Extensive subclonal mutational diversity in human colorectal cancer and its significance

Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 116; no. 52; pp. 26863 - 26872
Main Authors Loeb, Lawrence A., Kohrn, Brendan F., Loubet-Senear, Kaitlyn J., Dunn, Yasmin J., Ahn, Eun Hyun, O’Sullivan, Jacintha N., Salk, Jesse J., Bronner, Mary P., Beckman, Robert A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.12.2019
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (10⁴) and accuracy (10−7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10−7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10−308).
AbstractList Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (10⁴) and accuracy (10−7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10−7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10−308).
Cancers evolve many mutations. Clonal driver mutations are selected early. Subsequent evolution occurs in a branching fashion, possibly without selection (“neutral evolution”). Rarer mutations occur later on smaller branches of the evolutionary tree. Using a DNA-sequencing method, duplex sequencing, with unprecedented accuracy and sensitivity, we quantified rare unique subclonal mutations in diagnostic specimens from 5 human colorectal cancers. Rarer subclones probe later evolutionary time points than previously possible. We confirm neutral evolution at later times and find many more subclonal mutations than expected. A theoretical method allowed us to extrapolate further forward in time to diagnosis. At diagnosis, every DNA base is mutated in at least one cancer cell. In particular, any therapy resistance mutation would be present. Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (10 4 ) and accuracy (<10 −7 ). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10 −7 . The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10 −308 ).
Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (104) and accuracy (<10−7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10−7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10−308).
Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (10 ) and accuracy (<10 ). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10 . The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10 ).
Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (104) and accuracy (<10-7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10-7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10-308).Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (104) and accuracy (<10-7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10-7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10-308).
Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (10 4 ) and accuracy (<10 −7 ). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10 −7 . The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10 −308 ).
Author Ahn, Eun Hyun
Beckman, Robert A.
Kohrn, Brendan F.
Loeb, Lawrence A.
Loubet-Senear, Kaitlyn J.
Salk, Jesse J.
Bronner, Mary P.
O’Sullivan, Jacintha N.
Dunn, Yasmin J.
Author_xml – sequence: 1
  givenname: Lawrence A.
  surname: Loeb
  fullname: Loeb, Lawrence A.
– sequence: 2
  givenname: Brendan F.
  surname: Kohrn
  fullname: Kohrn, Brendan F.
– sequence: 3
  givenname: Kaitlyn J.
  surname: Loubet-Senear
  fullname: Loubet-Senear, Kaitlyn J.
– sequence: 4
  givenname: Yasmin J.
  surname: Dunn
  fullname: Dunn, Yasmin J.
– sequence: 5
  givenname: Eun Hyun
  surname: Ahn
  fullname: Ahn, Eun Hyun
– sequence: 6
  givenname: Jacintha N.
  surname: O’Sullivan
  fullname: O’Sullivan, Jacintha N.
– sequence: 7
  givenname: Jesse J.
  surname: Salk
  fullname: Salk, Jesse J.
– sequence: 8
  givenname: Mary P.
  surname: Bronner
  fullname: Bronner, Mary P.
– sequence: 9
  givenname: Robert A.
  surname: Beckman
  fullname: Beckman, Robert A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31806761$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHTEUxUOx1Kd27coy0E03ozffmY0gYj9A6KYFdyEvk9E8ZpLXJPOo_33zfGpbwVVCzu8cTu49QHshBofQMYZTDJKerYPJp7jDQAFjLN6gBYYOt4J1sIcWAES2ihG2jw5yXgFAxxW8Q_sUKxBS4AW6ufpdXMh-45o8L-0YgxmbaS6m-IdrX5WUfblvfGju5smExsYxJmdLVa0J1qXGhL7xJTfZ3wY_-IfXI_R2MGN27x_PQ_Tz89WPy6_t9fcv3y4vrlvLoSutUswy5agTfBDKKGWhrz-wilLnSE-MFL20nNOOMSupxVQw2S8VE2rgNYEeovNd7npeTq63LpRkRr1OfjLpXkfj9f9K8Hf6Nm606KiQQGrAp8eAFH_NLhc9-WzdOJrg4pw1oYRIDkpBRT--QFdxTnVMW4pigikAr9SHfxs9V3kaegX4DrAp5pzcoK3fDbwW9KPGoLfL1dvl6r_Lrb6zF76n6NcdJzvHKpeYnnEiVCexYPQPAluxKQ
CitedBy_id crossref_primary_10_1186_s12859_022_04779_8
crossref_primary_10_1080_23808993_2023_2292988
crossref_primary_10_1200_PO_23_00714
crossref_primary_10_3390_genes12040558
crossref_primary_10_1016_j_mrrev_2024_108514
crossref_primary_10_1016_j_ygeno_2022_110412
crossref_primary_10_1016_j_bcp_2022_115110
crossref_primary_10_2147_CMAR_S339787
crossref_primary_10_1016_j_leukres_2022_106822
crossref_primary_10_1214_20_AOAS1434
crossref_primary_10_1002_cso2_1034
crossref_primary_10_1016_j_bulcan_2022_03_010
crossref_primary_10_1016_j_drup_2021_100796
crossref_primary_10_3390_jpm11010048
crossref_primary_10_25040_ntsh2020_01_07
crossref_primary_10_1210_endocr_bqad159
crossref_primary_10_1101_gr_275695_121
crossref_primary_10_1038_s41540_024_00436_3
crossref_primary_10_7717_peerj_12338
crossref_primary_10_1177_11769351231154679
crossref_primary_10_1016_j_isci_2021_102718
crossref_primary_10_1016_j_tips_2024_04_012
crossref_primary_10_1002_cpt_1938
crossref_primary_10_1038_s41588_021_00957_1
crossref_primary_10_1186_s12935_022_02766_w
crossref_primary_10_1200_CCI_21_00156
crossref_primary_10_1098_rsif_2020_0736
crossref_primary_10_1016_j_bulcan_2023_07_001
crossref_primary_10_1177_1073274820962008
crossref_primary_10_1109_TCBB_2020_3045315
crossref_primary_10_1200_PO_22_00698
crossref_primary_10_26508_lsa_202302290
crossref_primary_10_3390_cancers14133275
crossref_primary_10_1038_s41540_020_00144_8
crossref_primary_10_1007_s10555_020_09921_7
crossref_primary_10_1146_annurev_pharmtox_022823_113946
Cites_doi 10.1126/science.959840
10.1038/ng.3489
10.1073/pnas.0606271103
10.1186/s13062-016-0153-2
10.1073/pnas.1221068110
10.1073/pnas.1010978107
10.1073/pnas.1203559109
10.1038/nature07943
10.1158/2159-8290.CD-13-0617
10.1007/BF01731581
10.1073/pnas.1607794113
10.1371/journal.pcbi.1004731
10.1371/journal.pone.0005860
10.1073/pnas.1309667110
10.1073/pnas.1208715109
10.1038/s41586-018-0024-3
10.1007/BF02986080
10.1038/nmeth.3351
10.1016/j.cell.2017.09.042
10.1038/nature12477
10.1073/pnas.0712345105
10.1038/nm.3841
10.1073/pnas.0801523105
10.1016/j.semcancer.2005.06.007
10.1093/genetics/61.4.893
10.1038/ng.3214
10.1038/nrg.2017.117
10.1093/genetics/28.6.491
10.1038/nrclinonc.2015.175
10.1038/nature07485
10.1073/pnas.1519556112
10.1073/pnas.1412075111
10.1073/pnas.0912451107
10.1038/nature07385
10.1182/blood.V26.5.642.642
10.1038/nature11219
10.1038/s41588-018-0128-6
10.1126/science.aau3879
10.1038/nprot.2014.170
10.1214/18-AAP1413
10.2353/jmoldx.2006.050084
10.1126/science.1243148
10.7554/eLife.00747
10.1016/B978-1-4832-3211-9.50009-7
10.1158/0008-5472.CAN-07-5835
10.1158/0008-5472.CAN-08-1959
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 26, 2019
Copyright © 2019 the Author(s). Published by PNAS. 2019
Copyright_xml – notice: Copyright National Academy of Sciences Dec 26, 2019
– notice: Copyright © 2019 the Author(s). Published by PNAS. 2019
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1910301116
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 26872
ExternalDocumentID PMC6936702
31806761
10_1073_pnas_1910301116
26897164
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R21 CA220111
– fundername: NCI NIH HHS
  grantid: P01 CA077852
– fundername: NCI NIH HHS
  grantid: R01 CA193649
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: R01-CA160674
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P01-CA077852
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-884c48e3e65f68a88c0d091c833ee2d2a76d7c553944c73c13647db8468f55093
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:32:06 EDT 2025
Fri Jul 11 11:45:34 EDT 2025
Mon Jun 30 08:47:38 EDT 2025
Wed Feb 19 02:03:52 EST 2025
Tue Jul 01 03:40:12 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Thu May 29 13:25:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords genetic instability
mathematical modeling
tumor evolution
drug resistance
duplex sequencing
Language English
License This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-884c48e3e65f68a88c0d091c833ee2d2a76d7c553944c73c13647db8468f55093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
2B.F.K. and K.J.L.-S. contributed equally to this work.
Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved November 3, 2019 (received for review June 14, 2019)
Author contributions: L.A.L. and R.A.B. designed research; K.J.L.-S., Y.J.D., E.H.A., J.N.O., and M.P.B. performed research; B.F.K., E.H.A., J.J.S., and R.A.B. contributed new reagents/analytic tools; E.H.A. contributed GBM data for comparison; M.P.B. collected samples; B.F.K. and E.H.A. analyzed data; and L.A.L. and R.A.B. wrote the paper.
ORCID 0000-0001-9948-2131
0000-0002-3040-8440
0000-0003-0098-9210
0000-0002-7804-0550
0000-0001-5574-4072
0000-0001-6291-4498
0000-0003-1340-5253
0000-0002-5363-3675
0000-0001-8622-9858
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6936702
PMID 31806761
PQID 2331213005
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6936702
proquest_miscellaneous_2322750880
proquest_journals_2331213005
pubmed_primary_31806761
crossref_citationtrail_10_1073_pnas_1910301116
crossref_primary_10_1073_pnas_1910301116
jstor_primary_26897164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-26
PublicationDateYYYYMMDD 2019-12-26
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2019
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Martincorena I. (e_1_3_4_9_2) 2017; 171
Kennedy S. R. (e_1_3_4_46_2) 2014; 9
Van Allen E. M. (e_1_3_4_34_2) 2014; 4
Bozic I. (e_1_3_4_36_2) 2010; 107
Jukes T. H. (e_1_3_4_42_2) 1969
Campbell P. J. (e_1_3_4_2_2) 2008; 105
Nowell P. C. (e_1_3_4_14_2) 1976; 194
Cheek D. (e_1_3_4_33_2) 2018; 28
e_1_3_4_48_2
Loeb L. A. (e_1_3_4_16_2) 1974; 34
Beckman R. A. (e_1_3_4_21_2) 2012; 109
Frei E. (e_1_3_4_25_2) 1965; 26
Yeang C. H. (e_1_3_4_35_2) 2016; 11
Tomasetti C. (e_1_3_4_10_2) 2013; 110
Ling S. (e_1_3_4_18_2) 2015; 112
Roerink S. F. (e_1_3_4_28_2) 2018; 556
Stratton M. R. (e_1_3_4_1_2) 2009; 458
Williams M. J. (e_1_3_4_38_2) 2018; 50
Komarova N. L. (e_1_3_4_27_2) 2009; 69
Alexandrov L. B. (e_1_3_4_12_2) 2013; 500
Loh E. (e_1_3_4_44_2) 2010; 107
Fox E. J. (e_1_3_4_45_2) 2006; 8
Bhang H. E. (e_1_3_4_30_2) 2015; 21
Salk J. (e_1_3_4_5_2) 2018; 19
Jones S. (e_1_3_4_19_2) 2008; 105
Loeb L. A. (e_1_3_4_29_2) 2008; 68
Beckman R. A. (e_1_3_4_15_2) 2009; 4
Schmitt M. W. (e_1_3_4_6_2) 2012; 109
Diaz L. A. (e_1_3_4_3_2) 2012; 486
Luria S. E. (e_1_3_4_39_2) 1943; 28
Beckman R. A. (e_1_3_4_24_2) 2005; 15
Lea D. E. (e_1_3_4_40_2) 1949; 49
Sottoriva A. (e_1_3_4_17_2) 2015; 47
e_1_3_4_49_2
Kessler D. A. (e_1_3_4_41_2) 2013; 110
Hoang M. L. (e_1_3_4_13_2) 2016; 113
Bozic I. (e_1_3_4_20_2) 2014; 111
Beckman R. A. (e_1_3_4_11_2) 2006; 103
Vermeulen L. (e_1_3_4_37_2) 2013; 342
Williams M. J. (e_1_3_4_22_2) 2016; 48
Ley T. J. (e_1_3_4_4_2) 2008; 456
Cancer Genome Atlas Research Network (e_1_3_4_7_2) 2008; 455
Kimura M. (e_1_3_4_23_2) 1969; 61
Bozic I. (e_1_3_4_26_2) 2016; 12
Kimura M. (e_1_3_4_43_2) 1980; 16
Schmitt M. W. (e_1_3_4_31_2) 2016; 13
Schmitt M. W. (e_1_3_4_47_2) 2015; 12
Martincorena I. (e_1_3_4_8_2) 2018; 362
Bozic I. (e_1_3_4_32_2) 2013; 2
References_xml – volume: 194
  start-page: 23
  year: 1976
  ident: e_1_3_4_14_2
  article-title: The clonal evolution of tumor cell populations
  publication-title: Science
  doi: 10.1126/science.959840
– volume: 48
  start-page: 238
  year: 2016
  ident: e_1_3_4_22_2
  article-title: Identification of neutral tumor evolution across cancer types
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3489
– volume: 103
  start-page: 14140
  year: 2006
  ident: e_1_3_4_11_2
  article-title: Efficiency of carcinogenesis with and without a mutator mutation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0606271103
– volume: 11
  start-page: 56
  year: 2016
  ident: e_1_3_4_35_2
  article-title: Long range personalized cancer treatment strategies incorporating evolutionary dynamics
  publication-title: Biol. Direct
  doi: 10.1186/s13062-016-0153-2
– volume: 110
  start-page: 1999
  year: 2013
  ident: e_1_3_4_10_2
  article-title: Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1221068110
– volume: 107
  start-page: 18545
  year: 2010
  ident: e_1_3_4_36_2
  article-title: Accumulation of driver and passenger mutations during tumor progression
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1010978107
– volume: 109
  start-page: 14586
  year: 2012
  ident: e_1_3_4_21_2
  article-title: Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1203559109
– volume: 458
  start-page: 719
  year: 2009
  ident: e_1_3_4_1_2
  article-title: The cancer genome
  publication-title: Nature
  doi: 10.1038/nature07943
– volume: 4
  start-page: 94
  year: 2014
  ident: e_1_3_4_34_2
  article-title: The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0617
– volume: 16
  start-page: 111
  year: 1980
  ident: e_1_3_4_43_2
  article-title: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF01731581
– volume: 113
  start-page: 9846
  year: 2016
  ident: e_1_3_4_13_2
  article-title: Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1607794113
– volume: 12
  start-page: e1004731
  year: 2016
  ident: e_1_3_4_26_2
  article-title: Quantifying clonal and subclonal passenger mutations in cancer evolution
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004731
– ident: e_1_3_4_48_2
– volume: 4
  start-page: e5860
  year: 2009
  ident: e_1_3_4_15_2
  article-title: Mutator mutations enhance tumorigenic efficiency across fitness landscapes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005860
– volume: 110
  start-page: 11682
  year: 2013
  ident: e_1_3_4_41_2
  article-title: Large population solution of the stochastic Luria-Delbruck evolution model
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1309667110
– volume: 109
  start-page: 14508
  year: 2012
  ident: e_1_3_4_6_2
  article-title: Detection of ultra-rare mutations by next-generation sequencing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1208715109
– volume: 556
  start-page: 457
  year: 2018
  ident: e_1_3_4_28_2
  article-title: Intra-tumour diversification in colorectal cancer at the single-cell level
  publication-title: Nature
  doi: 10.1038/s41586-018-0024-3
– volume: 49
  start-page: 264
  year: 1949
  ident: e_1_3_4_40_2
  article-title: The distribution of the numbers of mutants in bacterial populations
  publication-title: J. Genet.
  doi: 10.1007/BF02986080
– volume: 12
  start-page: 423
  year: 2015
  ident: e_1_3_4_47_2
  article-title: Sequencing small genomic targets with high efficiency and extreme accuracy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3351
– volume: 171
  start-page: 1029
  year: 2017
  ident: e_1_3_4_9_2
  article-title: Universal patterns of selection in cancer and somatic tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.042
– volume: 500
  start-page: 415
  year: 2013
  ident: e_1_3_4_12_2
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 105
  start-page: 4283
  year: 2008
  ident: e_1_3_4_19_2
  article-title: Comparative lesion sequencing provides insights into tumor evolution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0712345105
– volume: 21
  start-page: 440
  year: 2015
  ident: e_1_3_4_30_2
  article-title: Studying clonal dynamics in response to cancer therapy using high-complexity barcoding
  publication-title: Nat. Med.
  doi: 10.1038/nm.3841
– volume: 34
  start-page: 2311
  year: 1974
  ident: e_1_3_4_16_2
  article-title: Errors in DNA replication as a basis of malignant changes
  publication-title: Cancer Res.
– volume: 105
  start-page: 13081
  year: 2008
  ident: e_1_3_4_2_2
  article-title: Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0801523105
– volume: 15
  start-page: 423
  year: 2005
  ident: e_1_3_4_24_2
  article-title: Genetic instability in cancer: Theory and experiment
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2005.06.007
– volume: 61
  start-page: 893
  year: 1969
  ident: e_1_3_4_23_2
  article-title: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations
  publication-title: Genetics
  doi: 10.1093/genetics/61.4.893
– volume: 47
  start-page: 209
  year: 2015
  ident: e_1_3_4_17_2
  article-title: A Big Bang model of human colorectal tumor growth
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3214
– volume: 19
  start-page: 269
  year: 2018
  ident: e_1_3_4_5_2
  article-title: Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg.2017.117
– volume: 28
  start-page: 491
  year: 1943
  ident: e_1_3_4_39_2
  article-title: Mutations of bacteria from virus sensitivity to virus resistance
  publication-title: Genetics
  doi: 10.1093/genetics/28.6.491
– volume: 13
  start-page: 335
  year: 2016
  ident: e_1_3_4_31_2
  article-title: The influence of subclonal resistance mutations on targeted cancer therapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2015.175
– volume: 456
  start-page: 66
  year: 2008
  ident: e_1_3_4_4_2
  article-title: DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome
  publication-title: Nature
  doi: 10.1038/nature07485
– volume: 112
  start-page: E6496
  year: 2015
  ident: e_1_3_4_18_2
  article-title: Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1519556112
– volume: 111
  start-page: 15964
  year: 2014
  ident: e_1_3_4_20_2
  article-title: Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1412075111
– volume: 107
  start-page: 1154
  year: 2010
  ident: e_1_3_4_44_2
  article-title: Optimization of DNA polymerase mutation rates during bacterial evolution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0912451107
– volume: 455
  start-page: 1061
  year: 2008
  ident: e_1_3_4_7_2
  article-title: Comprehensive genomic characterization defines human glioblastoma genes and core pathways
  publication-title: Nature
  doi: 10.1038/nature07385
– volume: 26
  start-page: 642
  year: 1965
  ident: e_1_3_4_25_2
  article-title: The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia
  publication-title: Blood
  doi: 10.1182/blood.V26.5.642.642
– volume: 486
  start-page: 537
  year: 2012
  ident: e_1_3_4_3_2
  article-title: The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers
  publication-title: Nature
  doi: 10.1038/nature11219
– volume: 50
  start-page: 895
  year: 2018
  ident: e_1_3_4_38_2
  article-title: Quantification of subclonal selection in cancer from bulk sequencing data
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0128-6
– volume: 362
  start-page: 911
  year: 2018
  ident: e_1_3_4_8_2
  article-title: Somatic mutant clones colonize the human esophagus with age
  publication-title: Science
  doi: 10.1126/science.aau3879
– volume: 9
  start-page: 2586
  year: 2014
  ident: e_1_3_4_46_2
  article-title: Detecting ultralow-frequency mutations by Duplex Sequencing
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.170
– volume: 28
  start-page: 3922
  year: 2018
  ident: e_1_3_4_33_2
  article-title: Mutation frequencies in a birth-death branching process
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/18-AAP1413
– volume: 8
  start-page: 68
  year: 2006
  ident: e_1_3_4_45_2
  article-title: Mutually exclusive promoter hypermethylation patterns of hMLH1 and O6-methylguanine DNA methyltransferase in colorectal cancer
  publication-title: J. Mol. Diagn.
  doi: 10.2353/jmoldx.2006.050084
– ident: e_1_3_4_49_2
– volume: 342
  start-page: 995
  year: 2013
  ident: e_1_3_4_37_2
  article-title: Defining stem cell dynamics in models of intestinal tumor initiation
  publication-title: Science
  doi: 10.1126/science.1243148
– volume: 2
  start-page: e00747
  year: 2013
  ident: e_1_3_4_32_2
  article-title: Evolutionary dynamics of cancer in response to targeted combination therapy
  publication-title: eLife
  doi: 10.7554/eLife.00747
– start-page: 21
  volume-title: Mammalian Protein Metabolism
  year: 1969
  ident: e_1_3_4_42_2
  doi: 10.1016/B978-1-4832-3211-9.50009-7
– volume: 68
  start-page: 3551
  year: 2008
  ident: e_1_3_4_29_2
  article-title: Cancers exhibit a mutator phenotype: Clinical implications
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-5835
– volume: 69
  start-page: 4904
  year: 2009
  ident: e_1_3_4_27_2
  article-title: Combination therapies against chronic myeloid leukemia: Short-term versus long-term strategies
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1959
SSID ssj0009580
Score 2.509476
Snippet Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive...
Cancers evolve many mutations. Clonal driver mutations are selected early. Subsequent evolution occurs in a branching fashion, possibly without selection...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26863
SubjectTerms Biological Sciences
Colorectal carcinoma
Deoxyribonucleic acid
DNA
DNA sequencing
DNA-directed DNA polymerase
Evolution
Gene frequency
Genes
Genomes
Heterogeneity
Mutation
Mutation rates
PNAS Plus
Tumor cells
Tumors
Title Extensive subclonal mutational diversity in human colorectal cancer and its significance
URI https://www.jstor.org/stable/26897164
https://www.ncbi.nlm.nih.gov/pubmed/31806761
https://www.proquest.com/docview/2331213005
https://www.proquest.com/docview/2322750880
https://pubmed.ncbi.nlm.nih.gov/PMC6936702
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxNKflwHOdxoFYTKmUSrVSeotjxtEpbipZEfPxL_JOc44-koyDgJaocJ7V8v9yd7bvfIfQyYQFPJKe-YDHxCSszn1EpfJHIiDFZCp6pfOf3c3q6JO9WyWo0-jGIWmobPhbfd-aV_I9UoQ3kqrJk_0Gy7qXQAL9BvnAFCcP1r2Q8-Wrjz-uWi8tuU--qbez-XuliLtaVKcanOKqVjlOsIEre1-7wQAVyqLAhhwLjsZ45C1fbeIK5_YOTPh3F6Ij62D8-m_fFjWcbyXX69RdNZ9tr-M2FjiN-o6JyYWjT_pmWy8b_CFq4MBEfMJJvVX-CZb3uT0V9tbbtZusi7Oou6Pz4IfP3ztEOdXYEdpToTOux1GoavByfEl1o1OlxnbRpAKt5ca1apkyr0V8MBmg4VeW4KuoxrFy79WG4g5p7_iGfLmezfDFZLW6h2xGsSaLOCgwZnpnOdzLDtTxSafz6xuu3XCAdBbtrfXMzTHfg9yzuobtmwYJPNPr20UhW99G-nUB8ZHjLXz1AKwdH7OCIezhiB0e8rnAHR9zDEWs4YoAjBjjiIRwfouV0snh76pvCHfCJB1njM0YEYTKWNDmnrGBMBCVIDNRBLGVURkVKy1QkiUrKFmksQlXEoOTgCrNzWDFn8QHaqzaVfIxwQcJI8IQHKS1IEVAmGY9ZEnBKi5LwxENjO5e5MKz2qrjKZd5FV6RxriY_7yffQ0fugc-a0OX3XQ864bh-ACPFuEY8dGillRt1UOdRHCt6RLBqHnrhboOyVidwRSU3reoTqXoKYDM99EgL170cjCt4jjT0ULoldtdBEcFv36nWFx0hPM0UDWP05M_Deoru9B_hIdprrlv5DDzqhj_vkPwTTp7PRw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extensive+subclonal+mutational+diversity+in+human+colorectal+cancer+and+its+significance&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Loeb%2C+Lawrence+A&rft.au=Kohrn%2C+Brendan+F&rft.au=Loubet-Senear%2C+Kaitlyn+J&rft.au=Dunn%2C+Yasmin+J&rft.date=2019-12-26&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=116&rft.issue=52&rft.spage=26863&rft_id=info:doi/10.1073%2Fpnas.1910301116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon