Efficient Model-Based Anthropometry under Clothing Using Low-Cost Depth Sensors

Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensio...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 5; p. 1350
Main Authors Park, Byoung-Keon D., Jung, Hayoung, Ebert, Sheila M., Corner, Brian D., Reed, Matthew P.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.02.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns. To address these and other issues in current anthropometry techniques, a measurement system was developed based on portable, low-cost depth cameras. Point-cloud data from the sensors are fit using a model-based method, Inscribed Fitting, which finds the most likely body shape in the statistical body shape space and providing accurate estimates of body characteristics. To evaluate the system, 144 young adults were measured manually and with two levels of military ensembles using the system. The results showed that the prediction accuracy for the clothed scans remained at a similar level to the accuracy for the minimally clad scans. This approach will enable rapid measurement of clothed populations with reduced time compared to manual and typical scan-based methods.
AbstractList Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns. To address these and other issues in current anthropometry techniques, a measurement system was developed based on portable, low-cost depth cameras. Point-cloud data from the sensors are fit using a model-based method, Inscribed Fitting, which finds the most likely body shape in the statistical body shape space and providing accurate estimates of body characteristics. To evaluate the system, 144 young adults were measured manually and with two levels of military ensembles using the system. The results showed that the prediction accuracy for the clothed scans remained at a similar level to the accuracy for the minimally clad scans. This approach will enable rapid measurement of clothed populations with reduced time compared to manual and typical scan-based methods.
Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns. To address these and other issues in current anthropometry techniques, a measurement system was developed based on portable, low-cost depth cameras. Point-cloud data from the sensors are fit using a model-based method, Inscribed Fitting, which finds the most likely body shape in the statistical body shape space and providing accurate estimates of body characteristics. To evaluate the system, 144 young adults were measured manually and with two levels of military ensembles using the system. The results showed that the prediction accuracy for the clothed scans remained at a similar level to the accuracy for the minimally clad scans. This approach will enable rapid measurement of clothed populations with reduced time compared to manual and typical scan-based methods.Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using typical anthropometric methods poses challenges due to the time-consuming nature of manual methods. The measurement process for three-dimensional (3D) whole-body scanning can be much faster, but 3D scanning typically requires subjects to change into tight-fitting clothing, which increases time and cost and introduces privacy concerns. To address these and other issues in current anthropometry techniques, a measurement system was developed based on portable, low-cost depth cameras. Point-cloud data from the sensors are fit using a model-based method, Inscribed Fitting, which finds the most likely body shape in the statistical body shape space and providing accurate estimates of body characteristics. To evaluate the system, 144 young adults were measured manually and with two levels of military ensembles using the system. The results showed that the prediction accuracy for the clothed scans remained at a similar level to the accuracy for the minimally clad scans. This approach will enable rapid measurement of clothed populations with reduced time compared to manual and typical scan-based methods.
Audience Academic
Author Park, Byoung-Keon D.
Jung, Hayoung
Ebert, Sheila M.
Corner, Brian D.
Reed, Matthew P.
AuthorAffiliation 1 Biosciences Group, University of Michigan Transportation Research Institute, Ann Arbor, MI 48109, USA; hayjung@umich.edu (H.J.); ebertshe@umich.edu (S.M.E.); mreed@umich.edu (M.P.R.)
2 Corner3d LLC, Bedford, VA 24523, USA; bdcorner3d@gmail.com
AuthorAffiliation_xml – name: 2 Corner3d LLC, Bedford, VA 24523, USA; bdcorner3d@gmail.com
– name: 1 Biosciences Group, University of Michigan Transportation Research Institute, Ann Arbor, MI 48109, USA; hayjung@umich.edu (H.J.); ebertshe@umich.edu (S.M.E.); mreed@umich.edu (M.P.R.)
Author_xml – sequence: 1
  givenname: Byoung-Keon D.
  orcidid: 0000-0002-5445-6826
  surname: Park
  fullname: Park, Byoung-Keon D.
– sequence: 2
  givenname: Hayoung
  orcidid: 0000-0003-1315-2313
  surname: Jung
  fullname: Jung, Hayoung
– sequence: 3
  givenname: Sheila M.
  surname: Ebert
  fullname: Ebert, Sheila M.
– sequence: 4
  givenname: Brian D.
  surname: Corner
  fullname: Corner, Brian D.
– sequence: 5
  givenname: Matthew P.
  orcidid: 0000-0001-6650-0727
  surname: Reed
  fullname: Reed, Matthew P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38474886$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFCEUhiemxn7ohX_ATOKNXkzL98CVWdeqTdb0QntNKB-7bGZgBUbTfy_j1k3bGBIgh-e88J7DaXMUYrBN8xqCc4wFuMiIAAoxBc-aE0gQ6ThC4OjB_rg5zXkLAMIY8xfNMeakJ5yzk-b60jmvvQ2l_RaNHbqPKlvTLkLZpLiLoy3prp2CsaldDrFsfFi3N3meV_F3t4y5tJ_srmza7zbkmPLL5rlTQ7av7tez5ubz5Y_l1251_eVquVh1mgJROs4ghYbdMqeg5ZQbh43uIeEQEuyotUhBgZCFnAJXHVCMqHOcAeEEporis-Zqr2ui2spd8qNKdzIqL_8GYlpLlYrXg5WCaUEV7AFjmEDIhGJUcd0jYvqeaFO1Puy1dtPtaI2uxUhqeCT6-CT4jVzHXxICgQkhsCq8u1dI8edkc5Gjz9oOgwo2TlkiQRnjFPd9Rd8-QbdxSqHWaqaogIgwUanzPbVW1YEPLtaLdR3Gjl7X7jtf44ueM4IF5HPCm4ceDo__1-kKvN8DOsWck3UHBAI5_yJ5-EWVvXjCal9U8XG274f_ZPwBotDFcA
CitedBy_id crossref_primary_10_1177_10711813241278285
crossref_primary_10_1109_ACCESS_2024_3519671
Cites_doi 10.1109/TII.2020.3016591
10.1080/10543400701329422
10.1016/j.patcog.2017.02.018
10.1080/00140139.2014.965754
10.1109/ACCESS.2021.3076595
10.1080/00140139.2022.2130440
10.1109/TMM.2020.3029941
10.1016/j.ergon.2019.102828
10.1016/j.eswa.2007.07.008
10.21236/ADA406704
10.1080/00140139.2015.1033480
10.1109/WACV.2014.6836115
10.1016/j.cag.2009.03.026
10.1109/CVPR.2017.582
10.1007/978-3-540-88688-4_2
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s24051350
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_96c95a17066341169a65a8c724d774cd
PMC10934441
A786439189
38474886
10_3390_s24051350
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: U.S. Marine Corps
  grantid: CS200041
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-86151d6b6fa1e858df3dc71481143f5ee2a1922e1850f8225325ff8609f935a53
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:53 EDT 2025
Thu Aug 21 18:34:58 EDT 2025
Fri Jul 11 05:32:55 EDT 2025
Fri Jul 25 21:07:08 EDT 2025
Tue Jun 10 21:11:37 EDT 2025
Thu Apr 03 07:03:41 EDT 2025
Tue Jul 01 03:50:46 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords clothed scan measurement
3D anthropometry
body characterization
body dimension measurement
ANSUR
inscribed fit
whole-body scanning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-86151d6b6fa1e858df3dc71481143f5ee2a1922e1850f8225325ff8609f935a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6650-0727
0000-0003-1315-2313
0000-0002-5445-6826
OpenAccessLink https://www.proquest.com/docview/2955912469?pq-origsite=%requestingapplication%
PMID 38474886
PQID 2955912469
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_96c95a17066341169a65a8c724d774cd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934441
proquest_miscellaneous_2956685377
proquest_journals_2955912469
gale_infotracacademiconefile_A786439189
pubmed_primary_38474886
crossref_primary_10_3390_s24051350
crossref_citationtrail_10_3390_s24051350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240220
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 2
  year: 2024
  text: 20240220
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bartol (ref_1) 2021; 9
Pishchulin (ref_13) 2017; 67
Bland (ref_20) 2007; 17
Hasler (ref_11) 2009; 33
ref_14
Goto (ref_5) 2019; 73
Black (ref_16) 2008; Volume 5303
ref_10
ref_21
Hu (ref_12) 2021; 17
Bonin (ref_2) 2023; 66
Lu (ref_6) 2008; 35
ref_3
ref_18
ref_17
ref_9
ref_8
ref_4
Park (ref_7) 2014; 58
Lu (ref_15) 2021; 23
Park (ref_19) 2015; 58
References_xml – ident: ref_4
– volume: 17
  start-page: 3793
  year: 2021
  ident: ref_12
  article-title: Learning to Estimate the Body Shape under Clothing from a Single 3-D Scan
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3016591
– volume: 17
  start-page: 571
  year: 2007
  ident: ref_20
  article-title: Agreement between Methods of Measurement with Multiple Observations per Individual
  publication-title: J. Biopharm. Stat.
  doi: 10.1080/10543400701329422
– ident: ref_3
– volume: 67
  start-page: 276
  year: 2017
  ident: ref_13
  article-title: Building Statistical Shape Spaces for 3D Human Modeling
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.018
– ident: ref_10
– volume: 58
  start-page: 301
  year: 2014
  ident: ref_7
  article-title: Child Body Shape Measurement Using Depth Cameras and a Statistical Body Shape Model
  publication-title: Ergonomics
  doi: 10.1080/00140139.2014.965754
– volume: 9
  start-page: 67281
  year: 2021
  ident: ref_1
  article-title: A Review of Body Measurement Using 3D Scanning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3076595
– volume: 66
  start-page: 1057
  year: 2023
  ident: ref_2
  article-title: Anthropometric Dataset for the German Working-Age Population Using 3D Body Scans from a Regional Epidemiological Health Study and a Weighting Algorithm
  publication-title: Ergonomics
  doi: 10.1080/00140139.2022.2130440
– volume: 23
  start-page: 3657
  year: 2021
  ident: ref_15
  article-title: Parametric Shape Estimation of Human Body Under Wide Clothing
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2020.3029941
– volume: 73
  start-page: 102828
  year: 2019
  ident: ref_5
  article-title: Traditional and 3D Scan Extracted Measurements of the Heads and Faces of Dutch Children
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/j.ergon.2019.102828
– volume: 35
  start-page: 407
  year: 2008
  ident: ref_6
  article-title: Automated Anthropometric Data Collection Using 3D Whole Body Scanners
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2007.07.008
– ident: ref_8
  doi: 10.21236/ADA406704
– volume: 58
  start-page: 1714
  year: 2015
  ident: ref_19
  article-title: Parametric Body Shape Model of Standing Children Ages 3 to 11 Years
  publication-title: Ergonomics
  doi: 10.1080/00140139.2015.1033480
– ident: ref_9
  doi: 10.1109/WACV.2014.6836115
– ident: ref_14
– volume: 33
  start-page: 211
  year: 2009
  ident: ref_11
  article-title: Estimating Body Shape of Dressed Humans
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2009.03.026
– ident: ref_17
  doi: 10.1109/CVPR.2017.582
– ident: ref_18
– ident: ref_21
– volume: Volume 5303
  start-page: 15
  year: 2008
  ident: ref_16
  article-title: The Naked Truth: Estimating Body Shape Under Clothing
  publication-title: Computer Vision—ECCV 2008
  doi: 10.1007/978-3-540-88688-4_2
SSID ssj0023338
Score 2.4391923
Snippet Measuring human body dimensions is critical for many engineering and product design domains. Nonetheless, acquiring body dimension data for populations using...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1350
SubjectTerms 3D anthropometry
ANSUR
Anthropometry
Anthropometry - methods
body characterization
body dimension measurement
Data collection
Economic aspects
Human Body
Humans
Imaging, Three-Dimensional - methods
inscribed fit
Lasers
Military Personnel
Scanning devices
Sensors
whole-body scanning
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I31ZXiSLopWybNNPkuPvcZRE_Drqwt5CmCSs82-W9LuJ_70zaV_pQ8OK1SUo6H_nN0MxvGHsTwSESOHSkNkBe-SbmjRHUEhB8aRq0oETX9OkznF9UHy7V5aLVF90JG-mBR8EdGfBGOSJ5ATxwSzAOlNO-FlWLkYtv6fRFzNslU1OqJTHzGnmEJCb1R1vELVVKKq5foE8i6f_zKF5g0f49yQXwnN1jd6eIkR-PO73PboXuAbuz4BF8yL6cJiIIXM-pt9k6P0FsavmuCcKPMGx-caoW2_DVGlWDi3i6K8A_9j_zVb8d-PtwPVzxr5jU9pvtI3ZxdvptdZ5PnRJyj4A_5JrikhYaiK4MWuk2ytbXmOlgtiOjCkE4jOREQHAuoiYFCBWjhsJEI5VT8jE76PouPGXcFVUI-AbwGqqyqXRQwhXEnNhKE4XJ2LudBK2faMSpm8XaYjpBwrazsDP2ep56PXJn_G3SCalhnkB01-kBGoGdjMD-ywgy9paUaMkpcTPeTbUF-ElEb2WPa51KjDVu_3CnZzt569YKouHDQAdw-NU8jH5GP09cF_qbNAcAY5u6ztiT0SzmPUuEeDwIIWN6z2D2Pmp_pPt-lbi8ic2rwpD02f8Qw3N2W2DMlSrui0N2MGxuwguMmYbmZXKP38V6EUQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJM-kEFIcIma2LFjn6p2aVUhHgeotDfLcWyKtCRLkqrqv2fGm013BeIaO5HtmfE343i-IeRtkBaQwIIh1V6mhatCWmmGJQGly3UFGhTpmj5_kecXxce5mI8Hbv14rXK9J8aNum4dnpEfMqRKAzCS-mj5O8WqUfh3dSyhcZfcQ-oyvNJVzm8DLg7x14pNiENof9gDeomcY4r9BgZFqv6_N-QNRNq-LbkBP2ePyMPRb6THK0E_Jnd884Q82GATfEq-nkY6CHifYoWzRXoCCFXTdSmEX37obijmjHV0tgABwUs03hign9rrdNb2A_3gl8Ml_Qahbdv1z8jF2en32Xk61ktIHcD-kCr0TmpZyWBzr4SqA69dCfEOxDw8CO-ZBX-OeYDoLCgUAxMhKJnpoLmwgj8nO03b-JeE2qzwHr4gnZJFXhXKC2Yz5E-suQ5MJ-T9egWNG8nEsabFwkBQgYttpsVOyJup63LFoPGvTicohqkDkl7HB233w4w2ZLR0Wljk-5GAvbnUVgqrXMmKGpxYVyfkHQrRoGnCYJwdMwxgSkhyZY5LFRONFQx_fy1nM9psb241LCGvp2awNvyFYhvfXsU-UoKHU5YJebFSi2nMHIAetkOZELWlMFuT2m5pfl5GRm_k9CrAMd39_7j2yH0GPlXMqM_2yc7QXfkD8ImG6lVU_D8-xAop
  priority: 102
  providerName: ProQuest
Title Efficient Model-Based Anthropometry under Clothing Using Low-Cost Depth Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/38474886
https://www.proquest.com/docview/2955912469
https://www.proquest.com/docview/2956685377
https://pubmed.ncbi.nlm.nih.gov/PMC10934441
https://doaj.org/article/96c95a17066341169a65a8c724d774cd
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbGdoED4jeBURmEBJdA4sSOfUBoLS0TYgMBlXqLHMdmSCUZaSbYf897bhI1YgcuOdR2ZPv55ftek_c9Qp47oQEJNDhSaUWYmsKFhWJYElCYWBVwgrxc08mpOF6mH1Z8tUf6GpvdBm6uDO2wntSyWb_68-vyLTj8G4w4IWR_vQFU4nGCkfsBAFKG_nmSDi8TWJL4gtaY0xUCHkZbgaHx0BEsefX-f5_ROyA1_oByB5EWt8jNjkrSo63tb5M9W90hN3YEBu-ST3OvEAHjKRY9W4dTAK2S9tURftq2uaSYRtbQ2RpsBoOo_4iAfqx_h7N609J39rw9o18h2q2bzT2yXMy_zY7DroRCaIAJtKFEwlKKQjgdW8ll6ZLSZBACQRiUOG4t00DxmAXUjpxEyzDunBSRcirhmif3yX5VV_YhoTpKrYU7CCNFGheptJzpCCUVy0Q5pgLyst_B3HT64ljmYp1DnIGbnQ-bHZBnQ9fzrajGVZ2maIahA-pg-x_q5nveuVWuhFFcowSQADiOhdKCa2kylpbAa00ZkBdoxBzPD0zG6C7pAJaEulf5USZ97rGE6R_2ds77U5gz1OcDBiSg-enQDA6Ib1V0ZesL30cIID1ZFpAH22MxzDkB7IcnpAiIHB2Y0aLGLdWPMy_yjTJfKXDVR_-9gsfkOgPG5fPto0Oy3zYX9gkwpraYkGvZKoOrXLyfkIPp_PTzl4n_92HiPeUvzI0V0Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDcpBQwCwSVq4iSOfUCo3bba0m050Ep7cx3HoUjbZNmkqvqn-I3MOI_uCsSt18SJJvbMfDOx5xtC3hdcAxJoMKTccj82WeFnkmFLQG5CmYEGObqmo2M-Po2_TpPpGvnd18LgscreJzpHnVcG_5FvMaRKAzDi8sv8l49do3B3tW-h0arFob2-gpSt_nywC-v7gbH9vZPR2O-6CvgGwLHxBWJ4zjNe6NCKRORFlJsUsgLIDKIisZZpiHqYBSALCoHCsqQoBA9kIaNEY5cIcPl3AHgDtKh0epPgRZDvtexFUSSDrRrQMgkjLOlfwjzXGuBvAFhCwNXTmUtwt_-QPOjiVLrdKtYjsmbLx-T-EnvhE_Jtz9FPwPMUO6rN_B1AxJz2rRcubLO4plijtqCjGSgEPETdCQU6qa78UVU3dNfOm3P6HVLpalE_Jae3MpPPyHpZlfYFoTqIrYU3cCN4HGaxsAnTAfI15pEsmPTIp34GlenIy7GHxkxBEoOTrYbJ9si7Yei8Zez416AdXIZhAJJsuwvV4ofqbFZJbmSikV-IA9aHXGqeaGFSFucQNJvcIx9xERW6AhDG6K6iAT4JSbXUdipcYbMA8Tf7dVadj6jVjUZ75O1wG6wbt2x0aatLN4ZziKjS1CPPW7UYZI4gsAD3yz0iVhRm5aNW75Q_zx2DOHKIxRAIb_xfrjfk7vjkaKImB8eHL8k9BvGcq-YPNsl6s7i0ryAea7LXzggoObttq_sD5m9FCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4IN6kFDAIBJdoEydx7ANC7W5XLS0FCSrtLTiOTSstybJJVfWv8euYcR7dFYhbr5vJamLPzDeTeL4h5LXlCpBAgSMVhvuxzq2fS4YjAbkOZQ4W5OiaPh3z_ZP44yyZbZDffS8MHqvsY6IL1EWl8R35iCFVGoARlyPbHYv4Mpl-WPzycYIUfmntx2m0JnJoLi-gfKvfH0xgr98wNt37Nt73uwkDvgagbHyBeF7wnFsVGpGIwkaFTqFCgCohsokxTEEGxAyAWmAFKs4SawUPpJVRonBiBIT_G2mUhOhj6eyq2Iug9muZjKJIBqMakBOEsL1_Bf_cmIC_wWAFDddPaq5A3_QuudPlrHSnNbJ7ZMOU98ntFSbDB-TznqOigPspTleb-7uAjgXtxzD8NM3ykmK_2pKO52AccBN1pxXoUXXhj6u6oROzaE7pVyirq2X9kJxcy0o-IptlVZonhKogNgb-gWvB4zCPhUmYCpC7sYikZdIj7_oVzHRHZI7zNOYZFDS42Nmw2B55NYguWvaOfwnt4jYMAki47X6olj-yzn8zybVMFHINccD9kEvFEyV0yuICEmhdeOQtbmKGYQGU0arrboBHQoKtbCcVrslZgPrb_T5nXbyosyvr9sjL4TJ4On6-UaWpzp0M55BdpalHHrdmMegcQZIBoZh7RKwZzNpDrV8pz04dmzjyicWQFG_9X68X5Cb4W3Z0cHz4lNxikNq5xv5gm2w2y3PzDFKzJn_ufICS79ftdH8AH0tJQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Model-Based+Anthropometry+under+Clothing+Using+Low-Cost+Depth+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Park%2C+Byoung-Keon+D&rft.au=Jung%2C+Hayoung&rft.au=Ebert%2C+Sheila+M&rft.au=Corner%2C+Brian+D&rft.date=2024-02-20&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=5&rft_id=info:doi/10.3390%2Fs24051350&rft.externalDocID=A786439189
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon