Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles
The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vascu...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 20; pp. 5552 - 5557 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
17.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. |
---|---|
AbstractList | Obesity has been recognized by the American Medical Association to be a disease affecting significant portions of the population and is related to an expansion and proliferation of white adipose tissue (WAT) in the body. The primary function of WAT is to store energy, whereas brown adipose tissue (BAT) generates heat through energy expenditure. Transforming WAT into BAT is of tremendous interest for obesity treatment. Herein, we describe a targeted nanoparticle approach encapsulating either a PPARgamma activator or a prostaglandin E2 analog, each of which induces adipose tissue transformation and angiogenesis, facilitating the transformation of WAT into BAT. Targeted nanoparticles show antiobesity effects compared with free drug and the nontargeted nanoparticle controls in a mouse model.
The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-
b
-poly(ethylene glycol) (PLGA-
b
-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. |
Author | Xue, Yuan Farokhzad, Omid C. Xu, Xiaoyang Zhang, Xue-Qing Langer, Robert |
Author_xml | – sequence: 1 givenname: Yuan surname: Xue fullname: Xue, Yuan organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 – sequence: 2 givenname: Xiaoyang surname: Xu fullname: Xu, Xiaoyang organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 – sequence: 3 givenname: Xue-Qing surname: Zhang fullname: Zhang, Xue-Qing organization: Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 4 givenname: Omid C. surname: Farokhzad fullname: Farokhzad, Omid C. organization: Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – sequence: 5 givenname: Robert surname: Langer fullname: Langer, Robert organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27140638$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v3CAQxVGVqtkkPffUCqlnJ2AwhkulKuqXFKk55I4wjF1Wu-ACXmn_-7DdpGkj5YDmwLzfm5l3hk5CDIDQO0ouKenZ1RxMvqSCMMkJpewVWlGiaCO4IidoRUjbN5K3_BSd5bwmhKhOkjfotO0pJ4LJFdrdJthBKD5M2HkojQ9useBwHCD7ssc-4K23gIc9Ns7PMQMuPuellmRCHmPamuJjwCa4-iYfJwhVmvGSD9Bi0gSlAoMJcTapeLuBfIFej2aT4e1DPUd3X7_cXX9vbn5--3H9-aaxHVGlkZ2kzAkqx4FbydRYpxatBenYIAbV9qIDBcq5oReuNhruHLPSQG86wSk7R5-O2HkZtuBsXTSZjZ6T35q019F4_f9P8L_0FHeay152VFbAxwdAir8XyEWv45JCHVnTXjFBaSsPNh_-tfnLfzxzbeiODTbFnBOM2vry52zV1W80JfoQpz7EqZ_irLqrZ7pH9MuK90fFOpeYniYRXCgpFbsH_y-v-w |
CitedBy_id | crossref_primary_10_1210_er_2017_00163 crossref_primary_10_1152_ajpendo_00084_2023 crossref_primary_10_3390_nu14183774 crossref_primary_10_1080_09506608_2022_2040293 crossref_primary_10_1038_s41598_021_88959_1 crossref_primary_10_1016_j_cmet_2018_06_007 crossref_primary_10_1016_j_dsx_2019_03_002 crossref_primary_10_1016_j_ymthe_2020_09_029 crossref_primary_10_1016_j_bbrc_2018_08_197 crossref_primary_10_1039_D0CB00022A crossref_primary_10_1016_j_nantod_2022_101541 crossref_primary_10_1002_advs_202000542 crossref_primary_10_1016_j_biomaterials_2024_122687 crossref_primary_10_1007_s10456_022_09848_3 crossref_primary_10_1038_s41598_022_25819_6 crossref_primary_10_1155_2016_2365609 crossref_primary_10_3390_pharmaceutics15112635 crossref_primary_10_1186_s12906_019_2640_3 crossref_primary_10_3389_fphys_2019_00038 crossref_primary_10_1007_s11695_019_04295_4 crossref_primary_10_1016_j_pacs_2024_100628 crossref_primary_10_1002_mabi_202300312 crossref_primary_10_1016_j_gtc_2016_07_008 crossref_primary_10_1016_j_biopha_2020_110103 crossref_primary_10_1039_D1BM01127H crossref_primary_10_1007_s11427_017_9257_1 crossref_primary_10_1160_TH17_05_0325 crossref_primary_10_1021_acs_jafc_1c01130 crossref_primary_10_7554_eLife_24071 crossref_primary_10_1002_smll_202002872 crossref_primary_10_1002_sstr_202000097 crossref_primary_10_3389_fimmu_2021_713989 crossref_primary_10_1016_j_colsurfa_2019_03_063 crossref_primary_10_3390_pharmaceutics13081279 crossref_primary_10_1002_ptr_8083 crossref_primary_10_1016_j_biomaterials_2021_121183 crossref_primary_10_1016_j_bbrc_2018_06_043 crossref_primary_10_1038_s41427_019_0133_y crossref_primary_10_3389_fcvm_2017_00051 crossref_primary_10_20517_jca_2024_01 crossref_primary_10_1007_s11154_023_09850_0 crossref_primary_10_3989_mc_2019_05418 crossref_primary_10_1016_j_jddst_2021_102672 crossref_primary_10_1111_bph_13666 crossref_primary_10_1002_adhm_201801655 crossref_primary_10_1016_j_jconrel_2020_10_002 crossref_primary_10_1002_ptr_8400 crossref_primary_10_1021_acsnano_4c10742 crossref_primary_10_1016_j_jconrel_2022_03_014 crossref_primary_10_1016_j_lfs_2019_01_037 crossref_primary_10_1021_acsnano_7b04348 crossref_primary_10_1146_annurev_pathol_042220_023633 crossref_primary_10_1002_adhm_202403162 crossref_primary_10_1016_j_jconrel_2017_06_013 crossref_primary_10_1016_j_jconrel_2023_02_007 crossref_primary_10_1080_87559129_2021_1923730 crossref_primary_10_1002_adfm_202011130 crossref_primary_10_1016_j_ijpharm_2020_119357 crossref_primary_10_1371_journal_pone_0224917 crossref_primary_10_1016_j_tem_2018_09_003 crossref_primary_10_1021_acsnano_4c00403 crossref_primary_10_1002_ptr_8065 crossref_primary_10_1016_j_actbio_2022_08_055 crossref_primary_10_1016_j_biopha_2020_111103 crossref_primary_10_1016_j_tem_2019_09_004 crossref_primary_10_3389_fmolb_2024_1322687 crossref_primary_10_2337_dbi20_0036 crossref_primary_10_1017_S1751731117002981 crossref_primary_10_1126_sciadv_aat2953 crossref_primary_10_1016_j_biomaterials_2019_119474 crossref_primary_10_3390_ijms22137177 crossref_primary_10_1016_j_addr_2021_114110 crossref_primary_10_1038_emm_2017_70 crossref_primary_10_1038_s41574_021_00562_6 crossref_primary_10_1080_17425247_2018_1449831 crossref_primary_10_1021_acsbiomaterials_0c01181 crossref_primary_10_1016_j_biomaterials_2021_121209 crossref_primary_10_1016_j_ijbiomac_2024_129311 crossref_primary_10_1002_adhm_201801184 crossref_primary_10_3390_pharmaceutics17020248 crossref_primary_10_1186_s12951_024_02478_5 crossref_primary_10_1007_s11095_021_03081_1 crossref_primary_10_1021_acsnano_1c06410 crossref_primary_10_1136_heartjnl_2017_312324 crossref_primary_10_1007_s11357_024_01068_5 crossref_primary_10_1039_D2TB02709G crossref_primary_10_1038_s41569_018_0097_6 crossref_primary_10_1016_j_ymthe_2017_05_020 crossref_primary_10_1186_s12951_019_0554_3 crossref_primary_10_3390_biom14070786 crossref_primary_10_1111_obr_13403 crossref_primary_10_1165_rcmb_2016_0243OC crossref_primary_10_1210_endrev_bnab034 crossref_primary_10_15420_aer_2018_76_2 crossref_primary_10_1016_j_tem_2019_04_004 crossref_primary_10_1039_C7CS00877E crossref_primary_10_1007_s11695_020_04580_7 crossref_primary_10_3389_fcvm_2020_00091 crossref_primary_10_1007_s40200_023_01332_z crossref_primary_10_4103_pm_pm_175_20 crossref_primary_10_1172_jci_insight_135448 crossref_primary_10_2174_1389200221666200103091753 crossref_primary_10_1016_j_jconrel_2021_03_034 crossref_primary_10_1016_j_nantod_2024_102553 crossref_primary_10_1002_adfm_202404179 crossref_primary_10_1016_j_foodchem_2023_135980 crossref_primary_10_15252_embj_2021110439 crossref_primary_10_1016_j_envpol_2023_121478 crossref_primary_10_3390_ma11101845 crossref_primary_10_1002_adma_202207686 crossref_primary_10_1038_s41467_024_54669_1 crossref_primary_10_1093_nutrit_nuae136 crossref_primary_10_1073_pnas_2016268117 crossref_primary_10_1021_acsami_8b06094 crossref_primary_10_1111_bph_13732 crossref_primary_10_1016_j_semcancer_2024_01_003 crossref_primary_10_1155_2020_7502578 |
Cites_doi | 10.1038/nrd2683 10.1021/nn900002m 10.1126/scitranslmed.3003651 10.1056/NEJMp1211277 10.1074/jbc.M305235200 10.1038/nm.3017 10.1073/pnas.162349799 10.1038/nm1048 10.1101/cshperspect.a006478 10.1161/01.RES.0000132745.76882.70 10.1126/science.1183057 10.1038/nm0195-27 10.1152/ajpendo.00691.2006 10.1016/j.bbagen.2009.11.015 10.1016/j.cmet.2008.11.009 10.1016/S0140-6736(10)62037-5 10.1038/nm.2575 10.1152/ajpendo.90345.2008 10.1056/NEJMoa0808949 10.1038/ng1225 10.1016/j.addr.2012.08.005 10.1016/0006-2952(96)00345-0 10.1038/459340a 10.1126/scitranslmed.3002621 10.1016/j.ccr.2009.10.013 10.1371/journal.pone.0011391 10.1172/JCI32239 10.1016/j.cmet.2010.02.001 10.1039/c2cs15344k 10.1038/nrd3055 10.1038/nature11132 10.3389/fonc.2013.00216 10.1172/JCI0215634 10.2147/DMSO.S56924 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences May 17, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences May 17, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1603840113 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Preventing diet-induced obesity using nanoparticle |
EISSN | 1091-6490 |
EndPage | 5557 |
ExternalDocumentID | PMC4878518 4076818821 27140638 10_1073_pnas_1603840113 26469889 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: F32 CA168163 – fundername: NIBIB NIH HHS grantid: R01 EB015419 – fundername: NIBIB NIH HHS grantid: R01 EB006365 – fundername: NIBIB NIH HHS grantid: R01 EB016101 – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: EB015419 – fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB) grantid: EB016101-01A1 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: 1F32CA168163-03 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX AFOSN CITATION CGR CUY CVF DOOOF ECM EIF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c509t-85813d618fb4c839f40662ce8d3b6b92765e9e9ddb76d3d6a4dd3c8ae7a56413 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:01:18 EDT 2025 Mon Jun 30 08:00:47 EDT 2025 Wed Feb 19 02:04:22 EST 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 03:19:14 EDT 2025 Sun Aug 24 12:10:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | adipose tissue nanoparticle targeting transformation angiogenesis |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-85813d618fb4c839f40662ce8d3b6b92765e9e9ddb76d3d6a4dd3c8ae7a56413 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 Reviewers: S.J., Korea Advanced Institute of Science and Technology; and L.Z., University of California, San Diego. Contributed by Robert Langer, March 28, 2016 (sent for review January 12, 2016; reviewed by and Sangyong Jon and Liangfang Zhang) 1Y.X. and X.X. contributed equally to this work. Author contributions: Y.X., X.X., X.-Q.Z., O.C.F., and R.L. designed research; Y.X., X.X., and X.-Q.Z. performed research; Y.X., X.X., X.-Q.Z., O.C.F., and R.L. analyzed data; and Y.X., X.X., X.-Q.Z., O.C.F., and R.L. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/113/20/5552.full.pdf |
PMID | 27140638 |
PQID | 1793611281 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878518 proquest_journals_1793611281 pubmed_primary_27140638 crossref_citationtrail_10_1073_pnas_1603840113 crossref_primary_10_1073_pnas_1603840113 jstor_primary_26469889 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-17 |
PublicationDateYYYYMMDD | 2016-05-17 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 23986882 - Front Oncol. 2013 Aug 27;3:216 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52 12807871 - J Biol Chem. 2003 Aug 29;278(35):33370-6 19458707 - Nature. 2009 May 21;459(7245):340-2 22388185 - Chem Soc Rev. 2012 Apr 7;41(7):2971-3010 20118961 - Nat Rev Drug Discov. 2010 Feb;9(2):107-15 15133506 - Nat Med. 2004 Jun;10(6):625-32 19206243 - ACS Nano. 2009 Jan 27;3(1):16-20 12370270 - J Clin Invest. 2002 Oct;110(7):923-32 8765467 - Biochem Pharmacol. 1996 Sep 13;52(5):693-701 22229119 - Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006478 22722857 - Nature. 2012 Jun 28;486(7404):549-53 20378772 - Science. 2010 May 21;328(5981):1031-5 19962669 - Cancer Cell. 2009 Dec 8;16(6):510-20 15155527 - Circ Res. 2004 Jun 25;94(12):1579-88 22917779 - Adv Drug Deliv Rev. 2012 Oct;64(13):1363-84 22072637 - Sci Transl Med. 2011 Nov 9;3(108):108ra112 24611021 - Diabetes Metab Syndr Obes. 2014 Feb 28;7:73-84 20197053 - Cell Metab. 2010 Mar 3;11(3):206-12 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25 12910269 - Nat Genet. 2003 Sep;35(1):49-56 19961899 - Biochim Biophys Acta. 2010 Apr;1800(4):425-9 23603813 - Nat Med. 2013 May;19(5):631-4 19180105 - Nat Rev Drug Discov. 2009 Feb;8(2):111-28 20613988 - PLoS One. 2010;5(6):e11391 17786229 - J Clin Invest. 2007 Sep;117(9):2362-8 22138754 - Nat Med. 2012 Jan;18(1):100-10 23050510 - N Engl J Med. 2012 Oct 25;367(17):1577-9 19117550 - Cell Metab. 2009 Jan 7;9(1):99-109 12149466 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10730-5 7584949 - Nat Med. 1995 Jan;1(1):27-31 21295846 - Lancet. 2011 Feb 12;377(9765):557-67 22491949 - Sci Transl Med. 2012 Apr 4;4(128):128ra39 18728224 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1056-64 |
References_xml | – ident: e_1_3_3_33_2 doi: 10.1038/nrd2683 – ident: e_1_3_3_27_2 doi: 10.1021/nn900002m – ident: e_1_3_3_13_2 doi: 10.1126/scitranslmed.3003651 – ident: e_1_3_3_9_2 doi: 10.1056/NEJMp1211277 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M305235200 – ident: e_1_3_3_26_2 doi: 10.1038/nm.3017 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.162349799 – ident: e_1_3_3_20_2 doi: 10.1038/nm1048 – ident: e_1_3_3_22_2 doi: 10.1101/cshperspect.a006478 – ident: e_1_3_3_5_2 doi: 10.1161/01.RES.0000132745.76882.70 – ident: e_1_3_3_30_2 doi: 10.1126/science.1183057 – ident: e_1_3_3_1_2 doi: 10.1038/nm0195-27 – ident: e_1_3_3_11_2 doi: 10.1152/ajpendo.00691.2006 – ident: e_1_3_3_25_2 doi: 10.1016/j.bbagen.2009.11.015 – ident: e_1_3_3_6_2 doi: 10.1016/j.cmet.2008.11.009 – ident: e_1_3_3_7_2 doi: 10.1016/S0140-6736(10)62037-5 – ident: e_1_3_3_34_2 doi: 10.1038/nm.2575 – ident: e_1_3_3_15_2 doi: 10.1152/ajpendo.90345.2008 – ident: e_1_3_3_12_2 doi: 10.1056/NEJMoa0808949 – ident: e_1_3_3_23_2 doi: 10.1038/ng1225 – ident: e_1_3_3_29_2 doi: 10.1016/j.addr.2012.08.005 – ident: e_1_3_3_14_2 doi: 10.1016/0006-2952(96)00345-0 – ident: e_1_3_3_8_2 doi: 10.1038/459340a – ident: e_1_3_3_10_2 doi: 10.1126/scitranslmed.3002621 – ident: e_1_3_3_18_2 doi: 10.1016/j.ccr.2009.10.013 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pone.0011391 – ident: e_1_3_3_2_2 doi: 10.1172/JCI32239 – ident: e_1_3_3_32_2 doi: 10.1016/j.cmet.2010.02.001 – ident: e_1_3_3_28_2 doi: 10.1039/c2cs15344k – ident: e_1_3_3_4_2 doi: 10.1038/nrd3055 – ident: e_1_3_3_16_2 doi: 10.1038/nature11132 – ident: e_1_3_3_19_2 doi: 10.3389/fonc.2013.00216 – ident: e_1_3_3_31_2 doi: 10.1172/JCI0215634 – ident: e_1_3_3_24_2 doi: 10.2147/DMSO.S56924 – reference: 23603813 - Nat Med. 2013 May;19(5):631-4 – reference: 15155527 - Circ Res. 2004 Jun 25;94(12):1579-88 – reference: 20378772 - Science. 2010 May 21;328(5981):1031-5 – reference: 12910269 - Nat Genet. 2003 Sep;35(1):49-56 – reference: 12807871 - J Biol Chem. 2003 Aug 29;278(35):33370-6 – reference: 21295846 - Lancet. 2011 Feb 12;377(9765):557-67 – reference: 8765467 - Biochem Pharmacol. 1996 Sep 13;52(5):693-701 – reference: 22491949 - Sci Transl Med. 2012 Apr 4;4(128):128ra39 – reference: 23986882 - Front Oncol. 2013 Aug 27;3:216 – reference: 19962669 - Cancer Cell. 2009 Dec 8;16(6):510-20 – reference: 19206243 - ACS Nano. 2009 Jan 27;3(1):16-20 – reference: 20118961 - Nat Rev Drug Discov. 2010 Feb;9(2):107-15 – reference: 22229119 - Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006478 – reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25 – reference: 19961899 - Biochim Biophys Acta. 2010 Apr;1800(4):425-9 – reference: 24611021 - Diabetes Metab Syndr Obes. 2014 Feb 28;7:73-84 – reference: 22072637 - Sci Transl Med. 2011 Nov 9;3(108):108ra112 – reference: 22722857 - Nature. 2012 Jun 28;486(7404):549-53 – reference: 19117550 - Cell Metab. 2009 Jan 7;9(1):99-109 – reference: 7584949 - Nat Med. 1995 Jan;1(1):27-31 – reference: 22388185 - Chem Soc Rev. 2012 Apr 7;41(7):2971-3010 – reference: 22917779 - Adv Drug Deliv Rev. 2012 Oct;64(13):1363-84 – reference: 18728224 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1056-64 – reference: 17786229 - J Clin Invest. 2007 Sep;117(9):2362-8 – reference: 20197053 - Cell Metab. 2010 Mar 3;11(3):206-12 – reference: 19180105 - Nat Rev Drug Discov. 2009 Feb;8(2):111-28 – reference: 12149466 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10730-5 – reference: 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52 – reference: 15133506 - Nat Med. 2004 Jun;10(6):625-32 – reference: 20613988 - PLoS One. 2010;5(6):e11391 – reference: 12370270 - J Clin Invest. 2002 Oct;110(7):923-32 – reference: 22138754 - Nat Med. 2012 Jan;18(1):100-10 – reference: 19458707 - Nature. 2009 May 21;459(7245):340-2 – reference: 23050510 - N Engl J Med. 2012 Oct 25;367(17):1577-9 |
SSID | ssj0009580 |
Score | 2.5479605 |
Snippet | The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related... Obesity has been recognized by the American Medical Association to be a disease affecting significant portions of the population and is related to an expansion... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5552 |
SubjectTerms | 16,16-Dimethylprostaglandin E2 - administration & dosage Adipose tissue Adipose Tissue, Brown - metabolism Adipose Tissue, White - blood supply Angiogenesis Animals Biodegradation Biological Sciences Body weight Carbohydrate Metabolism Diet Drug Delivery Systems Lipid Metabolism Male Metabolic disorders Mice Mice, Inbred C57BL Nanomedicine Nanoparticles Nanoparticles - administration & dosage Neovascularization, Physiologic Obesity Obesity - prevention & control Physical Sciences Polymers Thiazolidinediones - administration & dosage Weight control |
Title | Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles |
URI | https://www.jstor.org/stable/26469889 https://www.ncbi.nlm.nih.gov/pubmed/27140638 https://www.proquest.com/docview/1793611281 https://pubmed.ncbi.nlm.nih.gov/PMC4878518 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuHBBDBgUBvKBw1CV0iS24xyniWlCogypSOVUObG7RYN0WhOk7e_jD-O92EmcqZOAS9Q4thX5_fq-8j4IeYfAYBmPArZSHC5THsAdKHKx1jHXoUibLP7PM3H6jX1a8MXOzm8vaqmuskl-uzWv5H-oCmNAV8yS_QfKdpvCAPwG-sIVKAzXv6JxW38JrH1dmCoA-7rG7_lrW-0ffRnYbR5VTKWLKwxNr5qDxs4Qnb7q4pFVeV6sz5H1FZtx3bgQbJg4BgioEoxrF0Pn67NnnfzbtNEGs9a9eNQnqzgOshkH47NZ3_p4UTfu1O91D9FFjSOLQq1vlBOqvlsbVgRfi_7BibpeX17cWpx--Vno8fHEd2SEAr_B27xNvw741rfzOXgEUpXZvOuJsUwbdJ5AMNt2tOPqNsXVwTeaekyac1s01wl8uE22ChPgftgBuVQb9MHFYAq3mw4rdINOKVIp0wfkYQTGStSIB7_0s7SJUO7N2wJTSfzhzt4D3ciGx24zfO7G73oK0fwJeewsGXpkUbFHdkz5lOy1Z0kPXUHz98_Irx6n1McpdTilRUkRpzS7oQ6n1OKUDnFKAafUxyltcEpbnNIBTp-T-cnH-fFp4Pp9BDmorVUguQxjLUK5ylgOivuKYXuC3EgdZyJLo0Rwk5pU6ywRGiYqBvwkl8okigtQxvbJbrkuzUtCNU8yMB0imaw4S42WDPY2kVTTFQgsGY7IpD3oZe5q4WNLlh_LJiYjiZdImWVPmRE57BZc2TIw90_dbyjXzWvhMSIHLSmXjonAOpCPIsTP2SPywlK1X4jFNEE-jkgyoHc3AUvDD5-UxUVTIp7JBEwp-eq-d3lNHvV_wQOyW13X5g1o11X2tgHvH_nr1SY |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preventing+diet-induced+obesity+in+mice+by+adipose+tissue+transformation+and+angiogenesis+using+targeted+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Xue%2C+Yuan&rft.au=Xu%2C+Xiaoyang&rft.au=Zhang%2C+Xue-Qing&rft.au=Farokhzad%2C+Omid+C.&rft.date=2016-05-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=20&rft.spage=5552&rft.epage=5557&rft_id=info:doi/10.1073%2Fpnas.1603840113&rft.externalDocID=26469889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |