Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...
Saved in:
Published in | Eukaryotic Cell Vol. 3; no. 2; pp. 420 - 429 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.04.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
EC
About
EC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
EC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
1535-9778
Online ISSN:
1535-9786
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
EC
.asm.org, visit:
EC
|
---|---|
AbstractList | Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degree C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degree C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu super(+) transport into the secretory pathway is compromised, depriving laccase and other Cu super(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen- activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations. Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology. For an alternate route to EC .asm.org, visit: EC Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin (NAT)-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37 degrees C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37 degrees C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1, whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium-mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu+ transport into the secretory pathway is compromised, depriving laccase and other Cu(+)-dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium-mediated transformation is more efficient and generates exclusively stable insertion mutations. ABSTRACT Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin ( NAT )-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1 , whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium -mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu + transport into the secretory pathway is compromised, depriving laccase and other Cu + -dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium -mediated transformation is more efficient and generates exclusively stable insertion mutations. Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we generated 4,300 nourseothricin ( NAT )-resistant strains, of which 590 exhibited stable resistance. We focused on mutants with defects in established virulence factors and identified two with reduced growth at 37°C, four with reduced production of the antioxidant pigment melanin, and two with an increased sensitivity to nitric oxide (NO). The NAT insertion and mutant phenotypes were genetically linked in five of eight mutants, and the DNA flanking the insertions was characterized. For the strains with altered growth at 37°C and altered melanin production, mutations were in previously uncharacterized genes, while the two NO-sensitive strains bore insertions in the flavohemoglobin gene FHB1 , whose product counters NO stress. Because of the frequent instability of nourseothricin resistance associated with biolistic transformation, Agrobacterium -mediated transformation was tested. This transkingdom DNA delivery approach produced 100% stable nourseothricin-resistant transformants, and three melanin-defective strains were identified from 576 transformants, of which 2 were linked to NAT in segregation analysis. One of these mutants contained a T-DNA insertion in the promoter of the LAC1 (laccase) gene, which encodes a key enzyme required for melanin production, while the second contained an insertion in the promoter of the CLC1 gene, encoding a voltage-gated chloride channel. Clc1 and its homologs are required for ion homeostasis, and in their absence Cu + transport into the secretory pathway is compromised, depriving laccase and other Cu + -dependent proteins of their essential cofactor. The NAT resistance cassette was optimized for cryptococcal codon usage and GC content and was then used to disrupt a mitogen-activated protein kinase gene, a predicted gene, and two putative chloride channel genes to analyze their contributions to fungal physiology. Our findings demonstrate that both insertional mutagenesis methods can be applied to gene identification, but Agrobacterium -mediated transformation is more efficient and generates exclusively stable insertion mutations. |
Author | Alexander Idnurm Joseph Heitman Jesse C. Nussbaum Jennifer L. Reedy |
AuthorAffiliation | Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710 |
AuthorAffiliation_xml | – name: Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710 |
Author_xml | – sequence: 1 givenname: Alexander surname: Idnurm fullname: Idnurm, Alexander organization: Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA – sequence: 2 givenname: Jennifer L surname: Reedy fullname: Reedy, Jennifer L – sequence: 3 givenname: Jesse C surname: Nussbaum fullname: Nussbaum, Jesse C – sequence: 4 givenname: Joseph surname: Heitman fullname: Heitman, Joseph |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15075272$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtr3DAUhUVIyfsXBIqh0J1dPSxLWmRR3MkDUtpF2q3QaO6M1djSVLJT5t9XZqZpuxAS6Dv3nnvPOTr2wQNC1wRXhFD5YdFWrKJVTXFZU1VRjOsjdEY446USsjl-fQt5is5T-oEx4UqwE3RKOBacCnqGvrZxtx2DDdZOqfAQ1iEOxqfiu4tTD95CcQceik8u2fACcVeMXQzTpisefII4uuBNX3yeRrPJWHLpEr1Zmz7B1eG-QN9uF0_tffn45e6h_fhYWo7VWEqeDXAlMdRNrYzF9ZIr3Ky4AA6rpVkSoGtMlMLQrBoKnNVkZqHOYwop2QW62dfdTssBVhb8GE2vt9ENJu50ME7__-NdpzfhRTMpGq6y_v1BH8PPCdKohzwi9L3JS5iSJkIxJskMsj1oY0gpwvq1B8F6DkIvWs001TmIfJSeg8iqt__a-6s5bD4D7_ZA5zbdLxdBmzRomJ5nD3_qsd_YV5Ps |
CitedBy_id | crossref_primary_10_1039_c3np70025a crossref_primary_10_1007_s00294_017_0783_7 crossref_primary_10_1038_s41467_023_38218_w crossref_primary_10_1128_EC_00114_10 crossref_primary_10_1093_genetics_iyab164 crossref_primary_10_1016_j_fgb_2006_07_006 crossref_primary_10_1016_j_fgb_2005_07_003 crossref_primary_10_1371_journal_pbio_2005129 crossref_primary_10_1371_journal_pone_0062533 crossref_primary_10_1016_j_fgb_2011_03_003 crossref_primary_10_1128_mBio_00478_16 crossref_primary_10_1021_acsinfecdis_6b00121 crossref_primary_10_1111_febs_12458 crossref_primary_10_1128_EC_00098_06 crossref_primary_10_1007_s00253_012_4561_7 crossref_primary_10_3390_jof2030024 crossref_primary_10_1007_s00294_016_0659_2 crossref_primary_10_1016_j_bbamem_2007_05_022 crossref_primary_10_1016_j_diagmicrobio_2004_08_013 crossref_primary_10_1186_1471_2148_6_31 crossref_primary_10_3390_jof7020138 crossref_primary_10_1016_j_tet_2016_07_050 crossref_primary_10_3389_fcimb_2020_00393 crossref_primary_10_1016_j_fbr_2018_01_001 crossref_primary_10_1016_j_fgb_2014_05_007 crossref_primary_10_1016_j_fgb_2014_11_001 crossref_primary_10_1038_s41579_021_00511_0 crossref_primary_10_1094_MPMI_07_12_0177_R crossref_primary_10_1128_IAI_00551_10 crossref_primary_10_1007_s00294_005_0054_x crossref_primary_10_1094_PHYTO_97_9_1040 crossref_primary_10_1016_j_fgb_2015_06_003 crossref_primary_10_1016_j_chom_2008_09_003 crossref_primary_10_1534_genetics_116_190595 crossref_primary_10_1111_1567_1364_12140 crossref_primary_10_1128_IAI_01977_06 crossref_primary_10_1186_s12864_016_3044_0 crossref_primary_10_1128_mBio_00595_17 crossref_primary_10_1016_j_freeradbiomed_2012_01_028 crossref_primary_10_1099_mic_0_039222_0 crossref_primary_10_1128_mbio_01156_24 crossref_primary_10_1016_j_stress_2023_100258 crossref_primary_10_1128_IAI_01037_12 crossref_primary_10_1038_srep06198 crossref_primary_10_3209_saj_20_35 crossref_primary_10_1128_IAI_01249_10 crossref_primary_10_1007_s11046_006_0076_z crossref_primary_10_1007_S10267_009_0001_7 crossref_primary_10_1111_j_1567_1364_2006_00054_x crossref_primary_10_1371_journal_pgen_1003688 crossref_primary_10_1128_AEM_02910_20 crossref_primary_10_1371_journal_pgen_1003686 crossref_primary_10_1371_journal_pone_0064292 crossref_primary_10_1038_sj_cr_7310006 crossref_primary_10_3209_saj_SAJ220201 crossref_primary_10_1016_j_fgb_2010_07_011 crossref_primary_10_1074_jbc_M602294200 crossref_primary_10_1128_mBio_01853_16 crossref_primary_10_1016_j_myc_2016_09_001 crossref_primary_10_1128_EC_00213_06 crossref_primary_10_1128_IAI_00018_13 crossref_primary_10_1093_jxb_erj052 crossref_primary_10_1111_j_1365_2958_2004_04310_x crossref_primary_10_1016_j_fgb_2015_04_019 crossref_primary_10_1038_nchembio_1040 crossref_primary_10_1126_sciadv_abb8783 crossref_primary_10_1002_cppb_20097 crossref_primary_10_1016_j_fgb_2015_02_007 crossref_primary_10_1038_s42003_019_0665_2 crossref_primary_10_1016_j_myc_2012_08_002 crossref_primary_10_1111_febs_13229 crossref_primary_10_1111_j_1365_2958_2010_07363_x crossref_primary_10_1038_nprot_2008_154 crossref_primary_10_1371_journal_pgen_1005692 crossref_primary_10_1111_j_1469_8137_2004_01148_x crossref_primary_10_1007_s00294_016_0672_5 crossref_primary_10_1038_s41564_022_01183_z crossref_primary_10_1111_j_1364_3703_2012_00826_x crossref_primary_10_1186_s40694_017_0035_0 crossref_primary_10_1128_EC_4_1_46_54_2005 crossref_primary_10_1016_j_femsim_2005_06_005 crossref_primary_10_1128_EC_3_5_1249_1260_2004 crossref_primary_10_1016_j_fgb_2007_04_002 crossref_primary_10_1128_mBio_00310_11 crossref_primary_10_3389_fmicb_2017_00535 crossref_primary_10_1002_yea_2997 crossref_primary_10_1371_journal_pgen_1000953 crossref_primary_10_1534_genetics_113_150326 crossref_primary_10_1038_nrmicro1245 crossref_primary_10_1111_j_1365_2958_2010_07501_x crossref_primary_10_12688_wellcomeopenres_15010_1 crossref_primary_10_1128_mbio_02626_22 crossref_primary_10_1093_infdis_jiu441 crossref_primary_10_1128_mBio_02334_14 crossref_primary_10_1002_ange_201307989 crossref_primary_10_1093_femsyr_fov072 crossref_primary_10_1111_j_1364_3703_2008_00512_x crossref_primary_10_1371_journal_pgen_1006772 crossref_primary_10_1128_EC_4_8_1420_1433_2005 crossref_primary_10_1111_j_1567_1364_2006_00078_x crossref_primary_10_1128_EC_00097_07 crossref_primary_10_1093_molbev_mss066 crossref_primary_10_1016_j_fgb_2014_06_003 crossref_primary_10_1111_j_1365_2958_2005_04779_x crossref_primary_10_3390_jof7070520 crossref_primary_10_1007_s00294_005_0578_0 crossref_primary_10_1128_EC_00214_06 crossref_primary_10_1371_journal_pgen_1008394 crossref_primary_10_3389_fmicb_2019_02728 crossref_primary_10_1111_j_1751_7915_2008_00029_x crossref_primary_10_1094_MPMI_07_11_0199 crossref_primary_10_1007_s11046_019_00328_9 crossref_primary_10_1016_j_jbiosc_2017_09_004 crossref_primary_10_1371_journal_pgen_1005159 crossref_primary_10_3390_jof7010056 crossref_primary_10_1371_journal_pbio_0030095 crossref_primary_10_1128_EC_4_10_1746_1754_2005 crossref_primary_10_1128_EC_00375_08 crossref_primary_10_1002_anie_201307989 crossref_primary_10_1016_j_ejps_2020_105473 crossref_primary_10_1091_mbc_e06_02_0125 crossref_primary_10_1007_s00294_009_0275_5 crossref_primary_10_1016_j_fgb_2005_09_007 crossref_primary_10_1093_mmy_myu083 crossref_primary_10_1111_1462_2920_14550 crossref_primary_10_1128_AEM_03851_12 crossref_primary_10_1371_journal_pone_0211393 crossref_primary_10_1002_yea_1095 crossref_primary_10_1016_j_cell_2008_07_046 crossref_primary_10_1534_genetics_119_302329 crossref_primary_10_1128_EC_00271_09 crossref_primary_10_1186_2191_0855_1_46 crossref_primary_10_1016_j_micpath_2013_04_003 crossref_primary_10_1128_AEM_00725_16 crossref_primary_10_1111_j_1365_2958_2007_05918_x crossref_primary_10_1186_s40529_018_0233_y crossref_primary_10_1371_journal_pbio_3002682 crossref_primary_10_1371_journal_ppat_1000155 crossref_primary_10_1128_EC_4_6_1079_1087_2005 |
Cites_doi | 10.1038/nature00935 10.1126/science.1086391 10.1046/j.1365-2958.2001.02712.x 10.1017/S0953756201003872 10.1099/13500872-142-6-1557 10.1046/j.1365-2958.2000.01953.x 10.1073/pnas.090083597 10.1084/jem.184.2.377 10.1146/annurev.genet.36.052402.152652 10.1093/emboj/cdg256 10.1128/mcb.12.6.2777-2783.1992 10.1002/yea.858 10.1128/jb.176.3.656-664.1994 10.1073/pnas.97.26.14455 10.1128/MCB.19.6.4101 10.1128/jb.175.5.1405-1411.1993 10.1046/j.1364-3703.2003.00191.x 10.1006/fgbi.1999.1155 10.1016/S1286-4579(03)00092-3 10.1093/nar/28.1.292 10.1128/9781555818241 10.1128/IAI.71.9.4831-4841.2003 10.1046/j.1365-313x.2000.00808.x 10.1073/pnas.98.4.1871 10.1126/science.285.5427.578 10.1099/00221287-148-8-2607 10.1016/j.cub.2003.10.029 10.1128/IAI.71.9.4829-4830.2003 10.1007/BF00279896 10.1073/pnas.232568599 10.1080/mmy.39.1.151.154 10.1046/j.1365-2958.2003.03563.x 10.1016/S1286-4579(02)00006-0 10.1002/j.1460-2075.1995.tb07323.x 10.1128/EC.2.5.1036-1045.2003 10.1073/pnas.93.26.15272 10.1046/j.1365-2958.2003.03508.x 10.1046/j.1464-6722.2001.00070.x 10.1093/genetics/157.3.935 10.1046/j.1365-2958.2003.03340.x 10.1128/iai.60.2.602-605.1992 10.1073/pnas.89.11.5015 10.1128/jcm.31.12.3305-3309.1993 10.1128/IAI.71.9.4862-4872.2003 10.1099/mic.0.25921-0 10.1073/pnas.95.7.4046 10.1073/pnas.95.23.13641 10.1007/s00438-002-0744-8 10.1080/mmy.39.5.383.386 10.1073/pnas.261418798 10.1002/yea.733 10.1046/j.1365-2958.2003.03752.x |
ContentType | Journal Article |
Copyright | Copyright © 2004, American Society for Microbiology 2004 |
Copyright_xml | – notice: Copyright © 2004, American Society for Microbiology 2004 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM M7N 5PM |
DOI | 10.1128/EC.3.2.420-429.2004 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1535-9786 |
EndPage | 429 |
ExternalDocumentID | 10_1128_EC_3_2_420_429_2004 15075272 eukcell_3_2_420 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: P01 AI044975 – fundername: NIAID NIH HHS grantid: P01 AI44975 – fundername: NIAID NIH HHS grantid: R01 AI050113 – fundername: NIAID NIH HHS grantid: R01 AI50113 |
GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HYE HZ~ KQ8 NPM O9- OK1 P2P RHF RHI RNS RPM RSF TR2 W8F WHG WOQ AAYXX CITATION 7TM M7N 5PM |
ID | FETCH-LOGICAL-c509t-857525980e4649ac04b5906d57e5edbab1e2f01990e6d62e53410e46e40047883 |
IEDL.DBID | RPM |
ISSN | 1535-9778 1535-9786 |
IngestDate | Tue Sep 17 21:11:47 EDT 2024 Fri Oct 25 03:44:43 EDT 2024 Fri Aug 23 00:31:40 EDT 2024 Sat Sep 28 08:36:12 EDT 2024 Wed May 18 15:27:30 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-857525980e4649ac04b5906d57e5edbab1e2f01990e6d62e53410e46e40047883 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Corresponding author. Mailing address: Department of Molecular Genetics and Microbiology, 322 CARL Building, Duke University Medical Center, Durham, NC 27710. Phone: (919) 684-2824. Fax: (919) 684-5458. E-mail: heitm001@duke.edu. |
OpenAccessLink | https://ec.asm.org/content/eukcell/3/2/420.full.pdf |
PMID | 15075272 |
PQID | 17933819 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_387659 highwire_asm_eukcell_3_2_420 proquest_miscellaneous_17933819 pubmed_primary_15075272 crossref_primary_10_1128_EC_3_2_420_429_2004 |
PublicationCentury | 2000 |
PublicationDate | 20040401 2004-Apr 2004-04-00 |
PublicationDateYYYYMMDD | 2004-04-01 |
PublicationDate_xml | – month: 04 year: 2004 text: 20040401 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Eukaryotic Cell |
PublicationTitleAlternate | Eukaryot Cell |
PublicationYear | 2004 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_21_2 doi: 10.1038/nature00935 – ident: e_1_3_2_2_2 doi: 10.1126/science.1086391 – ident: e_1_3_2_17_2 doi: 10.1046/j.1365-2958.2001.02712.x – ident: e_1_3_2_10_2 doi: 10.1017/S0953756201003872 – ident: e_1_3_2_41_2 doi: 10.1099/13500872-142-6-1557 – ident: e_1_3_2_4_2 doi: 10.1046/j.1365-2958.2000.01953.x – ident: e_1_3_2_32_2 doi: 10.1073/pnas.090083597 – ident: e_1_3_2_42_2 doi: 10.1084/jem.184.2.377 – ident: e_1_3_2_25_2 doi: 10.1146/annurev.genet.36.052402.152652 – ident: e_1_3_2_47_2 doi: 10.1093/emboj/cdg256 – ident: e_1_3_2_16_2 doi: 10.1128/mcb.12.6.2777-2783.1992 – ident: e_1_3_2_7_2 doi: 10.1002/yea.858 – ident: e_1_3_2_50_2 doi: 10.1128/jb.176.3.656-664.1994 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.97.26.14455 – ident: e_1_3_2_11_2 doi: 10.1128/MCB.19.6.4101 – ident: e_1_3_2_46_2 doi: 10.1128/jb.175.5.1405-1411.1993 – ident: e_1_3_2_48_2 doi: 10.1046/j.1364-3703.2003.00191.x – ident: e_1_3_2_24_2 doi: 10.1006/fgbi.1999.1155 – ident: e_1_3_2_43_2 doi: 10.1016/S1286-4579(03)00092-3 – ident: e_1_3_2_36_2 doi: 10.1093/nar/28.1.292 – ident: e_1_3_2_8_2 doi: 10.1128/9781555818241 – ident: e_1_3_2_38_2 doi: 10.1128/IAI.71.9.4831-4841.2003 – ident: e_1_3_2_54_2 doi: 10.1046/j.1365-313x.2000.00808.x – ident: e_1_3_2_29_2 doi: 10.1073/pnas.98.4.1871 – ident: e_1_3_2_9_2 doi: 10.1126/science.285.5427.578 – ident: e_1_3_2_12_2 doi: 10.1099/00221287-148-8-2607 – ident: e_1_3_2_15_2 doi: 10.1016/j.cub.2003.10.029 – ident: e_1_3_2_34_2 doi: 10.1128/IAI.71.9.4829-4830.2003 – ident: e_1_3_2_3_2 – ident: e_1_3_2_23_2 doi: 10.1007/BF00279896 – ident: e_1_3_2_35_2 doi: 10.1073/pnas.232568599 – ident: e_1_3_2_33_2 doi: 10.1080/mmy.39.1.151.154 – ident: e_1_3_2_13_2 doi: 10.1046/j.1365-2958.2003.03563.x – ident: e_1_3_2_19_2 doi: 10.1016/S1286-4579(02)00006-0 – ident: e_1_3_2_5_2 doi: 10.1002/j.1460-2075.1995.tb07323.x – ident: e_1_3_2_18_2 doi: 10.1128/EC.2.5.1036-1045.2003 – ident: e_1_3_2_6_2 doi: 10.1073/pnas.93.26.15272 – ident: e_1_3_2_28_2 doi: 10.1046/j.1365-2958.2003.03508.x – ident: e_1_3_2_26_2 doi: 10.1046/j.1464-6722.2001.00070.x – ident: e_1_3_2_37_2 doi: 10.1093/genetics/157.3.935 – ident: e_1_3_2_52_2 doi: 10.1046/j.1365-2958.2003.03340.x – ident: e_1_3_2_30_2 doi: 10.1128/iai.60.2.602-605.1992 – ident: e_1_3_2_51_2 doi: 10.1073/pnas.89.11.5015 – ident: e_1_3_2_40_2 doi: 10.1128/jcm.31.12.3305-3309.1993 – ident: e_1_3_2_44_2 doi: 10.1128/IAI.71.9.4862-4872.2003 – ident: e_1_3_2_27_2 doi: 10.1099/mic.0.25921-0 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.95.7.4046 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.95.23.13641 – ident: e_1_3_2_39_2 doi: 10.1007/s00438-002-0744-8 – ident: e_1_3_2_49_2 doi: 10.1080/mmy.39.5.383.386 – ident: e_1_3_2_45_2 doi: 10.1073/pnas.261418798 – ident: e_1_3_2_22_2 doi: 10.1002/yea.733 – ident: e_1_3_2_53_2 doi: 10.1046/j.1365-2958.2003.03752.x |
SSID | ssj0015973 |
Score | 2.197133 |
Snippet | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we... ABSTRACT Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation,... Insertional mutagenesis was applied to Cryptococcus neoformans to identify genes associated with virulence attributes. Using biolistic transformation, we... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 420 |
SubjectTerms | Acetyltransferases - genetics Agrobacterium Agrobacterium tumefaciens - genetics Base Sequence Biolistics - methods Chloride Channels - genetics Cryptococcus neoformans Cryptococcus neoformans - genetics Cryptococcus neoformans - pathogenicity DNA, Bacterial - genetics Drug Resistance - genetics Laccase - genetics Mitogen-Activated Protein Kinases - genetics Molecular Sequence Data Mutagenesis, Insertional - methods Mutation Nitric Oxide - toxicity Phenotype Promoter Regions, Genetic Streptothricins - pharmacology Virulence Factors - genetics |
Title | Cryptococcus neoformans Virulence Gene Discovery through Insertional Mutagenesis |
URI | http://ec.asm.org/content/3/2/420.abstract https://www.ncbi.nlm.nih.gov/pubmed/15075272 https://search.proquest.com/docview/17933819 https://pubmed.ncbi.nlm.nih.gov/PMC387659 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RSpW4IKAtBAr4wJFkU8d24iMKWxWkRT3QqurFsh2viGCzq01y2H_P2EloF_XEIZIlT-JoPJ6HPf4G4KOHjJNO8Fga7WImCh0bd65j66ypjDWiCnu6i-_i8pp9u-W346WwdkyrbKypk-b3KmnqnyG3crOysylPbHa1KDNcwlzODuAA5XOK0MeTA3SQswEjFcfP82JEGkI1PJuXSZbQhGHAhFo4xIahKg9aTZrTfcM0gQU_5nj-mz_5wCBdPIdnoydJPg9__AKeuOYlHA21JXfYuluH1jFcldvdpluj5rN9Sxq3Hm4KtOSm3vbhzhHx4NPkS91an9C5I2PxHvK18Wf1YbOQLPoOVQ8qxro9geuL-Y_yMh4LKcQW_YEu9lU4McwpUscEk9qmzHCZiornjrvKaHPu6BJ9PZk6UQnqOJo2T-v8AscYOTuFw2bduNdAUiqpFqE6B2dZUWnBl0uJH8oLxoxZRvBp4qLaDHgZKsQZtFDzUmWKKuQ_PtIXwGQRnE2cVrpdKdf_8gcWE10EHybuKxR736WRTX2rvF7xwWYEr4a5uB9tnM8IxN4s_SXwgNr7PShnAVh7kKs3__viW3h6n9dzBofdtnfv0GXpzPsgo38AT9DqiA |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEaIXxLuhhfrAkWRTx3biIwpbbaFb9dCiiosVO14RtZtdbZLD_nvGTtKyiBOHSJY8SazxeB72-BuATw4yTlrBQ6kLGzKRFaG2J0VorNGlNlqUfk93fiFm1-zbDb8ZLoU1Q1plbXQV1XfLqK5--dzK9dJMxjyxyeU8T3AJczl5DE9wucZsjNGHswN0kZMeJRVHkKbZgDWEingyzaMkohHDkAn1sI8OfV0etJs0pbumaYQL_pfr-XcG5R8m6fQFPB98SfKlH_NLeGTrV_C0ry65xdbPlW-9hst8s123K9R9pmtIbVf9XYGG_Kg2nb91RBz8NPlaNcaldG7JUL6HnNXutN5vF5J516LyQdVYNW_g-nR6lc_CoZRCaNAjaENXhxMDnSy2TDBZmJhpLmNR8tRyW-pCn1i6QG9PxlaUglqOxs3RWrfEMUpO3sJevartAZCYSloIX5-DsyQrC8EXC4kfSjPGtF4E8Hnkolr3iBnKRxo0U9NcJYoq5D8-0pXAZAEcjZxWRbNUtrt1RxYjXQDHI_cVCr7rKpBNXaOcZnHhZgDv-rl4-NswnwGInVm6J3CQ2rs9KGkeWruXrPf_--IxPJtdzc_V-dnF90PYf8jyOYK9dtPZD-jAtPqjl9ff1Irt3g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXxJtAS33gSB51HCc-onRXLbDVHiiquFh24oio3exqkxz23zN2EsqinjhEsuRJYo3H87DH3wB8tJBxwvDEF1oZn_FM-dqcKr8whS51oXnp9nQXl_z8in25Tq4PIJvuwrik_ULXQXO7Cpr6l8ut3KyKcMoTC5eLPMYlnIhwU1bhA3iISzbiU5w-nh-gmxwPSKk4ijTNRrwhVMbhLA_igAYMwybUxS5CdLV50HbSlO6bpwky-D73898syr_M0vwZPB39SfJ5GPdzODDNC3g0VJjcYevn2rVewjLf7jbdGvVf0bekMevhvkBLftTb3t08IhaCmpzVbWHTOndkLOFDLhp7Yu-2DMmi71ABoXqs21dwNZ99z8_9sZyCX6BX0Pm2FicGO1lkGGdCFRHTiYh4maQmMaVW-tTQCj0-ERlecmoSNHCW1thljpFy_BoOm3Vj3gKJqKCKuxodCYuzUvGkqgR-KM0Y07ry4NPERbkZUDOkizZoJme5jCWVyH98hC2DyTw4mjgtVbuSpr-xxxYTnQcnE_clCr_tUsimvpVWu9iQ04M3w1zc_W2cTw_43iz9IbCw2vs9KG0OXnuQrnf_--IJPF6ezeW3i8uv7-HJXaLPERx2294cow_T6Q9OXH8DULfu8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryptococcus+neoformans+Virulence+Gene+Discovery+through+Insertional+Mutagenesis&rft.jtitle=Eukaryotic+cell&rft.au=Idnurm%2C+A&rft.au=Reedy%2C+J+L&rft.au=Nussbaum%2C+J+C&rft.au=Heitman%2C+J&rft.date=2004-04-01&rft.issn=1535-9786&rft.volume=3&rft.issue=2&rft.spage=420&rft.epage=429&rft_id=info:doi/10.1128%2FEC.3.2.420-429.2004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |