Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis

Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...

Full description

Saved in:
Bibliographic Details
Published inEukaryotic Cell Vol. 3; no. 2; pp. 420 - 429
Main Authors Idnurm, Alexander, Reedy, Jennifer L, Nussbaum, Jesse C, Heitman, Joseph
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.04.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
AbstractList Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degree C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degree C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu super(+) transport into the secretory pathway is compromised, depriving laccase and other Cu super(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen- activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations.
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degrees C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degrees C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations.
ABSTRACT Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin ( NAT )-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1 , whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium -mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu + transport into the secretory pathway is compromised, depriving laccase and other Cu + -dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium -mediated transformation is more efficient and generates exclusively stable insertion mutations.
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin ( NAT )-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1 , whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium -mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu + transport into the secretory pathway is compromised, depriving laccase and other Cu + -dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium -mediated transformation is more efficient and generates exclusively stable insertion mutations.
Author Alexander Idnurm
Joseph Heitman
Jesse C. Nussbaum
Jennifer L. Reedy
AuthorAffiliation Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
AuthorAffiliation_xml – name: Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
Author_xml – sequence: 1
  givenname: Alexander
  surname: Idnurm
  fullname: Idnurm, Alexander
  organization: Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
– sequence: 2
  givenname: Jennifer L
  surname: Reedy
  fullname: Reedy, Jennifer L
– sequence: 3
  givenname: Jesse C
  surname: Nussbaum
  fullname: Nussbaum, Jesse C
– sequence: 4
  givenname: Joseph
  surname: Heitman
  fullname: Heitman, Joseph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15075272$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtr3DAUhUVIyfsXBIqh0J1dPSxLWmRR3MkDUtpF2q3QaO6M1djSVLJT5t9XZqZpuxAS6Dv3nnvPOTr2wQNC1wRXhFD5YdFWrKJVTXFZU1VRjOsjdEY446USsjl-fQt5is5T-oEx4UqwE3RKOBacCnqGvrZxtx2DDdZOqfAQ1iEOxqfiu4tTD95CcQceik8u2fACcVeMXQzTpisefII4uuBNX3yeRrPJWHLpEr1Zmz7B1eG-QN9uF0_tffn45e6h_fhYWo7VWEqeDXAlMdRNrYzF9ZIr3Ky4AA6rpVkSoGtMlMLQrBoKnNVkZqHOYwop2QW62dfdTssBVhb8GE2vt9ENJu50ME7__-NdpzfhRTMpGq6y_v1BH8PPCdKohzwi9L3JS5iSJkIxJskMsj1oY0gpwvq1B8F6DkIvWs001TmIfJSeg8iqt__a-6s5bD4D7_ZA5zbdLxdBmzRomJ5nD3_qsd_YV5Ps
CitedBy_id crossref_primary_10_1039_c3np70025a
crossref_primary_10_1007_s00294_017_0783_7
crossref_primary_10_1038_s41467_023_38218_w
crossref_primary_10_1128_EC_00114_10
crossref_primary_10_1093_genetics_iyab164
crossref_primary_10_1016_j_fgb_2006_07_006
crossref_primary_10_1016_j_fgb_2005_07_003
crossref_primary_10_1371_journal_pbio_2005129
crossref_primary_10_1371_journal_pone_0062533
crossref_primary_10_1016_j_fgb_2011_03_003
crossref_primary_10_1128_mBio_00478_16
crossref_primary_10_1021_acsinfecdis_6b00121
crossref_primary_10_1111_febs_12458
crossref_primary_10_1128_EC_00098_06
crossref_primary_10_1007_s00253_012_4561_7
crossref_primary_10_3390_jof2030024
crossref_primary_10_1007_s00294_016_0659_2
crossref_primary_10_1016_j_bbamem_2007_05_022
crossref_primary_10_1016_j_diagmicrobio_2004_08_013
crossref_primary_10_1186_1471_2148_6_31
crossref_primary_10_3390_jof7020138
crossref_primary_10_1016_j_tet_2016_07_050
crossref_primary_10_3389_fcimb_2020_00393
crossref_primary_10_1016_j_fbr_2018_01_001
crossref_primary_10_1016_j_fgb_2014_05_007
crossref_primary_10_1016_j_fgb_2014_11_001
crossref_primary_10_1038_s41579_021_00511_0
crossref_primary_10_1094_MPMI_07_12_0177_R
crossref_primary_10_1128_IAI_00551_10
crossref_primary_10_1007_s00294_005_0054_x
crossref_primary_10_1094_PHYTO_97_9_1040
crossref_primary_10_1016_j_fgb_2015_06_003
crossref_primary_10_1016_j_chom_2008_09_003
crossref_primary_10_1534_genetics_116_190595
crossref_primary_10_1111_1567_1364_12140
crossref_primary_10_1128_IAI_01977_06
crossref_primary_10_1186_s12864_016_3044_0
crossref_primary_10_1128_mBio_00595_17
crossref_primary_10_1016_j_freeradbiomed_2012_01_028
crossref_primary_10_1099_mic_0_039222_0
crossref_primary_10_1128_mbio_01156_24
crossref_primary_10_1016_j_stress_2023_100258
crossref_primary_10_1128_IAI_01037_12
crossref_primary_10_1038_srep06198
crossref_primary_10_3209_saj_20_35
crossref_primary_10_1128_IAI_01249_10
crossref_primary_10_1007_s11046_006_0076_z
crossref_primary_10_1007_S10267_009_0001_7
crossref_primary_10_1111_j_1567_1364_2006_00054_x
crossref_primary_10_1371_journal_pgen_1003688
crossref_primary_10_1128_AEM_02910_20
crossref_primary_10_1371_journal_pgen_1003686
crossref_primary_10_1371_journal_pone_0064292
crossref_primary_10_1038_sj_cr_7310006
crossref_primary_10_3209_saj_SAJ220201
crossref_primary_10_1016_j_fgb_2010_07_011
crossref_primary_10_1074_jbc_M602294200
crossref_primary_10_1128_mBio_01853_16
crossref_primary_10_1016_j_myc_2016_09_001
crossref_primary_10_1128_EC_00213_06
crossref_primary_10_1128_IAI_00018_13
crossref_primary_10_1093_jxb_erj052
crossref_primary_10_1111_j_1365_2958_2004_04310_x
crossref_primary_10_1016_j_fgb_2015_04_019
crossref_primary_10_1038_nchembio_1040
crossref_primary_10_1126_sciadv_abb8783
crossref_primary_10_1002_cppb_20097
crossref_primary_10_1016_j_fgb_2015_02_007
crossref_primary_10_1038_s42003_019_0665_2
crossref_primary_10_1016_j_myc_2012_08_002
crossref_primary_10_1111_febs_13229
crossref_primary_10_1111_j_1365_2958_2010_07363_x
crossref_primary_10_1038_nprot_2008_154
crossref_primary_10_1371_journal_pgen_1005692
crossref_primary_10_1111_j_1469_8137_2004_01148_x
crossref_primary_10_1007_s00294_016_0672_5
crossref_primary_10_1038_s41564_022_01183_z
crossref_primary_10_1111_j_1364_3703_2012_00826_x
crossref_primary_10_1186_s40694_017_0035_0
crossref_primary_10_1128_EC_4_1_46_54_2005
crossref_primary_10_1016_j_femsim_2005_06_005
crossref_primary_10_1128_EC_3_5_1249_1260_2004
crossref_primary_10_1016_j_fgb_2007_04_002
crossref_primary_10_1128_mBio_00310_11
crossref_primary_10_3389_fmicb_2017_00535
crossref_primary_10_1002_yea_2997
crossref_primary_10_1371_journal_pgen_1000953
crossref_primary_10_1534_genetics_113_150326
crossref_primary_10_1038_nrmicro1245
crossref_primary_10_1111_j_1365_2958_2010_07501_x
crossref_primary_10_12688_wellcomeopenres_15010_1
crossref_primary_10_1128_mbio_02626_22
crossref_primary_10_1093_infdis_jiu441
crossref_primary_10_1128_mBio_02334_14
crossref_primary_10_1002_ange_201307989
crossref_primary_10_1093_femsyr_fov072
crossref_primary_10_1111_j_1364_3703_2008_00512_x
crossref_primary_10_1371_journal_pgen_1006772
crossref_primary_10_1128_EC_4_8_1420_1433_2005
crossref_primary_10_1111_j_1567_1364_2006_00078_x
crossref_primary_10_1128_EC_00097_07
crossref_primary_10_1093_molbev_mss066
crossref_primary_10_1016_j_fgb_2014_06_003
crossref_primary_10_1111_j_1365_2958_2005_04779_x
crossref_primary_10_3390_jof7070520
crossref_primary_10_1007_s00294_005_0578_0
crossref_primary_10_1128_EC_00214_06
crossref_primary_10_1371_journal_pgen_1008394
crossref_primary_10_3389_fmicb_2019_02728
crossref_primary_10_1111_j_1751_7915_2008_00029_x
crossref_primary_10_1094_MPMI_07_11_0199
crossref_primary_10_1007_s11046_019_00328_9
crossref_primary_10_1016_j_jbiosc_2017_09_004
crossref_primary_10_1371_journal_pgen_1005159
crossref_primary_10_3390_jof7010056
crossref_primary_10_1371_journal_pbio_0030095
crossref_primary_10_1128_EC_4_10_1746_1754_2005
crossref_primary_10_1128_EC_00375_08
crossref_primary_10_1002_anie_201307989
crossref_primary_10_1016_j_ejps_2020_105473
crossref_primary_10_1091_mbc_e06_02_0125
crossref_primary_10_1007_s00294_009_0275_5
crossref_primary_10_1016_j_fgb_2005_09_007
crossref_primary_10_1093_mmy_myu083
crossref_primary_10_1111_1462_2920_14550
crossref_primary_10_1128_AEM_03851_12
crossref_primary_10_1371_journal_pone_0211393
crossref_primary_10_1002_yea_1095
crossref_primary_10_1016_j_cell_2008_07_046
crossref_primary_10_1534_genetics_119_302329
crossref_primary_10_1128_EC_00271_09
crossref_primary_10_1186_2191_0855_1_46
crossref_primary_10_1016_j_micpath_2013_04_003
crossref_primary_10_1128_AEM_00725_16
crossref_primary_10_1111_j_1365_2958_2007_05918_x
crossref_primary_10_1186_s40529_018_0233_y
crossref_primary_10_1371_journal_pbio_3002682
crossref_primary_10_1371_journal_ppat_1000155
crossref_primary_10_1128_EC_4_6_1079_1087_2005
Cites_doi 10.1038/nature00935
10.1126/science.1086391
10.1046/j.1365-2958.2001.02712.x
10.1017/S0953756201003872
10.1099/13500872-142-6-1557
10.1046/j.1365-2958.2000.01953.x
10.1073/pnas.090083597
10.1084/jem.184.2.377
10.1146/annurev.genet.36.052402.152652
10.1093/emboj/cdg256
10.1128/mcb.12.6.2777-2783.1992
10.1002/yea.858
10.1128/jb.176.3.656-664.1994
10.1073/pnas.97.26.14455
10.1128/MCB.19.6.4101
10.1128/jb.175.5.1405-1411.1993
10.1046/j.1364-3703.2003.00191.x
10.1006/fgbi.1999.1155
10.1016/S1286-4579(03)00092-3
10.1093/nar/28.1.292
10.1128/9781555818241
10.1128/IAI.71.9.4831-4841.2003
10.1046/j.1365-313x.2000.00808.x
10.1073/pnas.98.4.1871
10.1126/science.285.5427.578
10.1099/00221287-148-8-2607
10.1016/j.cub.2003.10.029
10.1128/IAI.71.9.4829-4830.2003
10.1007/BF00279896
10.1073/pnas.232568599
10.1080/mmy.39.1.151.154
10.1046/j.1365-2958.2003.03563.x
10.1016/S1286-4579(02)00006-0
10.1002/j.1460-2075.1995.tb07323.x
10.1128/EC.2.5.1036-1045.2003
10.1073/pnas.93.26.15272
10.1046/j.1365-2958.2003.03508.x
10.1046/j.1464-6722.2001.00070.x
10.1093/genetics/157.3.935
10.1046/j.1365-2958.2003.03340.x
10.1128/iai.60.2.602-605.1992
10.1073/pnas.89.11.5015
10.1128/jcm.31.12.3305-3309.1993
10.1128/IAI.71.9.4862-4872.2003
10.1099/mic.0.25921-0
10.1073/pnas.95.7.4046
10.1073/pnas.95.23.13641
10.1007/s00438-002-0744-8
10.1080/mmy.39.5.383.386
10.1073/pnas.261418798
10.1002/yea.733
10.1046/j.1365-2958.2003.03752.x
ContentType Journal Article
Copyright Copyright © 2004, American Society for Microbiology 2004
Copyright_xml – notice: Copyright © 2004, American Society for Microbiology 2004
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
M7N
5PM
DOI 10.1128/EC.3.2.420-429.2004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
DatabaseTitleList Algology Mycology and Protozoology Abstracts (Microbiology C)

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 429
ExternalDocumentID 10_1128_EC_3_2_420_429_2004
15075272
eukcell_3_2_420
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI044975
– fundername: NIAID NIH HHS
  grantid: P01 AI44975
– fundername: NIAID NIH HHS
  grantid: R01 AI050113
– fundername: NIAID NIH HHS
  grantid: R01 AI50113
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
AAYXX
CITATION
7TM
M7N
5PM
ID FETCH-LOGICAL-c509t-857525980e4649ac04b5906d57e5edbab1e2f01990e6d62e53410e46e40047883
IEDL.DBID RPM
ISSN 1535-9778
1535-9786
IngestDate Tue Sep 17 21:11:47 EDT 2024
Fri Oct 25 03:44:43 EDT 2024
Fri Aug 23 00:31:40 EDT 2024
Sat Sep 28 08:36:12 EDT 2024
Wed May 18 15:27:30 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-857525980e4649ac04b5906d57e5edbab1e2f01990e6d62e53410e46e40047883
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Corresponding author. Mailing address: Department of Molecular Genetics and Microbiology, 322 CARL Building, Duke University Medical Center, Durham, NC 27710. Phone: (919) 684-2824. Fax: (919) 684-5458. E-mail: heitm001@duke.edu.
OpenAccessLink https://ec.asm.org/content/eukcell/3/2/420.full.pdf
PMID 15075272
PQID 17933819
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_387659
highwire_asm_eukcell_3_2_420
proquest_miscellaneous_17933819
pubmed_primary_15075272
crossref_primary_10_1128_EC_3_2_420_429_2004
PublicationCentury 2000
PublicationDate 20040401
2004-Apr
2004-04-00
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: 20040401
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Eukaryotic Cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2004
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_21_2
  doi: 10.1038/nature00935
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1086391
– ident: e_1_3_2_17_2
  doi: 10.1046/j.1365-2958.2001.02712.x
– ident: e_1_3_2_10_2
  doi: 10.1017/S0953756201003872
– ident: e_1_3_2_41_2
  doi: 10.1099/13500872-142-6-1557
– ident: e_1_3_2_4_2
  doi: 10.1046/j.1365-2958.2000.01953.x
– ident: e_1_3_2_32_2
  doi: 10.1073/pnas.090083597
– ident: e_1_3_2_42_2
  doi: 10.1084/jem.184.2.377
– ident: e_1_3_2_25_2
  doi: 10.1146/annurev.genet.36.052402.152652
– ident: e_1_3_2_47_2
  doi: 10.1093/emboj/cdg256
– ident: e_1_3_2_16_2
  doi: 10.1128/mcb.12.6.2777-2783.1992
– ident: e_1_3_2_7_2
  doi: 10.1002/yea.858
– ident: e_1_3_2_50_2
  doi: 10.1128/jb.176.3.656-664.1994
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.97.26.14455
– ident: e_1_3_2_11_2
  doi: 10.1128/MCB.19.6.4101
– ident: e_1_3_2_46_2
  doi: 10.1128/jb.175.5.1405-1411.1993
– ident: e_1_3_2_48_2
  doi: 10.1046/j.1364-3703.2003.00191.x
– ident: e_1_3_2_24_2
  doi: 10.1006/fgbi.1999.1155
– ident: e_1_3_2_43_2
  doi: 10.1016/S1286-4579(03)00092-3
– ident: e_1_3_2_36_2
  doi: 10.1093/nar/28.1.292
– ident: e_1_3_2_8_2
  doi: 10.1128/9781555818241
– ident: e_1_3_2_38_2
  doi: 10.1128/IAI.71.9.4831-4841.2003
– ident: e_1_3_2_54_2
  doi: 10.1046/j.1365-313x.2000.00808.x
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.98.4.1871
– ident: e_1_3_2_9_2
  doi: 10.1126/science.285.5427.578
– ident: e_1_3_2_12_2
  doi: 10.1099/00221287-148-8-2607
– ident: e_1_3_2_15_2
  doi: 10.1016/j.cub.2003.10.029
– ident: e_1_3_2_34_2
  doi: 10.1128/IAI.71.9.4829-4830.2003
– ident: e_1_3_2_3_2
– ident: e_1_3_2_23_2
  doi: 10.1007/BF00279896
– ident: e_1_3_2_35_2
  doi: 10.1073/pnas.232568599
– ident: e_1_3_2_33_2
  doi: 10.1080/mmy.39.1.151.154
– ident: e_1_3_2_13_2
  doi: 10.1046/j.1365-2958.2003.03563.x
– ident: e_1_3_2_19_2
  doi: 10.1016/S1286-4579(02)00006-0
– ident: e_1_3_2_5_2
  doi: 10.1002/j.1460-2075.1995.tb07323.x
– ident: e_1_3_2_18_2
  doi: 10.1128/EC.2.5.1036-1045.2003
– ident: e_1_3_2_6_2
  doi: 10.1073/pnas.93.26.15272
– ident: e_1_3_2_28_2
  doi: 10.1046/j.1365-2958.2003.03508.x
– ident: e_1_3_2_26_2
  doi: 10.1046/j.1464-6722.2001.00070.x
– ident: e_1_3_2_37_2
  doi: 10.1093/genetics/157.3.935
– ident: e_1_3_2_52_2
  doi: 10.1046/j.1365-2958.2003.03340.x
– ident: e_1_3_2_30_2
  doi: 10.1128/iai.60.2.602-605.1992
– ident: e_1_3_2_51_2
  doi: 10.1073/pnas.89.11.5015
– ident: e_1_3_2_40_2
  doi: 10.1128/jcm.31.12.3305-3309.1993
– ident: e_1_3_2_44_2
  doi: 10.1128/IAI.71.9.4862-4872.2003
– ident: e_1_3_2_27_2
  doi: 10.1099/mic.0.25921-0
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.95.7.4046
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.95.23.13641
– ident: e_1_3_2_39_2
  doi: 10.1007/s00438-002-0744-8
– ident: e_1_3_2_49_2
  doi: 10.1080/mmy.39.5.383.386
– ident: e_1_3_2_45_2
  doi: 10.1073/pnas.261418798
– ident: e_1_3_2_22_2
  doi: 10.1002/yea.733
– ident: e_1_3_2_53_2
  doi: 10.1046/j.1365-2958.2003.03752.x
SSID ssj0015973
Score 2.197133
Snippet Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we...
ABSTRACT Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation,...
Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 420
SubjectTerms Acetyltransferases - genetics
Agrobacterium
Agrobacterium tumefaciens - genetics
Base Sequence
Biolistics - methods
Chloride Channels - genetics
Cryptococcus neoformans
Cryptococcus neoformans - genetics
Cryptococcus neoformans - pathogenicity
DNA, Bacterial - genetics
Drug Resistance - genetics
Laccase - genetics
Mitogen-Activated Protein Kinases - genetics
Molecular Sequence Data
Mutagenesis, Insertional - methods
Mutation
Nitric Oxide - toxicity
Phenotype
Promoter Regions, Genetic
Streptothricins - pharmacology
Virulence Factors - genetics
Title Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis
URI http://ec.asm.org/content/3/2/420.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15075272
https://search.proquest.com/docview/17933819
https://pubmed.ncbi.nlm.nih.gov/PMC387659
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RSpW4IKAtBAr4wJFkU8d24iMKWxWkRT3QqurFsh2viGCzq01y2H_P2EloF_XEIZIlT-JoPJ6HPf4G4KOHjJNO8Fga7WImCh0bd65j66ypjDWiCnu6i-_i8pp9u-W346WwdkyrbKypk-b3KmnqnyG3crOysylPbHa1KDNcwlzODuAA5XOK0MeTA3SQswEjFcfP82JEGkI1PJuXSZbQhGHAhFo4xIahKg9aTZrTfcM0gQU_5nj-mz_5wCBdPIdnoydJPg9__AKeuOYlHA21JXfYuluH1jFcldvdpluj5rN9Sxq3Hm4KtOSm3vbhzhHx4NPkS91an9C5I2PxHvK18Wf1YbOQLPoOVQ8qxro9geuL-Y_yMh4LKcQW_YEu9lU4McwpUscEk9qmzHCZiornjrvKaHPu6BJ9PZk6UQnqOJo2T-v8AscYOTuFw2bduNdAUiqpFqE6B2dZUWnBl0uJH8oLxoxZRvBp4qLaDHgZKsQZtFDzUmWKKuQ_PtIXwGQRnE2cVrpdKdf_8gcWE10EHybuKxR736WRTX2rvF7xwWYEr4a5uB9tnM8IxN4s_SXwgNr7PShnAVh7kKs3__viW3h6n9dzBofdtnfv0GXpzPsgo38AT9DqiA
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEaIXxLuhhfrAkWRTx3biIwpbbaFb9dCiiosVO14RtZtdbZLD_nvGTtKyiBOHSJY8SazxeB72-BuATw4yTlrBQ6kLGzKRFaG2J0VorNGlNlqUfk93fiFm1-zbDb8ZLoU1Q1plbXQV1XfLqK5--dzK9dJMxjyxyeU8T3AJczl5DE9wucZsjNGHswN0kZMeJRVHkKbZgDWEingyzaMkohHDkAn1sI8OfV0etJs0pbumaYQL_pfr-XcG5R8m6fQFPB98SfKlH_NLeGTrV_C0ry65xdbPlW-9hst8s123K9R9pmtIbVf9XYGG_Kg2nb91RBz8NPlaNcaldG7JUL6HnNXutN5vF5J516LyQdVYNW_g-nR6lc_CoZRCaNAjaENXhxMDnSy2TDBZmJhpLmNR8tRyW-pCn1i6QG9PxlaUglqOxs3RWrfEMUpO3sJevartAZCYSloIX5-DsyQrC8EXC4kfSjPGtF4E8Hnkolr3iBnKRxo0U9NcJYoq5D8-0pXAZAEcjZxWRbNUtrt1RxYjXQDHI_cVCr7rKpBNXaOcZnHhZgDv-rl4-NswnwGInVm6J3CQ2rs9KGkeWruXrPf_--IxPJtdzc_V-dnF90PYf8jyOYK9dtPZD-jAtPqjl9ff1Irt3g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXxJtAS33gSB51HCc-onRXLbDVHiiquFh24oio3exqkxz23zN2EsqinjhEsuRJYo3H87DH3wB8tJBxwvDEF1oZn_FM-dqcKr8whS51oXnp9nQXl_z8in25Tq4PIJvuwrik_ULXQXO7Cpr6l8ut3KyKcMoTC5eLPMYlnIhwU1bhA3iISzbiU5w-nh-gmxwPSKk4ijTNRrwhVMbhLA_igAYMwybUxS5CdLV50HbSlO6bpwky-D73898syr_M0vwZPB39SfJ5GPdzODDNC3g0VJjcYevn2rVewjLf7jbdGvVf0bekMevhvkBLftTb3t08IhaCmpzVbWHTOndkLOFDLhp7Yu-2DMmi71ABoXqs21dwNZ99z8_9sZyCX6BX0Pm2FicGO1lkGGdCFRHTiYh4maQmMaVW-tTQCj0-ERlecmoSNHCW1thljpFy_BoOm3Vj3gKJqKCKuxodCYuzUvGkqgR-KM0Y07ry4NPERbkZUDOkizZoJme5jCWVyH98hC2DyTw4mjgtVbuSpr-xxxYTnQcnE_clCr_tUsimvpVWu9iQ04M3w1zc_W2cTw_43iz9IbCw2vs9KG0OXnuQrnf_--IJPF6ezeW3i8uv7-HJXaLPERx2294cow_T6Q9OXH8DULfu8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptococcus+neoformans+Virulence+Gene+Discovery+through+Insertional+Mutagenesis&rft.jtitle=Eukaryotic+cell&rft.au=Idnurm%2C+A&rft.au=Reedy%2C+J+L&rft.au=Nussbaum%2C+J+C&rft.au=Heitman%2C+J&rft.date=2004-04-01&rft.issn=1535-9786&rft.volume=3&rft.issue=2&rft.spage=420&rft.epage=429&rft_id=info:doi/10.1128%2FEC.3.2.420-429.2004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon