Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets

Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 88; no. 6; pp. 3432 - 3442
Main Authors Krammer, Florian, Hai, Rong, Yondola, Mark, Tan, Gene S, Leyva-Grado, Victor H, Ryder, Alex B, Miller, Matthew S, Rose, John K, Palese, Peter, García-Sastre, Adolfo, Albrecht, Randy A
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model. IMPORTANCE Influenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.
Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model. IMPORTANCE Influenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.
Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model. Influenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.
Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model.UNLABELLEDTherapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine strategies are being developed as promising countermeasures for influenza virus infections. The pan-H1-reactive monoclonal antibody 6F12 has been extensively characterized and shows broad efficacy against divergent H1N1 strains in the mouse model. Here we demonstrate its efficacy against a pandemic H1N1 challenge virus in the ferret model of influenza disease. Furthermore, we recently developed a universal influenza virus vaccine strategy based on chimeric hemagglutinin constructs that focuses the immune response on the conserved stalk domain of the hemagglutinin. Here we set out to test this vaccination strategy in the ferret model. Both strategies, pretreatment of animals with a stalk-reactive monoclonal antibody and vaccination with chimeric hemagglutinin-based constructs, were able to significantly reduce viral titers in nasal turbinates, lungs, and olfactory bulbs. In addition, vaccinated animals also showed reduced nasal wash viral titers. In summary, both strategies showed efficacy in reducing viral loads after an influenza virus challenge in the ferret model.Influenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.IMPORTANCEInfluenza virus hemagglutinin stalk-reactive antibodies tend to be less potent yet are more broadly reactive and can neutralize seasonal and pandemic influenza virus strains. The ferret model was used to assess the potential of hemagglutinin stalk-based immunity to provide protection against influenza virus infection. The novelty and significance of the findings described in this report support the development of vaccines stimulating stalk-specific antibody responses.
Author Gene S. Tan
Rong Hai
John K. Rose
Randy A. Albrecht
Matthew S. Miller
Alex B. Ryder
Mark Yondola
Florian Krammer
Adolfo García-Sastre
Peter Palese
Victor H. Leyva-Grado
Author_xml – sequence: 1
  givenname: Florian
  surname: Krammer
  fullname: Krammer, Florian
  organization: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
– sequence: 2
  givenname: Rong
  surname: Hai
  fullname: Hai, Rong
– sequence: 3
  givenname: Mark
  surname: Yondola
  fullname: Yondola, Mark
– sequence: 4
  givenname: Gene S
  surname: Tan
  fullname: Tan, Gene S
– sequence: 5
  givenname: Victor H
  surname: Leyva-Grado
  fullname: Leyva-Grado, Victor H
– sequence: 6
  givenname: Alex B
  surname: Ryder
  fullname: Ryder, Alex B
– sequence: 7
  givenname: Matthew S
  surname: Miller
  fullname: Miller, Matthew S
– sequence: 8
  givenname: John K
  surname: Rose
  fullname: Rose, John K
– sequence: 9
  givenname: Peter
  surname: Palese
  fullname: Palese, Peter
– sequence: 10
  givenname: Adolfo
  surname: García-Sastre
  fullname: García-Sastre, Adolfo
– sequence: 11
  givenname: Randy A
  surname: Albrecht
  fullname: Albrecht, Randy A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24403585$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1PFEEQxTsGIgt682zGGwcHqz-n-2KCBGSRxINKvHV6e2t2G2d6sLsHA389g4tETUw8VVL1q5dX9XbJVhwiEvKCwgGlTL85u5gfAAcQNeVPyIyC0bWUVGyRGQBjteT66w7ZzfkSgAqhxFOyw4QALrWckQ-HOWPOPcZSDW01j203Yrx11UVIY65OsXerVTeWEEOsPhXXfavfuYzLat73Ywzlppr6J5gSlvyMbLeuy_j8oe6RLyfHn49O6_OP7-dHh-e1l2BKbdhkGxZON6iWqqWa-WbJtWdS0EYZg41vWeMWIARDj5QqQUEaCZwar1rJ98jbje7VuOhx6SfvyXX2KoXepRs7uGD_nMSwtqvh2nIjG8PMJLD_IJCG7yPmYvuQPXadiziM2VIJupFagPoflHGmRMMm9OXvth79_Hr2BLzeAD4NOSdsHxEK9j5LO2Vpf2ZpKZ9w9hfuQ3ElDPdHhe5fS682S-uwWv8ICa3Lvb28DlZrqywXnPE7dNiruw
CitedBy_id crossref_primary_10_1099_jmm_0_001643
crossref_primary_10_1186_s12931_018_0750_y
crossref_primary_10_3390_v13040546
crossref_primary_10_1093_infdis_jiz004
crossref_primary_10_1128_mBio_00257_16
crossref_primary_10_1038_s41541_017_0026_4
crossref_primary_10_1155_2016_5258727
crossref_primary_10_1172_JCI123366
crossref_primary_10_1128_JVI_01284_16
crossref_primary_10_1128_JVI_02598_15
crossref_primary_10_3390_vaccines9070787
crossref_primary_10_1002_cti2_1092
crossref_primary_10_1016_j_virol_2024_110097
crossref_primary_10_1038_npjvaccines_2016_4
crossref_primary_10_1073_pnas_1609316113
crossref_primary_10_18527_2500_2236_2016_3_1_1_12
crossref_primary_10_1101_cshperspect_a029496
crossref_primary_10_1093_aje_kwy145
crossref_primary_10_3389_fimmu_2019_02005
crossref_primary_10_1093_infdis_jiy711
crossref_primary_10_1155_2015_414637
crossref_primary_10_3390_vaccines9030257
crossref_primary_10_1080_14760584_2020_1777861
crossref_primary_10_1128_mBio_01996_15
crossref_primary_10_3390_v6072735
crossref_primary_10_1080_14760584_2021_1964961
crossref_primary_10_1080_21505594_2020_1857162
crossref_primary_10_18527_2500_2236_2016_3_1_31_41
crossref_primary_10_3390_vaccines9060597
crossref_primary_10_1128_JVI_02134_18
crossref_primary_10_1016_j_vaccine_2020_11_057
crossref_primary_10_1038_s41564_019_0392_y
crossref_primary_10_2217_fvl_2016_0045
crossref_primary_10_1093_infdis_jiy696
crossref_primary_10_3389_fimmu_2019_00098
crossref_primary_10_1371_journal_pone_0194830
crossref_primary_10_3390_vaccines8010043
crossref_primary_10_1038_npjvaccines_2016_15
crossref_primary_10_1016_j_vaccine_2019_07_095
crossref_primary_10_1126_science_aar6221
crossref_primary_10_3390_vaccines6030064
crossref_primary_10_1016_j_coi_2018_04_026
crossref_primary_10_1016_j_vetmic_2016_11_026
crossref_primary_10_4049_jimmunol_2100297
crossref_primary_10_1128_JVI_02372_15
crossref_primary_10_3389_fimmu_2023_1086297
crossref_primary_10_1146_annurev_immunol_032414_112315
crossref_primary_10_1016_j_antiviral_2015_05_006
crossref_primary_10_3390_vaccines9010040
crossref_primary_10_1038_s41594_018_0025_9
crossref_primary_10_1038_s41541_017_0036_2
crossref_primary_10_1128_JVI_03060_15
crossref_primary_10_1128_JVI_03099_14
crossref_primary_10_1038_s41467_018_08138_1
crossref_primary_10_3390_vaccines7030061
crossref_primary_10_3390_vaccines3020239
crossref_primary_10_1016_j_jmb_2017_06_015
crossref_primary_10_1016_j_omtm_2022_05_007
crossref_primary_10_3390_pathogens10111352
crossref_primary_10_1016_j_virol_2018_03_013
crossref_primary_10_1073_pnas_2314905120
crossref_primary_10_1128_AAC_00290_15
crossref_primary_10_1038_s41541_019_0126_4
crossref_primary_10_1073_pnas_2206333119
crossref_primary_10_1007_s00705_015_2587_8
crossref_primary_10_1128_mBio_01624_16
crossref_primary_10_3390_v6103809
crossref_primary_10_1038_s41598_018_22874_w
crossref_primary_10_3390_v6083159
crossref_primary_10_3390_v11050405
crossref_primary_10_4049_jimmunol_1400432
crossref_primary_10_1128_JVI_02636_14
crossref_primary_10_1080_14760584_2017_1299576
crossref_primary_10_1080_17460441_2020_1801629
crossref_primary_10_1093_cid_ciz927
crossref_primary_10_3389_fmicb_2019_00738
crossref_primary_10_1038_s41573_022_00495_3
crossref_primary_10_1080_17460441_2018_1413088
crossref_primary_10_1002_biot_201400393
crossref_primary_10_3389_fcimb_2019_00344
crossref_primary_10_3389_fimmu_2018_00600
crossref_primary_10_3390_v6062465
crossref_primary_10_1128_JVI_01878_15
crossref_primary_10_1128_JVI_03246_14
crossref_primary_10_1128_JVI_01581_17
crossref_primary_10_1016_j_vaccine_2018_06_007
crossref_primary_10_1128_JVI_00880_16
crossref_primary_10_1155_2014_267594
crossref_primary_10_1038_s41541_019_0147_z
crossref_primary_10_3389_fimmu_2019_02997
crossref_primary_10_1016_j_jim_2014_03_023
crossref_primary_10_15252_emmm_201910938
crossref_primary_10_3390_vaccines9080920
crossref_primary_10_1080_21645515_2015_1079676
crossref_primary_10_1586_14760584_2015_1068125
crossref_primary_10_1016_j_vaccine_2022_10_018
crossref_primary_10_1016_S1473_3099_22_00024_X
crossref_primary_10_3390_pathogens3040845
crossref_primary_10_1038_nm_3927
crossref_primary_10_1038_s41598_017_14931_7
crossref_primary_10_1016_j_mehy_2017_02_007
crossref_primary_10_1128_JVI_02481_15
crossref_primary_10_1016_j_vaccine_2019_10_084
crossref_primary_10_1038_nrd4529
crossref_primary_10_1128_JVI_02133_14
crossref_primary_10_1002_path_4461
crossref_primary_10_1128_JVI_00286_17
crossref_primary_10_1111_irv_12687
crossref_primary_10_1126_scitranslmed_aad0522
crossref_primary_10_1586_14760584_2016_1113877
crossref_primary_10_1016_j_molimm_2023_07_011
crossref_primary_10_1016_j_coi_2018_03_020
crossref_primary_10_1016_j_coviro_2016_02_002
crossref_primary_10_1016_j_vaccine_2017_08_034
crossref_primary_10_1080_20477724_2016_1275464
Cites_doi 10.1371/journal.pone.0026818
10.1128/jvi.70.4.2318-2323.1996
10.1073/pnas.1200039109
10.1126/science.1210724
10.1073/pnas.81.6.1809
10.1073/pnas.1007465107
10.1099/0022-1317-77-7-1483
10.1073/pnas.83.21.8122
10.1111/j.1399-3046.2011.01489.x
10.1084/jem.20101352
10.1073/pnas.1118979109
10.1038/nature12202
10.1126/science.1204839
10.1128/JVI.01424-10
10.3201/eid1012.040961
10.1016/j.vaccine.2010.12.125
10.1371/journal.ppat.1000796
10.1073/pnas.1013387107
10.1016/S0140-6736(04)15589-X
10.1128/JVI.00137-12
10.1371/journal.pone.0003942
10.1038/nm.2612
10.1073/pnas.92.10.4477
10.1126/science.1171491
10.1016/j.vaccine.2007.03.046
10.1093/cid/cit479
10.1371/journal.pone.0043603
10.1126/science.1192517
10.1126/scitranslmed.3004273
10.3389/fimmu.2012.00087
10.1099/vir.0.033076-0
10.1128/mBio.00150-11
10.1128/JVI.02536-12
10.1126/scitranslmed.3006637
10.1371/journal.pone.0079194
10.1126/science.1222908
10.1128/JVI.00969-13
10.1128/CVI.05206-11
10.1128/JVI.00469-12
10.1128/JVI.00262-13
10.1099/vir.0.024885-0
10.1002/jmv.23560
10.1016/S0140-6736(99)03311-5
10.1016/S0140-6736(13)61125-3
10.1128/CVI.00247-10
10.1038/ni.2761
10.1007/s12185-012-1139-1
10.1128/JVI.77.9.5295-5304.2003
10.4049/jimmunol.138.9.3010
10.1371/journal.ppat.1003343
10.1128/JVI.00979-13
10.1093/infdis/jis652
10.3791/51112
10.1128/JVI.01715-13
10.1128/JVI.00641-13
10.1038/nsmb.1566
10.1128/mBio.00018-10
10.1128/JVI.01081-13
10.1172/JCI41902
10.1128/CVI.00735-12
10.1086/528801
10.1128/JVI.01336-12
10.1056/NEJMoa1304459
10.1111/j.1750-2659.2011.00329.x
10.1111/irv.12108
10.1016/j.coviro.2013.07.007
10.1016/j.vaccine.2009.05.079
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T2
7T5
7U9
C1K
H94
5PM
DOI 10.1128/JVI.03004-13
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Health and Safety Science Abstracts (Full archive)
Immunology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Health & Safety Science Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
AIDS and Cancer Research Abstracts

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 3442
ExternalDocumentID PMC3957929
24403585
10_1128_JVI_03004_13
jvi_88_6_3432
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007974
– fundername: NIAID NIH HHS
  grantid: P01AI097092
– fundername: NIAID NIH HHS
  grantid: P01 AI097092
– fundername: NIAID NIH HHS
  grantid: R01-AI080781
– fundername: NIAID NIH HHS
  grantid: R01 AI080781
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
3O-
41~
6TJ
AAYJJ
ADXHL
AFFNX
AI.
C1A
CGR
CUY
CVF
D0S
ECM
EIF
MVM
NPM
OHT
VH1
X7M
Y6R
ZGI
ZXP
7X8
7T2
7T5
7U9
C1K
H94
5PM
ID FETCH-LOGICAL-c509t-921280ba87e6d6f182c7d38c25417699e7cf27ab0442ece1164105950319c6f53
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:41:35 EDT 2025
Fri Jul 11 09:20:29 EDT 2025
Fri Jul 11 16:37:07 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Tue Jul 01 01:02:29 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
Wed May 18 15:26:45 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-921280ba87e6d6f182c7d38c25417699e7cf27ab0442ece1164105950319c6f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Present address: Mark Yondola, Avatar Biotechnologies, Brooklyn, NY.
OpenAccessLink https://jvi.asm.org/content/jvi/88/6/3432.full.pdf
PMID 24403585
PQID 1502326472
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1508758406
crossref_primary_10_1128_JVI_03004_13
proquest_miscellaneous_1502326472
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3957929
pubmed_primary_24403585
crossref_citationtrail_10_1128_JVI_03004_13
highwire_asm_jvi_88_6_3432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
Centers for Disease Control and Prevention (e_1_3_2_4_2) 2011; 60
e_1_3_2_50_2
e_1_3_2_71_2
Centers for Disease Control and Prevention (e_1_3_2_10_2) 2012; 61
Williams WW (e_1_3_2_5_2) 2012; 61
Centers for Disease Control and Prevention (e_1_3_2_7_2) 2009; 58
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
Centers for Disease Control and Prevention (e_1_3_2_3_2) 2010; 59
Centers for Disease Control and Prevention (e_1_3_2_8_2) 2009; 58
e_1_3_2_15_2
e_1_3_2_38_2
Kilbourne ED (e_1_3_2_70_2) 1987; 138
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
Schmid SI (e_1_3_2_43_2) 1999
22046370 - PLoS One. 2011;6(10):e26818
23576673 - Clin Vaccine Immunol. 2013 Jun;20(6):867-76
20647428 - Science. 2010 Aug 27;329(5995):1060-4
20798667 - MMWR Morb Mortal Wkly Rep. 2010 Aug 27;59(33):1057-62
19251591 - Science. 2009 Apr 10;324(5924):246-51
22764830 - Pediatr Transplant. 2012 Aug;16(5):E153-7
21220454 - J Exp Med. 2011 Jan 17;208(1):181-93
21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11
3571981 - J Immunol. 1987 May 1;138(9):3010-3
22030367 - Clin Vaccine Immunol. 2011 Dec;18(12):2010-7
22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8
23881153 - Clin Infect Dis. 2013 Nov;57(9):1367-8
22787225 - J Virol. 2012 Oct;86(19):10302-7
23698296 - J Virol. 2013 Jul;87(14):7793-804
20615991 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13701-6
24223176 - PLoS One. 2013;8(11):e79194
22878502 - Science. 2012 Sep 14;337(6100):1343-8
22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
22586427 - Front Immunol. 2012 May 08;3:87
23903831 - J Virol. 2013 Oct;87(19):10435-46
23698304 - J Virol. 2013 Aug;87(15):8272-81
12692231 - J Virol. 2003 May;77(9):5295-304
23726392 - Lancet. 2013 Jun 29;381(9885):2273-9
23588718 - J Med Virol. 2013 Jun;85(6):941-3
23717200 - PLoS Pathog. 2013;9(5):e1003343
23365444 - J Virol. 2013 Apr;87(8):4293-301
23698367 - Nature. 2013 Jul 4;499(7456):102-6
21737702 - Science. 2011 Aug 12;333(6044):843-50
8757990 - J Gen Virol. 1996 Jul;77 ( Pt 7):1483-7
14987882 - Lancet. 2004 Feb 21;363(9409):587-93
20195520 - PLoS Pathog. 2010 Feb;6(2):e1000796
19390508 - MMWR Morb Mortal Wkly Rep. 2009 Apr 24;58(15):400-2
22243670 - Influenza Other Respir Viruses. 2012 Nov;6(6):e85-8
23551973 - Influenza Other Respir Viruses. 2013 Nov;7(6):904-8
23720727 - J Virol. 2013 Aug;87(15):8591-605
23577628 - N Engl J Med. 2013 May 16;368(20):1888-97
23576508 - J Virol. 2013 Jun;87(12):6542-50
3095828 - Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6
23536663 - J Virol. 2013 Jun;87(11):6507-11
22398287 - J Virol. 2012 May;86(10):5774-81
22286307 - Nat Med. 2012 Feb;18(2):274-80
6584913 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1809-12
22491456 - J Virol. 2012 Jun;86(11):6179-88
23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105
20956293 - Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18979-84
21836007 - Science. 2011 Aug 12;333(6044):834-5
7753828 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4477-81
8642658 - J Virol. 1996 Apr;70(4):2318-23
22971746 - MMWR Morb Mortal Wkly Rep. 2012 Sep 14;61(36):726-7
19816398 - MMWR Morb Mortal Wkly Rep. 2009 Oct 9;58(39):1100-1
24352315 - Nat Immunol. 2014 Jan;15(1):3-5
19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
10489954 - Lancet. 1999 Sep 11;354(9182):916-7
19538996 - Vaccine. 2009 Aug 6;27(36):4983-9
21659982 - MMWR Morb Mortal Wkly Rep. 2011 Jun 10;60(22):737-43
20719991 - J Gen Virol. 2010 Nov;91(Pt 11):2745-52
20389023 - J Clin Invest. 2010 May;120(5):1663-73
15663860 - Emerg Infect Dis. 2004 Dec;10(12):2196-9
20689752 - MBio. 2010 May 18;1(1):null
21653752 - J Gen Virol. 2011 Oct;92(Pt 10):2339-49
22773299 - Int J Hematol. 2012 Sep;96(3):364-9
22896678 - Sci Transl Med. 2012 Aug 15;4(147):147ra114
24300384 - J Vis Exp. 2013;(81):e51112
19079604 - PLoS One. 2008;3(12):e3942
23946196 - Sci Transl Med. 2013 Aug 14;5(198):198ra107
21238573 - Vaccine. 2011 Mar 3;29(11):2120-6
22928001 - PLoS One. 2012;7(8):e43603
22695466 - MMWR Suppl. 2012 Jun 15;61(2):65-72
20739532 - J Virol. 2010 Nov;84(21):11219-26
18271743 - J Infect Dis. 2008 Mar 15;197(6):846-53
17544181 - Vaccine. 2007 Jun 28;25(27):5086-96
23978327 - Curr Opin Virol. 2013 Oct;3(5):521-30
20962210 - Clin Vaccine Immunol. 2010 Dec;17(12):1998-2006
References_xml – start-page: 47
  volume-title: Adenovirus DNA packagingAdenovirus methods and protocols
  year: 1999
  ident: e_1_3_2_43_2
– ident: e_1_3_2_11_2
  doi: 10.1371/journal.pone.0026818
– ident: e_1_3_2_39_2
  doi: 10.1128/jvi.70.4.2318-2323.1996
– ident: e_1_3_2_36_2
  doi: 10.1073/pnas.1200039109
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1210724
– ident: e_1_3_2_45_2
  doi: 10.1073/pnas.81.6.1809
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.1007465107
– ident: e_1_3_2_17_2
  doi: 10.1099/0022-1317-77-7-1483
– ident: e_1_3_2_41_2
  doi: 10.1073/pnas.83.21.8122
– ident: e_1_3_2_62_2
  doi: 10.1111/j.1399-3046.2011.01489.x
– ident: e_1_3_2_38_2
  doi: 10.1084/jem.20101352
– ident: e_1_3_2_33_2
  doi: 10.1073/pnas.1118979109
– ident: e_1_3_2_27_2
  doi: 10.1038/nature12202
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1204839
– ident: e_1_3_2_49_2
  doi: 10.1128/JVI.01424-10
– ident: e_1_3_2_14_2
  doi: 10.3201/eid1012.040961
– ident: e_1_3_2_68_2
  doi: 10.1016/j.vaccine.2010.12.125
– ident: e_1_3_2_57_2
  doi: 10.1371/journal.ppat.1000796
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.1013387107
– volume: 58
  start-page: 400
  year: 2009
  ident: e_1_3_2_7_2
  article-title: Swine influenza A (H1N1) infection in two children—Southern California, March-April 2009
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_12_2
  doi: 10.1016/S0140-6736(04)15589-X
– ident: e_1_3_2_20_2
  doi: 10.1128/JVI.00137-12
– ident: e_1_3_2_56_2
  doi: 10.1371/journal.pone.0003942
– ident: e_1_3_2_75_2
  doi: 10.1038/nm.2612
– ident: e_1_3_2_40_2
  doi: 10.1073/pnas.92.10.4477
– ident: e_1_3_2_53_2
  doi: 10.1126/science.1171491
– ident: e_1_3_2_2_2
  doi: 10.1016/j.vaccine.2007.03.046
– ident: e_1_3_2_15_2
  doi: 10.1093/cid/cit479
– ident: e_1_3_2_21_2
  doi: 10.1371/journal.pone.0043603
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1192517
– ident: e_1_3_2_26_2
  doi: 10.1126/scitranslmed.3004273
– ident: e_1_3_2_37_2
  doi: 10.3389/fimmu.2012.00087
– volume: 58
  start-page: 1100
  year: 2009
  ident: e_1_3_2_8_2
  article-title: Update on influenza A (H1N1) 2009 monovalent vaccines
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_73_2
  doi: 10.1099/vir.0.033076-0
– ident: e_1_3_2_71_2
  doi: 10.1128/mBio.00150-11
– ident: e_1_3_2_72_2
  doi: 10.1128/JVI.02536-12
– ident: e_1_3_2_34_2
  doi: 10.1126/scitranslmed.3006637
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.pone.0079194
– ident: e_1_3_2_52_2
  doi: 10.1126/science.1222908
– ident: e_1_3_2_54_2
  doi: 10.1128/JVI.00969-13
– ident: e_1_3_2_67_2
  doi: 10.1128/CVI.05206-11
– ident: e_1_3_2_44_2
  doi: 10.1128/JVI.00469-12
– ident: e_1_3_2_48_2
  doi: 10.1128/JVI.00262-13
– ident: e_1_3_2_69_2
  doi: 10.1099/vir.0.024885-0
– ident: e_1_3_2_64_2
  doi: 10.1002/jmv.23560
– volume: 59
  start-page: 1057
  year: 2010
  ident: e_1_3_2_3_2
  article-title: Estimates of deaths associated with seasonal influenza—United States, 1976-2007
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_13_2
  doi: 10.1016/S0140-6736(99)03311-5
– volume: 61
  start-page: 726
  year: 2012
  ident: e_1_3_2_10_2
  article-title: Notes from the field: highly pathogenic avian influenza A (H7N3) virus infection in two poultry workers—Jalisco, Mexico, July 2012
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_59_2
  doi: 10.1016/S0140-6736(13)61125-3
– volume: 61
  start-page: 65
  year: 2012
  ident: e_1_3_2_5_2
  article-title: Influenza vaccination coverage among adults—National Health Interview Survey, United States, 2008-09 influenza season
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_66_2
  doi: 10.1128/CVI.00247-10
– ident: e_1_3_2_29_2
  doi: 10.1038/ni.2761
– ident: e_1_3_2_61_2
  doi: 10.1007/s12185-012-1139-1
– ident: e_1_3_2_42_2
  doi: 10.1128/JVI.77.9.5295-5304.2003
– volume: 138
  start-page: 3010
  year: 1987
  ident: e_1_3_2_70_2
  article-title: Immunologic response to the influenza virus neuraminidase is influenced by prior experience with the associated viral hemagglutinin. I. Studies in human vaccinees
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.138.9.3010
– ident: e_1_3_2_63_2
  doi: 10.1371/journal.ppat.1003343
– ident: e_1_3_2_50_2
  doi: 10.1128/JVI.00979-13
– ident: e_1_3_2_35_2
  doi: 10.1093/infdis/jis652
– ident: e_1_3_2_46_2
  doi: 10.3791/51112
– ident: e_1_3_2_23_2
  doi: 10.1128/JVI.01715-13
– ident: e_1_3_2_22_2
  doi: 10.1128/JVI.00641-13
– ident: e_1_3_2_55_2
  doi: 10.1038/nsmb.1566
– ident: e_1_3_2_18_2
  doi: 10.1128/mBio.00018-10
– ident: e_1_3_2_47_2
  doi: 10.1128/JVI.01081-13
– ident: e_1_3_2_30_2
  doi: 10.1172/JCI41902
– ident: e_1_3_2_65_2
  doi: 10.1128/CVI.00735-12
– ident: e_1_3_2_51_2
  doi: 10.1086/528801
– volume: 60
  start-page: 737
  year: 2011
  ident: e_1_3_2_4_2
  article-title: Interim results: state-specific influenza vaccination coverage—United States, August 2010-February 2011
  publication-title: MMWR Morb. Mortal. Wkly. Rep.
– ident: e_1_3_2_32_2
  doi: 10.1128/JVI.01336-12
– ident: e_1_3_2_9_2
  doi: 10.1056/NEJMoa1304459
– ident: e_1_3_2_58_2
  doi: 10.1111/j.1750-2659.2011.00329.x
– ident: e_1_3_2_60_2
  doi: 10.1111/irv.12108
– ident: e_1_3_2_28_2
  doi: 10.1016/j.coviro.2013.07.007
– ident: e_1_3_2_74_2
  doi: 10.1016/j.vaccine.2009.05.079
– reference: 15663860 - Emerg Infect Dis. 2004 Dec;10(12):2196-9
– reference: 20719991 - J Gen Virol. 2010 Nov;91(Pt 11):2745-52
– reference: 10489954 - Lancet. 1999 Sep 11;354(9182):916-7
– reference: 22491456 - J Virol. 2012 Jun;86(11):6179-88
– reference: 20615991 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13701-6
– reference: 24300384 - J Vis Exp. 2013;(81):e51112
– reference: 23087428 - J Infect Dis. 2013 Jan 1;207(1):98-105
– reference: 23903831 - J Virol. 2013 Oct;87(19):10435-46
– reference: 21836007 - Science. 2011 Aug 12;333(6044):834-5
– reference: 24352315 - Nat Immunol. 2014 Jan;15(1):3-5
– reference: 23536663 - J Virol. 2013 Jun;87(11):6507-11
– reference: 23698304 - J Virol. 2013 Aug;87(15):8272-81
– reference: 23588718 - J Med Virol. 2013 Jun;85(6):941-3
– reference: 20689752 - MBio. 2010 May 18;1(1):null
– reference: 22971746 - MMWR Morb Mortal Wkly Rep. 2012 Sep 14;61(36):726-7
– reference: 8642658 - J Virol. 1996 Apr;70(4):2318-23
– reference: 21737702 - Science. 2011 Aug 12;333(6044):843-50
– reference: 22308500 - Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2573-8
– reference: 23881153 - Clin Infect Dis. 2013 Nov;57(9):1367-8
– reference: 19816398 - MMWR Morb Mortal Wkly Rep. 2009 Oct 9;58(39):1100-1
– reference: 20647428 - Science. 2010 Aug 27;329(5995):1060-4
– reference: 22764830 - Pediatr Transplant. 2012 Aug;16(5):E153-7
– reference: 3571981 - J Immunol. 1987 May 1;138(9):3010-3
– reference: 22878502 - Science. 2012 Sep 14;337(6100):1343-8
– reference: 20956293 - Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18979-84
– reference: 14987882 - Lancet. 2004 Feb 21;363(9409):587-93
– reference: 19234466 - Nat Struct Mol Biol. 2009 Mar;16(3):265-73
– reference: 22896678 - Sci Transl Med. 2012 Aug 15;4(147):147ra114
– reference: 21878571 - MBio. 2011;2(5). pii: e00150-11. doi: 10.1128/mBio.00150-11
– reference: 3095828 - Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6
– reference: 23717200 - PLoS Pathog. 2013;9(5):e1003343
– reference: 22586427 - Front Immunol. 2012 May 08;3:87
– reference: 21238573 - Vaccine. 2011 Mar 3;29(11):2120-6
– reference: 20389023 - J Clin Invest. 2010 May;120(5):1663-73
– reference: 19538996 - Vaccine. 2009 Aug 6;27(36):4983-9
– reference: 23978327 - Curr Opin Virol. 2013 Oct;3(5):521-30
– reference: 20798667 - MMWR Morb Mortal Wkly Rep. 2010 Aug 27;59(33):1057-62
– reference: 20195520 - PLoS Pathog. 2010 Feb;6(2):e1000796
– reference: 7753828 - Proc Natl Acad Sci U S A. 1995 May 9;92(10):4477-81
– reference: 22928001 - PLoS One. 2012;7(8):e43603
– reference: 23576673 - Clin Vaccine Immunol. 2013 Jun;20(6):867-76
– reference: 18271743 - J Infect Dis. 2008 Mar 15;197(6):846-53
– reference: 22046370 - PLoS One. 2011;6(10):e26818
– reference: 21659982 - MMWR Morb Mortal Wkly Rep. 2011 Jun 10;60(22):737-43
– reference: 23726392 - Lancet. 2013 Jun 29;381(9885):2273-9
– reference: 6584913 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1809-12
– reference: 21220454 - J Exp Med. 2011 Jan 17;208(1):181-93
– reference: 23576508 - J Virol. 2013 Jun;87(12):6542-50
– reference: 19390508 - MMWR Morb Mortal Wkly Rep. 2009 Apr 24;58(15):400-2
– reference: 22615367 - Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9047-52
– reference: 23698367 - Nature. 2013 Jul 4;499(7456):102-6
– reference: 21653752 - J Gen Virol. 2011 Oct;92(Pt 10):2339-49
– reference: 23698296 - J Virol. 2013 Jul;87(14):7793-804
– reference: 22243670 - Influenza Other Respir Viruses. 2012 Nov;6(6):e85-8
– reference: 23720727 - J Virol. 2013 Aug;87(15):8591-605
– reference: 24223176 - PLoS One. 2013;8(11):e79194
– reference: 23946196 - Sci Transl Med. 2013 Aug 14;5(198):198ra107
– reference: 8757990 - J Gen Virol. 1996 Jul;77 ( Pt 7):1483-7
– reference: 22787225 - J Virol. 2012 Oct;86(19):10302-7
– reference: 23551973 - Influenza Other Respir Viruses. 2013 Nov;7(6):904-8
– reference: 23577628 - N Engl J Med. 2013 May 16;368(20):1888-97
– reference: 23365444 - J Virol. 2013 Apr;87(8):4293-301
– reference: 22286307 - Nat Med. 2012 Feb;18(2):274-80
– reference: 19079604 - PLoS One. 2008;3(12):e3942
– reference: 22695466 - MMWR Suppl. 2012 Jun 15;61(2):65-72
– reference: 19251591 - Science. 2009 Apr 10;324(5924):246-51
– reference: 22030367 - Clin Vaccine Immunol. 2011 Dec;18(12):2010-7
– reference: 12692231 - J Virol. 2003 May;77(9):5295-304
– reference: 22398287 - J Virol. 2012 May;86(10):5774-81
– reference: 20739532 - J Virol. 2010 Nov;84(21):11219-26
– reference: 17544181 - Vaccine. 2007 Jun 28;25(27):5086-96
– reference: 20962210 - Clin Vaccine Immunol. 2010 Dec;17(12):1998-2006
– reference: 22773299 - Int J Hematol. 2012 Sep;96(3):364-9
SSID ssj0014464
Score 2.472447
Snippet Classifications Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Therapeutic monoclonal antibodies that target the conserved stalk domain of the influenza virus hemagglutinin and stalk-based universal influenza virus vaccine...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3432
SubjectTerms Animals
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
Disease Models, Animal
Ferrets
Hemagglutinin Glycoproteins, Influenza Virus - administration & dosage
Hemagglutinin Glycoproteins, Influenza Virus - chemistry
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Hemagglutinin Glycoproteins, Influenza Virus - immunology
Hemagglutinins
Humans
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - immunology
Influenza Vaccines - administration & dosage
Influenza Vaccines - chemistry
Influenza Vaccines - genetics
Influenza Vaccines - immunology
Influenza virus
Influenza, Human - immunology
Influenza, Human - prevention & control
Influenza, Human - virology
Male
Mustela
Protein Structure, Tertiary
Vaccines and Antiviral Agents
Title Assessment of Influenza Virus Hemagglutinin Stalk-Based Immunity in Ferrets
URI http://jvi.asm.org/content/88/6/3432.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24403585
https://www.proquest.com/docview/1502326472
https://www.proquest.com/docview/1508758406
https://pubmed.ncbi.nlm.nih.gov/PMC3957929
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiReKu64BWQkeIocfFmv14-lokoaBSFIq76t7PW6BBqnShwk-hl8MTPr2ya0CPpiRc4m63hOZs-sZ84Q8ianmZenXDpxHiiHplQ5PGbUcWWqaExpqrSoz-QjG57Q47PwrNf7ZWQtrct0IK-urSu5jVXhHNgVq2T_w7Ltl8IJeA32hSNYGI7_ZOODVlazqgjR_Uaukv7pbLlewYoyT87PcX4UUAVWefHdeQ-LVtYf6aKQUpf8HSnM1V3dQFKxCs7cdx8v9U63pryYu9dha1j1tf68qJdC7UmKDCLn7ZKgabXnioLX_S8Dc9vBo13elZHpjy7ISC6dzDrxKNPpYrwb6A7CsORUfhZlTJGsmY6YcwNwplfF4ldjhQ5oJcj1p_f3saLh-HQ0cAOtxxiYw8B2l3ONBKA0bhBWrYK21LY_TQ71k0s_vkPu-hB66DB9NG6fTEH4TBsFevxRTTGFz9-ZE6PIdD3LJuNpVKivi2i2E3MNpjN9QHZr69sHFd4ekp4qHpF7VdPSn4_JuEOdvcjtFnW2Rp29gTrbQJ3doM6G8zXqnpCTow_Tw6FTt-RwJDDL0omB6XA3TXikWMZyCE5llAVc-iH1IhbHKpK5HyWpCyZSUnkQjCOBD7FWTrI8DJ6SnWJRqOfE9vyEsSRJfDfLqSdTjmyZhjLPQhpnlFmk39w2IWu9emybciF03OpzAfdb6PstvMAib9vRl5VOyw3j9hoLiGQ1F99-zATnggnEmEVeNzYR4GXx0VlSqMV6JSBsgtADWy38dQwE_xwYskWeVXZsL6XBgkWiDQu3A1DlffOdYvZVq73XcNy79Sf3yf3uD_yC7JTLtXoJTLpMX2lo_wappMm2
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Influenza+Virus+Hemagglutinin+Stalk-Based+Immunity+in+Ferrets&rft.jtitle=Journal+of+virology&rft.au=Krammer%2C+Florian&rft.au=Hai%2C+Rong&rft.au=Yondola%2C+Mark&rft.au=Tan%2C+Gene+S.&rft.date=2014-03-01&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=88&rft.issue=6&rft.spage=3432&rft.epage=3442&rft_id=info:doi/10.1128%2FJVI.03004-13&rft_id=info%3Apmid%2F24403585&rft.externalDocID=PMC3957929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon