition to electron-hole wavefunction overlap. The GeSn QDs on the Ge substrate provide crucial type-I alignment, but with a limited band offset, thereby decreasing carrier confinement. However, the GeSn QDs on the Ge substrate show a direct bandgap at higher Sn compositions and exhibit a ground-state transition energy of ~0.8 eV, rendering this system suitable for applications in the telecommunication window (1550 nm). These results provide important insights into the practical feasibility of GeSn QD systems for optoelectronic applications. |
Audience | Academic |
Author | Chang, Guo-En Lin, Pin-Hao Ghosh, Soumava |
AuthorAffiliation | Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan; arron@alum.ccu.edu.tw (P.-H.L.); sghosh@ccu.edu.tw (S.G.) |
AuthorAffiliation_xml | – name: Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 621301, Taiwan; arron@alum.ccu.edu.tw (P.-H.L.); sghosh@ccu.edu.tw (S.G.) |
Author_xml | – sequence: 1 givenname: Pin-Hao surname: Lin fullname: Lin, Pin-Hao – sequence: 2 givenname: Soumava orcidid: 0000-0003-3233-004X surname: Ghosh fullname: Ghosh, Soumava – sequence: 3 givenname: Guo-En orcidid: 0000-0002-3739-5451 surname: Chang fullname: Chang, Guo-En |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38400421$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktvEzEQxy1URB9w4AuglbjQQ1q_dtc-oajQEqkSIHK3vN5x4mjXDra3Ur89TtJWbZEPHo3_8xvP4xQd-eABoY8EXzAm8WWiHHNCG_YGnRBO-UxQio-e2cfoNKUNxpQxJt6hYyY4xpySE7RYriFEyM7ooZp7Pdwnl6pgqxv446vfk_Z5GqtvIafKhlj9Wocceshgsgu-mm-3Q4nc2ek9emv1kODDw32Gltffl1c_Zrc_bxZX89uZqbHMM8kI462RtqFCihZqWmtdd9TImrSCC9a3hGPLG80Eodow3HdWs96CANlYdoYWB2wf9EZtoxt1vFdBO7V3hLhSOpZyBlASqNYAvG8pcC5awUhvjakllV1nKC-srwfWdupG6A34HPXwAvryxbu1WoU7RbCQDIsd4csDIYa_E6SsRpcMDIP2EKakqGQlD8e1KNLPr6SbMMXS8b2KEMxZswNeHFQrXSpw3oaS2JTTw-hMGbt1xT8vnSK4xliWgE_Pa3j6_OOIi-DyIDAxpBTBKuPyfmSF7IZSi9otkXpaohJx_iriEfq_9h9Sk8SS |
CitedBy_id | crossref_primary_10_1088_1361_6528_ada9a6 crossref_primary_10_3390_electronics13214142 crossref_primary_10_3390_qubs9010009 |
Cites_doi | 10.1021/acsphotonics.2c00260 10.1364/OE.26.010305 10.7567/1882-0786/ab0993 10.1109/JQE.2006.889645 10.1016/S1386-9477(02)00292-8 10.1016/j.spmi.2018.02.038 10.1063/1.1688982 10.1109/JSTQE.2021.3065204 10.1021/acsphotonics.9b00845 10.1109/JSTQE.2012.2206802 10.1063/1.4943652 10.1063/5.0063179 10.1063/1.4812747 10.1109/LPT.2006.873458 10.1016/j.infrared.2014.10.012 10.1063/1.4759011 10.1002/9781119945161 10.1038/s41598-019-50349-z 10.1186/s11671-018-2587-1 10.1063/1.1515133 10.1109/JQE.2005.848901 10.1039/D3RA00805C 10.1007/s11664-014-3089-2 10.1088/1468-6996/16/4/043502 10.1109/LPT.2004.825974 10.3844/ajassp.2008.1071.1078 10.3390/nano12172993 10.1103/PhysRevB.39.1871 10.1364/OFC.2015.W4A.4 10.1063/1.1923766 10.1016/S1350-4495(02)00140-8 10.1016/j.apsusc.2021.152249 10.20944/preprints202204.0294.v1 10.1021/cm061696j 10.1109/JSTQE.2016.2553447 10.1088/1361-6641/aaf7a7 10.1088/0268-1242/21/5/010 10.1016/S0022-0248(03)01105-9 10.1109/IEDM.2017.8268402 10.3390/s23177531 10.1109/JQE.2010.2059000 10.1038/s41598-018-33161-z 10.1016/j.chip.2022.100006 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s24041263 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_9e2aaee4d72e4487831dfcc5929bbc24 PMC10893084 A784105009 38400421 10_3390_s24041263 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: MOST 111-2636-E-194-002 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-931347c9f628987e525aa5b2c95178483d7140f46a3812ac30dbfa3dfe8e96f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Thu Aug 21 18:35:17 EDT 2025 Fri Jul 11 16:49:27 EDT 2025 Sat Jul 26 00:38:38 EDT 2025 Tue Jun 10 21:12:42 EDT 2025 Wed Feb 19 02:07:10 EST 2025 Tue Jul 01 03:50:45 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | photodetectors quantum dots image sensing GeSn alloy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-931347c9f628987e525aa5b2c95178483d7140f46a3812ac30dbfa3dfe8e96f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3233-004X 0000-0002-3739-5451 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24041263 |
PMID | 38400421 |
PQID | 2931104364 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e2aaee4d72e4487831dfcc5929bbc24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10893084 proquest_miscellaneous_2932434058 proquest_journals_2931104364 gale_infotracacademiconefile_A784105009 pubmed_primary_38400421 crossref_citationtrail_10_3390_s24041263 crossref_primary_10_3390_s24041263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240216 |
PublicationDateYYYYMMDD | 2024-02-16 |
PublicationDate_xml | – month: 2 year: 2024 text: 20240216 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zaima (ref_21) 2015; 16 Chang (ref_39) 2010; 46 Wang (ref_13) 2021; 13 Gunapala (ref_29) 2007; 43 Brunner (ref_30) 2002; 13 Eales (ref_43) 2019; 9 McCarthy (ref_18) 2021; 130 Su (ref_25) 2005; 41 Santalla (ref_31) 2003; 253 Zhang (ref_36) 2019; 12 Kasiyan (ref_3) 2012; 112 ref_12 Atalla (ref_15) 2022; 9 ref_10 Nawwar (ref_16) 2023; 13 ref_32 Baira (ref_42) 2018; 13 Moto (ref_22) 2018; 8 Kuo (ref_38) 2006; 21 Rogalski (ref_1) 2002; 43 Mosleh (ref_23) 2014; 43 ref_19 Baira (ref_35) 2018; 117 Chizmeshya (ref_7) 2006; 18 (ref_41) 1989; 39 Arslan (ref_2) 2015; 70 Tran (ref_17) 2019; 6 Chakrabarti (ref_24) 2004; 16 Chang (ref_11) 2016; 22 Tran (ref_45) 2016; 119 Tang (ref_28) 2006; 18 Jiang (ref_26) 2004; 84 Zhang (ref_37) 2022; 579 Nejad (ref_20) 2008; 5 Gupta (ref_5) 2013; 102 Chang (ref_8) 2022; 28 ref_40 Bhattacharya (ref_27) 2005; 86 ref_9 Stepikhova (ref_34) 2019; 34 Wang (ref_14) 2018; 26 ref_4 Xu (ref_33) 2012; 18 Hu (ref_44) 2022; 1 Bauer (ref_6) 2002; 81 |
References_xml | – volume: 9 start-page: 1425 year: 2022 ident: ref_15 article-title: High-bandwidth extended-SWIR GeSn photodetectors on silicon achieving ultrafast broadband spectroscopic response publication-title: ACS Photonics doi: 10.1021/acsphotonics.2c00260 – volume: 26 start-page: 10305 year: 2018 ident: ref_14 article-title: High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform publication-title: Opt. Express doi: 10.1364/OE.26.010305 – volume: 12 start-page: 055504 year: 2019 ident: ref_36 article-title: High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab0993 – volume: 43 start-page: 230 year: 2007 ident: ref_29 article-title: 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2006.889645 – volume: 13 start-page: 1018 year: 2002 ident: ref_30 article-title: Ge quantum dots in Si: Self-assembly, stacking and level spectroscopy publication-title: Phys. E Low-Dimens. Syst. Nanostructures doi: 10.1016/S1386-9477(02)00292-8 – volume: 117 start-page: 31 year: 2018 ident: ref_35 article-title: Tuning direct bandgap GeSn/Ge quantum dots’ interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.02.038 – volume: 84 start-page: 2166 year: 2004 ident: ref_26 article-title: High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition publication-title: Appl. Phys. Lett. doi: 10.1063/1.1688982 – volume: 28 start-page: 3800611 year: 2022 ident: ref_8 article-title: Achievable performance of uncooled homojunction GeSn mid-infrared Photodetectors publication-title: IEEE J. Sel. Quantum Electron. doi: 10.1109/JSTQE.2021.3065204 – volume: 6 start-page: 2807 year: 2019 ident: ref_17 article-title: Si-based GeSn photodetectors toward mid-Infrared imaging applications publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00845 – volume: 18 start-page: 1830 year: 2012 ident: ref_33 article-title: Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities publication-title: J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2012.2206802 – volume: 119 start-page: 103106 year: 2016 ident: ref_45 article-title: Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics publication-title: J. Appl. Phys. doi: 10.1063/1.4943652 – volume: 130 start-page: 223102 year: 2021 ident: ref_18 article-title: Momentum (k)-space carrier separation using SiGeSn alloys for photodetector applications publication-title: J. Appl. Phys. doi: 10.1063/5.0063179 – volume: 102 start-page: 251117 year: 2013 ident: ref_5 article-title: Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4812747 – volume: 18 start-page: 986 year: 2006 ident: ref_28 article-title: High-temperature operation normal incident 256 × 256 InAs-GaAs quantum-dot infrared photodetector focal plane array publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2006.873458 – volume: 70 start-page: 134 year: 2015 ident: ref_2 article-title: Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2014.10.012 – ident: ref_40 – volume: 112 start-page: 2013 year: 2012 ident: ref_3 article-title: Infrared detectors based on semiconductor p-n junction of PbSe publication-title: J. Appl. Phys. doi: 10.1063/1.4759011 – ident: ref_4 doi: 10.1002/9781119945161 – volume: 9 start-page: 14077 year: 2019 ident: ref_43 article-title: Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration publication-title: Sci. Rep. doi: 10.1038/s41598-019-50349-z – volume: 13 start-page: 172 year: 2018 ident: ref_42 article-title: Design of strain-engineered GeSn/GeSiSn quantum dots for mid-IR direct bandgap emission on Si substrate publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2587-1 – volume: 81 start-page: 2992 year: 2002 ident: ref_6 article-title: Ge-Sn semiconductors for band-gap and lattice engineering publication-title: Appl. Phys. Lett. doi: 10.1063/1.1515133 – volume: 13 start-page: 6800809 year: 2021 ident: ref_13 article-title: High-performance GeSn photodetector covering all telecommunication bands publication-title: IEEE Photonics J. – volume: 41 start-page: 974 year: 2005 ident: ref_25 article-title: A resonant tunneling quantum dot infrared photodetector publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2005.848901 – volume: 13 start-page: 9154 year: 2023 ident: ref_16 article-title: Controlling barrier height and spectral responsivity of p-i-n based GeSn photodetectors via arsenic incorporation publication-title: RSC Adv. doi: 10.1039/D3RA00805C – volume: 43 start-page: 938 year: 2014 ident: ref_23 article-title: Material characterization of Ge1−xSnx alloys grown by a commercial CVD system for optoelectronic device applications publication-title: J. Electron. Mater. doi: 10.1007/s11664-014-3089-2 – volume: 16 start-page: 43502 year: 2015 ident: ref_21 article-title: Growth and applications of GeSn-related group-IV semiconductor materials publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/16/4/043502 – volume: 16 start-page: 1361 year: 2004 ident: ref_24 article-title: High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2004.825974 – volume: 5 start-page: 1071 year: 2008 ident: ref_20 article-title: Optimal dark current reduction in quantum well 9 µm GaAs/AlGaAs infrared photodetectors with improved detectivity publication-title: Am. J. Appl. Sci. doi: 10.3844/ajassp.2008.1071.1078 – ident: ref_32 doi: 10.3390/nano12172993 – volume: 39 start-page: 1871 year: 1989 ident: ref_41 article-title: Band lineups and deformation potentials in the model-solid theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1871 – ident: ref_10 doi: 10.1364/OFC.2015.W4A.4 – volume: 86 start-page: 191106 year: 2005 ident: ref_27 article-title: Characteristics of a tunneling quantum dot infrared photodetector operating at room temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.1923766 – volume: 43 start-page: 187 year: 2002 ident: ref_1 article-title: Infrared detectors: An overview publication-title: Infrared Phys. Technol. doi: 10.1016/S1350-4495(02)00140-8 – volume: 579 start-page: 152249 year: 2022 ident: ref_37 article-title: Controllable synthesis of Si-based GeSn quantum dots with room-temperature photoluminescence publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.152249 – ident: ref_9 doi: 10.20944/preprints202204.0294.v1 – volume: 18 start-page: 6266 year: 2006 ident: ref_7 article-title: Fundamental studies of P(GeH3)3, As(GeH3)3, and Sb(GeH3)3: Practical n-dopants for new group IV semiconductors publication-title: Chem. Mater. doi: 10.1021/cm061696j – volume: 22 start-page: 8200409 year: 2016 ident: ref_11 article-title: Design and modeling of GeSn-based heterojunction phototransistors for communication applications publication-title: IEEE J. Sel. Quantum Electron. doi: 10.1109/JSTQE.2016.2553447 – volume: 34 start-page: 024003 year: 2019 ident: ref_34 article-title: Light emission from Ge(Si)/SOI self-assembled nanoislands embedded in photonic crystal slabs of various periods with and without cavities publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aaf7a7 – volume: 21 start-page: 626 year: 2006 ident: ref_38 article-title: Two-step strain analysis of self-assembled InAs/GaAs quantum dots publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/21/5/010 – volume: 253 start-page: 190 year: 2003 ident: ref_31 article-title: Stranski–Krastanov growth mode in Ge/Si (001) self-assembled quantum dots publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(03)01105-9 – ident: ref_12 doi: 10.1109/IEDM.2017.8268402 – ident: ref_19 doi: 10.3390/s23177531 – volume: 46 start-page: 1813 year: 2010 ident: ref_39 article-title: Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.2010.2059000 – volume: 8 start-page: 14832 year: 2018 ident: ref_22 article-title: Improving carrier mobility of polycrystalline Ge by Sn doping publication-title: Sci. Rep. doi: 10.1038/s41598-018-33161-z – volume: 1 start-page: 100006 year: 2022 ident: ref_44 article-title: Carrier localization enhanced high responsivity in graphene/semiconductor photodetectors publication-title: Chip doi: 10.1016/j.chip.2022.100006 |
SSID | ssj0023338 |
Score | 2.4279685 |
Snippet | GeSn alloys have recently emerged as complementary metal–oxide–semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various... GeSn alloys have recently emerged as complementary metal-oxide-semiconductor (CMOS)-compatible materials for optoelectronic applications. Although various... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1263 |
SubjectTerms | Alloys CMOS Dielectric films Electrons GeSn alloy image sensing Molecular beam epitaxy photodetectors Quantum dots Semiconductors Thin films |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kn_RBvFtdJYqgL2WbTJqmj8fLugqK4hH2LaS5sAvaiqfn_ztpe2qLgi--NkNJZjL5viHJF4BnAUvbEM7m2IiYy2CLXGMo89o6LnnlbOXSfecPH9XZV_n-vDxfPPWVzoSN8sCj407qIKwNQfpKBColKo3cR-dKgvWmcWJQAiXMOxRTU6mFVHmNOkJIRf3JjnBLcqFwhT6DSP-fS_ECi9bnJBfAc3oDrk-MkW3Gnt6EK6G9BdcWOoK34d3293VEdpAZYV1kb8OXln3ek_f239nrrt8x4qjs00XXdz70wymslm0We9h3YHv6ZvvqLJ_eSMgdQX2f15jugro6KqqcdBVKUVpbNsIRc6q01OiTIl-UyhI0C-uw8E206GPQoVYR78JR27XhPjDrXeUbLjxhuiSWaDl6K5xUUUirNGbw4uA64yb98PSMxTdDdUTyspm9nMHT2fTHKJrxN6OXyf-zQdK5Hj5Q9M0UffOv6GfwPEXPpGykzjg7XSqgISVdK7NJ26pFSUQyg-NDgM2UpjtDXIfoj0RFP3oyN1OCpV0T24ZuP9gIicRrdQb3xvkw9xl1WgIFz0CvZspqUOuW9vJiEPHmBTHFQssH_8MND-GqILKVTpNzdQxH_c99eERkqW8eD3nxC0c2E1s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucCh4k2gIIOQ4BI19jiJ94SWx7YggUAsUm-W40eLBEnbzf5_xllvuhGIazwHezz29008_gzw0mNpGsLZHBsRculNkSv0ZT4zlkteW1PbeN_585fq-If8dFKepB9uq1RWud0Th43adTb-Iz8kWCKkkljJN-cXeXw1Kp6upic0rsMNTkgTS7rU4mhMuJDyr42aEFJqf7gi9JJkhxMMGqT6_96QdxBpWi25Az-L27CfeCObbyb6Dlzz7V24taMmeA8-Lq8uJbKt2AjrAjvy31v2bU0-XP9m77t-xYipsq9nXd853w-1WC2b75xk34fl4sPy3XGeXkrILQF-n5NvUNZ2FirKn1TtS1EaUzbCEn-qlVTooi5fkJUhgBbGYuGaYNAFr_ysCvgA9tqu9Y-AGWdr13DhCNklcUXD0RlhZRWENJXCDF5vXadtUhGPj1n80pRNRC_r0csZvBhNzzfSGf8yehv9PxpEtevhQ3d5qtPi0TMvjPFeulp4SidrhdwFa0uidk1jhczgVZw9HdckdcaadLWAhhTVrfQ8Hq4WJdHJDA62E6zTYl3pq9DK4PnYTMssnp2Y1nfrwUZIJHarMni4iYexz6jiRih4BmoSKZNBTVvan2eDlDcviC8WSj7-f7-ewE1BZCpWi_PqAPb6y7V_SmSob54NEf8Hi48J3w priority: 102 providerName: ProQuest |
Title | Theoretical Analysis of GeSn Quantum Dots for Photodetection Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38400421 https://www.proquest.com/docview/2931104364 https://www.proquest.com/docview/2932434058 https://pubmed.ncbi.nlm.nih.gov/PMC10893084 https://doaj.org/article/9e2aaee4d72e4487831dfcc5929bbc24 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4lWaUlYGIcElED8SOweEttBtQWpV6FbaW-TYDotUkrKbleDfM84mYSN64JJD7ETxeMbzTez5BuCl47HO0c-GPGdFKJyOQsVdHKbaUEGl0dL4fOez8-T0SnyexbMt6GpstgJc3hra-XpSV4vrN79-_n6PBv_OR5wYsr9dolcSlCV8G3bRIUlfyOBM9JsJjPOmoLXP6QrRH0ZrgqHhowO31LD3_7tGbzip4QHKDY80uQ_3WihJxuu5fwBbrnwIdzcIBh_Bp-nfPEXS8Y-QqiAn7rIkX1Yo1tUP8rGqlwTBK7mYV3VlXd0czyrJeGNz-zFMJ8fTD6dhWzwhNIgB6jDlPknUpEWCIZWSLmax1nHODEIqqYTi1lP1FSLR6LOZNjyyeaG5LZxyaVLwPdgpq9LtA9HWSJtTZlG2AuGjptxqZkRSMKETxQN43YkuMy2xuK9vcZ1hgOGlnPVSDuBF3_VmzaZxW6cjL_--gyfAbm5Ui29Za09Z6pjWzgkrmcMIUypObWFMjGgvzw0TAbzys5d5xcGPMbrNNsAhecKrbOz3W6MYEWYAh90EZ536ZQiCEBcJnuCLnvfNaHl-O0WXrlo1fZjgCHhVAE_W-tB_M1d-bWQ0ADXQlMGghi3l93nD7k0jhJCREgf_I6uncIchyvLHyGlyCDv1YuWeIUqq8xFsy5nEq5qcjGD36Pj84uuo-eMwaqzjD3AjEvA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGebUsAgEFyixo8k3gNCC2W7Sx8CsZV6sxzboUg0Kd2sED-K_8g4r24E4tZrbFn2eDzfN7FnBuCF47HOEGdDnrE8FE5HoeQuDkfaUEFTo1Pj450Pj5Lpsfh4Ep-swe8uFsY_q-xsYm2obWn8P_IdhCVEKsET8fb8R-irRvnb1a6ERqMW--7XT3TZFm9mu7i_LxmbfJi_n4ZtVYHQIDhWIY7DRWpGeYK-hkxdzGKt44wZ5BqpFJJbn8MuF4lGMGPa8MhmueY2d9KNkpzjsNfguuAI5D4wfbLX-3cc3b0meRE2RjsLBEtBWcIHkFdXBvjb_q8A4PBx5graTe7A7ZamknGjV3dhzRX34NZK8sL7MJtfxkCSLrcJKXOy574U5PMSt2x5RnbLakGQGJNPp2VVWlfVT78KMl65OH8A86sQ4UNYL8rCbQLR1qQ2o8wikRBITTXlVjMjkpwJnUgewOtOdMq0Sct97YzvCp0XL2XVSzmA533X8yZTx786vfPy7zv45Nr1h_Liq2rPqho5prVzwqbMofeaSk5tbkyMTDLLDBMBvPK7p7wJwMkY3UYy4JJ8Mi019ne5UYzsNYDtboNVaxsW6lKTA3jWN-Op9lc1unDlsu7DBEcyLQPYaPShnzOX3u4yGoAcaMpgUcOW4ttpnTmcRkhPIym2_j-vp3BjOj88UAezo_1HcJMhj_MP1WmyDevVxdI9Rh5WZU9q7Segrvi0_QGUMEUz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPhNYIBBIHiJmthO4jwg1NGVlUFVoJP2Zjm2wyaNZKypEH8a_x3n_ForEG97bazIOZ_v-64-fwfwwrJIZYizPsto7nOrAl8wG_mp0iEPE60S7e47f5rF-4f8w1F0tAW_u7swrqyyi4l1oDaldv-RDxGWEKk4i_kwb8si5uPJ27Mfvusg5U5au3YajYsc2F8_MX1bvpmOca1fUjrZW7zb99sOA75GoKx8fCfjiU7zGPMOkdiIRkpFGdXIOxLBBTNOzy7nsUJgo0qzwGS5Yia3wqZxzvC1V2A7cUnRALZ392bzL322xzD5a6SMGEuD4RKhk4c0ZhsAWPcJ-BsN1uBws1RzDfsmN-FGS1rJqPGyW7Bli9twfU3K8A5MFxc3IkmndELKnLy3XwvyeYULuPpOxmW1JEiTyfy4rEpjq7oQrCCjtWP0u7C4DCPeg0FRFvYBEGV0YrKQGqQVHImqCplRVPM4p1zFgnnwujOd1K2EueukcSoxlXFWlr2VPXjeDz1rdDv-NWjX2b8f4KS26x_K82-y3bkytVQpa7lJqMVcNhEsNLnWEfLKLNOUe_DKrZ50AQEno1V7rwE_yUlryZE72Q0i5LIe7HQLLNtIsZQXfu3Bs_4x7nF3cKMKW67qMZQzpNbCg_uNP_RzZsJFYRp6IDY8ZeOjNp8UJ8e1jngYIFkNBH_4_3k9hau40-TH6ezgEVyjSOpc1XoY78CgOl_Zx0jKquxJ6_4E5CVvuD8a5krF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Analysis+of+GeSn+Quantum+Dots+for+Photodetection+Applications&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Pin-Hao&rft.au=Ghosh%2C+Soumava&rft.au=Chang%2C+Guo-En&rft.date=2024-02-16&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=4&rft.spage=1263&rft_id=info:doi/10.3390%2Fs24041263&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24041263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |