Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles

The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vascu...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 20; pp. 5552 - 5557
Main Authors Xue, Yuan, Xu, Xiaoyang, Zhang, Xue-Qing, Farokhzad, Omid C., Langer, Robert
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases.
AbstractList Obesity has been recognized by the American Medical Association to be a disease affecting significant portions of the population and is related to an expansion and proliferation of white adipose tissue (WAT) in the body. The primary function of WAT is to store energy, whereas brown adipose tissue (BAT) generates heat through energy expenditure. Transforming WAT into BAT is of tremendous interest for obesity treatment. Herein, we describe a targeted nanoparticle approach encapsulating either a PPARgamma activator or a prostaglandin E2 analog, each of which induces adipose tissue transformation and angiogenesis, facilitating the transformation of WAT into BAT. Targeted nanoparticles show antiobesity effects compared with free drug and the nontargeted nanoparticle controls in a mouse model. The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)- b -poly(ethylene glycol) (PLGA- b -PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases.
The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases.
Author Xue, Yuan
Farokhzad, Omid C.
Xu, Xiaoyang
Zhang, Xue-Qing
Langer, Robert
Author_xml – sequence: 1
  givenname: Yuan
  surname: Xue
  fullname: Xue, Yuan
  organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
– sequence: 2
  givenname: Xiaoyang
  surname: Xu
  fullname: Xu, Xiaoyang
  organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
– sequence: 3
  givenname: Xue-Qing
  surname: Zhang
  fullname: Zhang, Xue-Qing
  organization: Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 4
  givenname: Omid C.
  surname: Farokhzad
  fullname: Farokhzad, Omid C.
  organization: Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– sequence: 5
  givenname: Robert
  surname: Langer
  fullname: Langer, Robert
  organization: The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27140638$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v3CAQxVGVqtkkPffUCqlnJ2AwhkulKuqXFKk55I4wjF1Wu-ACXmn_-7DdpGkj5YDmwLzfm5l3hk5CDIDQO0ouKenZ1RxMvqSCMMkJpewVWlGiaCO4IidoRUjbN5K3_BSd5bwmhKhOkjfotO0pJ4LJFdrdJthBKD5M2HkojQ9useBwHCD7ssc-4K23gIc9Ns7PMQMuPuellmRCHmPamuJjwCa4-iYfJwhVmvGSD9Bi0gSlAoMJcTapeLuBfIFej2aT4e1DPUd3X7_cXX9vbn5--3H9-aaxHVGlkZ2kzAkqx4FbydRYpxatBenYIAbV9qIDBcq5oReuNhruHLPSQG86wSk7R5-O2HkZtuBsXTSZjZ6T35q019F4_f9P8L_0FHeay152VFbAxwdAir8XyEWv45JCHVnTXjFBaSsPNh_-tfnLfzxzbeiODTbFnBOM2vry52zV1W80JfoQpz7EqZ_irLqrZ7pH9MuK90fFOpeYniYRXCgpFbsH_y-v-w
CitedBy_id crossref_primary_10_1210_er_2017_00163
crossref_primary_10_1152_ajpendo_00084_2023
crossref_primary_10_3390_nu14183774
crossref_primary_10_1080_09506608_2022_2040293
crossref_primary_10_1038_s41598_021_88959_1
crossref_primary_10_1016_j_cmet_2018_06_007
crossref_primary_10_1016_j_dsx_2019_03_002
crossref_primary_10_1016_j_ymthe_2020_09_029
crossref_primary_10_1016_j_bbrc_2018_08_197
crossref_primary_10_1039_D0CB00022A
crossref_primary_10_1016_j_nantod_2022_101541
crossref_primary_10_1002_advs_202000542
crossref_primary_10_1016_j_biomaterials_2024_122687
crossref_primary_10_1007_s10456_022_09848_3
crossref_primary_10_1038_s41598_022_25819_6
crossref_primary_10_1155_2016_2365609
crossref_primary_10_3390_pharmaceutics15112635
crossref_primary_10_1186_s12906_019_2640_3
crossref_primary_10_3389_fphys_2019_00038
crossref_primary_10_1007_s11695_019_04295_4
crossref_primary_10_1016_j_pacs_2024_100628
crossref_primary_10_1002_mabi_202300312
crossref_primary_10_1016_j_gtc_2016_07_008
crossref_primary_10_1016_j_biopha_2020_110103
crossref_primary_10_1039_D1BM01127H
crossref_primary_10_1007_s11427_017_9257_1
crossref_primary_10_1160_TH17_05_0325
crossref_primary_10_1021_acs_jafc_1c01130
crossref_primary_10_7554_eLife_24071
crossref_primary_10_1002_smll_202002872
crossref_primary_10_1002_sstr_202000097
crossref_primary_10_3389_fimmu_2021_713989
crossref_primary_10_1016_j_colsurfa_2019_03_063
crossref_primary_10_3390_pharmaceutics13081279
crossref_primary_10_1002_ptr_8083
crossref_primary_10_1016_j_biomaterials_2021_121183
crossref_primary_10_1016_j_bbrc_2018_06_043
crossref_primary_10_1038_s41427_019_0133_y
crossref_primary_10_3389_fcvm_2017_00051
crossref_primary_10_20517_jca_2024_01
crossref_primary_10_1007_s11154_023_09850_0
crossref_primary_10_3989_mc_2019_05418
crossref_primary_10_1016_j_jddst_2021_102672
crossref_primary_10_1111_bph_13666
crossref_primary_10_1002_adhm_201801655
crossref_primary_10_1016_j_jconrel_2020_10_002
crossref_primary_10_1002_ptr_8400
crossref_primary_10_1021_acsnano_4c10742
crossref_primary_10_1016_j_jconrel_2022_03_014
crossref_primary_10_1016_j_lfs_2019_01_037
crossref_primary_10_1021_acsnano_7b04348
crossref_primary_10_1146_annurev_pathol_042220_023633
crossref_primary_10_1002_adhm_202403162
crossref_primary_10_1016_j_jconrel_2017_06_013
crossref_primary_10_1016_j_jconrel_2023_02_007
crossref_primary_10_1080_87559129_2021_1923730
crossref_primary_10_1002_adfm_202011130
crossref_primary_10_1016_j_ijpharm_2020_119357
crossref_primary_10_1371_journal_pone_0224917
crossref_primary_10_1016_j_tem_2018_09_003
crossref_primary_10_1021_acsnano_4c00403
crossref_primary_10_1002_ptr_8065
crossref_primary_10_1016_j_actbio_2022_08_055
crossref_primary_10_1016_j_biopha_2020_111103
crossref_primary_10_1016_j_tem_2019_09_004
crossref_primary_10_3389_fmolb_2024_1322687
crossref_primary_10_2337_dbi20_0036
crossref_primary_10_1017_S1751731117002981
crossref_primary_10_1126_sciadv_aat2953
crossref_primary_10_1016_j_biomaterials_2019_119474
crossref_primary_10_3390_ijms22137177
crossref_primary_10_1016_j_addr_2021_114110
crossref_primary_10_1038_emm_2017_70
crossref_primary_10_1038_s41574_021_00562_6
crossref_primary_10_1080_17425247_2018_1449831
crossref_primary_10_1021_acsbiomaterials_0c01181
crossref_primary_10_1016_j_biomaterials_2021_121209
crossref_primary_10_1016_j_ijbiomac_2024_129311
crossref_primary_10_1002_adhm_201801184
crossref_primary_10_3390_pharmaceutics17020248
crossref_primary_10_1186_s12951_024_02478_5
crossref_primary_10_1007_s11095_021_03081_1
crossref_primary_10_1021_acsnano_1c06410
crossref_primary_10_1136_heartjnl_2017_312324
crossref_primary_10_1007_s11357_024_01068_5
crossref_primary_10_1039_D2TB02709G
crossref_primary_10_1038_s41569_018_0097_6
crossref_primary_10_1016_j_ymthe_2017_05_020
crossref_primary_10_1186_s12951_019_0554_3
crossref_primary_10_3390_biom14070786
crossref_primary_10_1111_obr_13403
crossref_primary_10_1165_rcmb_2016_0243OC
crossref_primary_10_1210_endrev_bnab034
crossref_primary_10_15420_aer_2018_76_2
crossref_primary_10_1016_j_tem_2019_04_004
crossref_primary_10_1039_C7CS00877E
crossref_primary_10_1007_s11695_020_04580_7
crossref_primary_10_3389_fcvm_2020_00091
crossref_primary_10_1007_s40200_023_01332_z
crossref_primary_10_4103_pm_pm_175_20
crossref_primary_10_1172_jci_insight_135448
crossref_primary_10_2174_1389200221666200103091753
crossref_primary_10_1016_j_jconrel_2021_03_034
crossref_primary_10_1016_j_nantod_2024_102553
crossref_primary_10_1002_adfm_202404179
crossref_primary_10_1016_j_foodchem_2023_135980
crossref_primary_10_15252_embj_2021110439
crossref_primary_10_1016_j_envpol_2023_121478
crossref_primary_10_3390_ma11101845
crossref_primary_10_1002_adma_202207686
crossref_primary_10_1038_s41467_024_54669_1
crossref_primary_10_1093_nutrit_nuae136
crossref_primary_10_1073_pnas_2016268117
crossref_primary_10_1021_acsami_8b06094
crossref_primary_10_1111_bph_13732
crossref_primary_10_1016_j_semcancer_2024_01_003
crossref_primary_10_1155_2020_7502578
Cites_doi 10.1038/nrd2683
10.1021/nn900002m
10.1126/scitranslmed.3003651
10.1056/NEJMp1211277
10.1074/jbc.M305235200
10.1038/nm.3017
10.1073/pnas.162349799
10.1038/nm1048
10.1101/cshperspect.a006478
10.1161/01.RES.0000132745.76882.70
10.1126/science.1183057
10.1038/nm0195-27
10.1152/ajpendo.00691.2006
10.1016/j.bbagen.2009.11.015
10.1016/j.cmet.2008.11.009
10.1016/S0140-6736(10)62037-5
10.1038/nm.2575
10.1152/ajpendo.90345.2008
10.1056/NEJMoa0808949
10.1038/ng1225
10.1016/j.addr.2012.08.005
10.1016/0006-2952(96)00345-0
10.1038/459340a
10.1126/scitranslmed.3002621
10.1016/j.ccr.2009.10.013
10.1371/journal.pone.0011391
10.1172/JCI32239
10.1016/j.cmet.2010.02.001
10.1039/c2cs15344k
10.1038/nrd3055
10.1038/nature11132
10.3389/fonc.2013.00216
10.1172/JCI0215634
10.2147/DMSO.S56924
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences May 17, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences May 17, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1603840113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
CrossRef

Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Preventing diet-induced obesity using nanoparticle
EISSN 1091-6490
EndPage 5557
ExternalDocumentID PMC4878518
4076818821
27140638
10_1073_pnas_1603840113
26469889
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: F32 CA168163
– fundername: NIBIB NIH HHS
  grantid: R01 EB015419
– fundername: NIBIB NIH HHS
  grantid: R01 EB006365
– fundername: NIBIB NIH HHS
  grantid: R01 EB016101
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: EB015419
– fundername: HHS | NIH | National Institute of Biomedical Imaging and Bioengineering (NIBIB)
  grantid: EB016101-01A1
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: 1F32CA168163-03
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
AFOSN
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c509t-85813d618fb4c839f40662ce8d3b6b92765e9e9ddb76d3d6a4dd3c8ae7a56413
ISSN 0027-8424
IngestDate Thu Aug 21 18:01:18 EDT 2025
Mon Jun 30 08:00:47 EDT 2025
Wed Feb 19 02:04:22 EST 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 03:19:14 EDT 2025
Sun Aug 24 12:10:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords adipose tissue
nanoparticle
targeting
transformation
angiogenesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-85813d618fb4c839f40662ce8d3b6b92765e9e9ddb76d3d6a4dd3c8ae7a56413
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
Reviewers: S.J., Korea Advanced Institute of Science and Technology; and L.Z., University of California, San Diego.
Contributed by Robert Langer, March 28, 2016 (sent for review January 12, 2016; reviewed by and Sangyong Jon and Liangfang Zhang)
1Y.X. and X.X. contributed equally to this work.
Author contributions: Y.X., X.X., X.-Q.Z., O.C.F., and R.L. designed research; Y.X., X.X., and X.-Q.Z. performed research; Y.X., X.X., X.-Q.Z., O.C.F., and R.L. analyzed data; and Y.X., X.X., X.-Q.Z., O.C.F., and R.L. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/113/20/5552.full.pdf
PMID 27140638
PQID 1793611281
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4878518
proquest_journals_1793611281
pubmed_primary_27140638
crossref_citationtrail_10_1073_pnas_1603840113
crossref_primary_10_1073_pnas_1603840113
jstor_primary_26469889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-17
PublicationDateYYYYMMDD 2016-05-17
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
23986882 - Front Oncol. 2013 Aug 27;3:216
17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52
12807871 - J Biol Chem. 2003 Aug 29;278(35):33370-6
19458707 - Nature. 2009 May 21;459(7245):340-2
22388185 - Chem Soc Rev. 2012 Apr 7;41(7):2971-3010
20118961 - Nat Rev Drug Discov. 2010 Feb;9(2):107-15
15133506 - Nat Med. 2004 Jun;10(6):625-32
19206243 - ACS Nano. 2009 Jan 27;3(1):16-20
12370270 - J Clin Invest. 2002 Oct;110(7):923-32
8765467 - Biochem Pharmacol. 1996 Sep 13;52(5):693-701
22229119 - Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006478
22722857 - Nature. 2012 Jun 28;486(7404):549-53
20378772 - Science. 2010 May 21;328(5981):1031-5
19962669 - Cancer Cell. 2009 Dec 8;16(6):510-20
15155527 - Circ Res. 2004 Jun 25;94(12):1579-88
22917779 - Adv Drug Deliv Rev. 2012 Oct;64(13):1363-84
22072637 - Sci Transl Med. 2011 Nov 9;3(108):108ra112
24611021 - Diabetes Metab Syndr Obes. 2014 Feb 28;7:73-84
20197053 - Cell Metab. 2010 Mar 3;11(3):206-12
19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
12910269 - Nat Genet. 2003 Sep;35(1):49-56
19961899 - Biochim Biophys Acta. 2010 Apr;1800(4):425-9
23603813 - Nat Med. 2013 May;19(5):631-4
19180105 - Nat Rev Drug Discov. 2009 Feb;8(2):111-28
20613988 - PLoS One. 2010;5(6):e11391
17786229 - J Clin Invest. 2007 Sep;117(9):2362-8
22138754 - Nat Med. 2012 Jan;18(1):100-10
23050510 - N Engl J Med. 2012 Oct 25;367(17):1577-9
19117550 - Cell Metab. 2009 Jan 7;9(1):99-109
12149466 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10730-5
7584949 - Nat Med. 1995 Jan;1(1):27-31
21295846 - Lancet. 2011 Feb 12;377(9765):557-67
22491949 - Sci Transl Med. 2012 Apr 4;4(128):128ra39
18728224 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1056-64
References_xml – ident: e_1_3_3_33_2
  doi: 10.1038/nrd2683
– ident: e_1_3_3_27_2
  doi: 10.1021/nn900002m
– ident: e_1_3_3_13_2
  doi: 10.1126/scitranslmed.3003651
– ident: e_1_3_3_9_2
  doi: 10.1056/NEJMp1211277
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M305235200
– ident: e_1_3_3_26_2
  doi: 10.1038/nm.3017
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.162349799
– ident: e_1_3_3_20_2
  doi: 10.1038/nm1048
– ident: e_1_3_3_22_2
  doi: 10.1101/cshperspect.a006478
– ident: e_1_3_3_5_2
  doi: 10.1161/01.RES.0000132745.76882.70
– ident: e_1_3_3_30_2
  doi: 10.1126/science.1183057
– ident: e_1_3_3_1_2
  doi: 10.1038/nm0195-27
– ident: e_1_3_3_11_2
  doi: 10.1152/ajpendo.00691.2006
– ident: e_1_3_3_25_2
  doi: 10.1016/j.bbagen.2009.11.015
– ident: e_1_3_3_6_2
  doi: 10.1016/j.cmet.2008.11.009
– ident: e_1_3_3_7_2
  doi: 10.1016/S0140-6736(10)62037-5
– ident: e_1_3_3_34_2
  doi: 10.1038/nm.2575
– ident: e_1_3_3_15_2
  doi: 10.1152/ajpendo.90345.2008
– ident: e_1_3_3_12_2
  doi: 10.1056/NEJMoa0808949
– ident: e_1_3_3_23_2
  doi: 10.1038/ng1225
– ident: e_1_3_3_29_2
  doi: 10.1016/j.addr.2012.08.005
– ident: e_1_3_3_14_2
  doi: 10.1016/0006-2952(96)00345-0
– ident: e_1_3_3_8_2
  doi: 10.1038/459340a
– ident: e_1_3_3_10_2
  doi: 10.1126/scitranslmed.3002621
– ident: e_1_3_3_18_2
  doi: 10.1016/j.ccr.2009.10.013
– ident: e_1_3_3_17_2
  doi: 10.1371/journal.pone.0011391
– ident: e_1_3_3_2_2
  doi: 10.1172/JCI32239
– ident: e_1_3_3_32_2
  doi: 10.1016/j.cmet.2010.02.001
– ident: e_1_3_3_28_2
  doi: 10.1039/c2cs15344k
– ident: e_1_3_3_4_2
  doi: 10.1038/nrd3055
– ident: e_1_3_3_16_2
  doi: 10.1038/nature11132
– ident: e_1_3_3_19_2
  doi: 10.3389/fonc.2013.00216
– ident: e_1_3_3_31_2
  doi: 10.1172/JCI0215634
– ident: e_1_3_3_24_2
  doi: 10.2147/DMSO.S56924
– reference: 23603813 - Nat Med. 2013 May;19(5):631-4
– reference: 15155527 - Circ Res. 2004 Jun 25;94(12):1579-88
– reference: 20378772 - Science. 2010 May 21;328(5981):1031-5
– reference: 12910269 - Nat Genet. 2003 Sep;35(1):49-56
– reference: 12807871 - J Biol Chem. 2003 Aug 29;278(35):33370-6
– reference: 21295846 - Lancet. 2011 Feb 12;377(9765):557-67
– reference: 8765467 - Biochem Pharmacol. 1996 Sep 13;52(5):693-701
– reference: 22491949 - Sci Transl Med. 2012 Apr 4;4(128):128ra39
– reference: 23986882 - Front Oncol. 2013 Aug 27;3:216
– reference: 19962669 - Cancer Cell. 2009 Dec 8;16(6):510-20
– reference: 19206243 - ACS Nano. 2009 Jan 27;3(1):16-20
– reference: 20118961 - Nat Rev Drug Discov. 2010 Feb;9(2):107-15
– reference: 22229119 - Cold Spring Harb Perspect Med. 2011 Sep;1(1):a006478
– reference: 19357407 - N Engl J Med. 2009 Apr 9;360(15):1518-25
– reference: 19961899 - Biochim Biophys Acta. 2010 Apr;1800(4):425-9
– reference: 24611021 - Diabetes Metab Syndr Obes. 2014 Feb 28;7:73-84
– reference: 22072637 - Sci Transl Med. 2011 Nov 9;3(108):108ra112
– reference: 22722857 - Nature. 2012 Jun 28;486(7404):549-53
– reference: 19117550 - Cell Metab. 2009 Jan 7;9(1):99-109
– reference: 7584949 - Nat Med. 1995 Jan;1(1):27-31
– reference: 22388185 - Chem Soc Rev. 2012 Apr 7;41(7):2971-3010
– reference: 22917779 - Adv Drug Deliv Rev. 2012 Oct;64(13):1363-84
– reference: 18728224 - Am J Physiol Endocrinol Metab. 2008 Nov;295(5):E1056-64
– reference: 17786229 - J Clin Invest. 2007 Sep;117(9):2362-8
– reference: 20197053 - Cell Metab. 2010 Mar 3;11(3):206-12
– reference: 19180105 - Nat Rev Drug Discov. 2009 Feb;8(2):111-28
– reference: 12149466 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10730-5
– reference: 17473055 - Am J Physiol Endocrinol Metab. 2007 Aug;293(2):E444-52
– reference: 15133506 - Nat Med. 2004 Jun;10(6):625-32
– reference: 20613988 - PLoS One. 2010;5(6):e11391
– reference: 12370270 - J Clin Invest. 2002 Oct;110(7):923-32
– reference: 22138754 - Nat Med. 2012 Jan;18(1):100-10
– reference: 19458707 - Nature. 2009 May 21;459(7245):340-2
– reference: 23050510 - N Engl J Med. 2012 Oct 25;367(17):1577-9
SSID ssj0009580
Score 2.5479605
Snippet The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related...
Obesity has been recognized by the American Medical Association to be a disease affecting significant portions of the population and is related to an expansion...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5552
SubjectTerms 16,16-Dimethylprostaglandin E2 - administration & dosage
Adipose tissue
Adipose Tissue, Brown - metabolism
Adipose Tissue, White - blood supply
Angiogenesis
Animals
Biodegradation
Biological Sciences
Body weight
Carbohydrate Metabolism
Diet
Drug Delivery Systems
Lipid Metabolism
Male
Metabolic disorders
Mice
Mice, Inbred C57BL
Nanomedicine
Nanoparticles
Nanoparticles - administration & dosage
Neovascularization, Physiologic
Obesity
Obesity - prevention & control
Physical Sciences
Polymers
Thiazolidinediones - administration & dosage
Weight control
Title Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles
URI https://www.jstor.org/stable/26469889
https://www.ncbi.nlm.nih.gov/pubmed/27140638
https://www.proquest.com/docview/1793611281
https://pubmed.ncbi.nlm.nih.gov/PMC4878518
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGuHBBDBgUBvKBw1CV0iS24xyniWlCogypSOVUObG7RYN0WhOk7e_jD-O92EmcqZOAS9Q4thX5_fq-8j4IeYfAYBmPArZSHC5THsAdKHKx1jHXoUibLP7PM3H6jX1a8MXOzm8vaqmuskl-uzWv5H-oCmNAV8yS_QfKdpvCAPwG-sIVKAzXv6JxW38JrH1dmCoA-7rG7_lrW-0ffRnYbR5VTKWLKwxNr5qDxs4Qnb7q4pFVeV6sz5H1FZtx3bgQbJg4BgioEoxrF0Pn67NnnfzbtNEGs9a9eNQnqzgOshkH47NZ3_p4UTfu1O91D9FFjSOLQq1vlBOqvlsbVgRfi_7BibpeX17cWpx--Vno8fHEd2SEAr_B27xNvw741rfzOXgEUpXZvOuJsUwbdJ5AMNt2tOPqNsXVwTeaekyac1s01wl8uE22ChPgftgBuVQb9MHFYAq3mw4rdINOKVIp0wfkYQTGStSIB7_0s7SJUO7N2wJTSfzhzt4D3ciGx24zfO7G73oK0fwJeewsGXpkUbFHdkz5lOy1Z0kPXUHz98_Irx6n1McpdTilRUkRpzS7oQ6n1OKUDnFKAafUxyltcEpbnNIBTp-T-cnH-fFp4Pp9BDmorVUguQxjLUK5ylgOivuKYXuC3EgdZyJLo0Rwk5pU6ywRGiYqBvwkl8okigtQxvbJbrkuzUtCNU8yMB0imaw4S42WDPY2kVTTFQgsGY7IpD3oZe5q4WNLlh_LJiYjiZdImWVPmRE57BZc2TIw90_dbyjXzWvhMSIHLSmXjonAOpCPIsTP2SPywlK1X4jFNEE-jkgyoHc3AUvDD5-UxUVTIp7JBEwp-eq-d3lNHvV_wQOyW13X5g1o11X2tgHvH_nr1SY
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preventing+diet-induced+obesity+in+mice+by+adipose+tissue+transformation+and+angiogenesis+using+targeted+nanoparticles&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Xue%2C+Yuan&rft.au=Xu%2C+Xiaoyang&rft.au=Zhang%2C+Xue-Qing&rft.au=Farokhzad%2C+Omid+C.&rft.date=2016-05-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=20&rft.spage=5552&rft.epage=5557&rft_id=info:doi/10.1073%2Fpnas.1603840113&rft.externalDocID=26469889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon