Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals
In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In...
Saved in:
Published in | Computers in biology and medicine Vol. 113; p. 103387 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.
•A deep-transfer learning approach was proposed for automated diagnosis of diabetes mellitus.•The HR signals were converted into frequency spectrum images.•Well-known 2D-CNN models were applied on the spectrogram images.•Classification performance was improved on small HR signals (71 DM and 71 health) via transferring 2D-CNN weights.•High classification performance was obtained with 97.62% accuracy and 100% sensitivity. |
---|---|
AbstractList | In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis. In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis. In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis. •A deep-transfer learning approach was proposed for automated diagnosis of diabetes mellitus.•The HR signals were converted into frequency spectrum images.•Well-known 2D-CNN models were applied on the spectrogram images.•Classification performance was improved on small HR signals (71 DM and 71 health) via transferring 2D-CNN weights.•High classification performance was obtained with 97.62% accuracy and 100% sensitivity. |
ArticleNumber | 103387 |
Author | Ay, Betul Acharya, U. Rajendra Baloglu, Ulas Baran Talo, Muhammed Aydin, Galip Yildirim, Ozal |
Author_xml | – sequence: 1 givenname: Ozal surname: Yildirim fullname: Yildirim, Ozal email: oyildirim@munzur.edu.tr organization: Department of Computer Engineering, Munzur University, Tunceli, Turkey – sequence: 2 givenname: Muhammed surname: Talo fullname: Talo, Muhammed organization: Department of Computer Engineering, Munzur University, Tunceli, Turkey – sequence: 3 givenname: Betul surname: Ay fullname: Ay, Betul organization: Department of Computer Engineering, Fırat University, Elazığ, Turkey – sequence: 4 givenname: Ulas Baran surname: Baloglu fullname: Baloglu, Ulas Baran organization: Department of Computer Science, University of Bristol, Bristol, United Kingdom – sequence: 5 givenname: Galip surname: Aydin fullname: Aydin, Galip organization: Department of Computer Engineering, Fırat University, Elazığ, Turkey – sequence: 6 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31421276$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQhy1URLeFV0CWuHDJ4thx4lwQ7VL-SFW5wNlynMnWIYkX2wH2DfrYTLQFpD3taWTrm9-M_V2Qs8lPQAjN2TpnefmmX1s_7hrnR2jXnOU1XguhqidklauqzpgUxRlZMZazrFBcnpOLGHvGWMEEe0bORV7wnFflijxczcmPJkFLW0hgk_MT9R1tnWkgOUvj3PR4Tefopi3dBchSMG5Cnr_PNnd3dPQtDJH-cumedgF-zDDZPY07bArzSN1othAp_MY2u4zpgh_pPZiQaMC5NLrtZIb4nDztsMCLx3pJvn24-br5lN1--fh5c3WbWcnqlCkpWWclFA1XVnFeSSiVtAyMgc6wujMFnhEprOEV1HXHreQgQUBdCqXEJXl9yN0Fj7vGpEcXLQyDmcDPUS-RvCxFJRF9dYT2fg7LspoLVpWqVrJA6uUjNTeoQ-8CPjns9d8_RkAdABt8jAG6f0jO9KJT9_q_Tr3o1Aed2Pr2qNW6ZBZHi4ThlIDrQwAqgp8Ogo7WoSBoXUBBuvXulJB3RyF2cJOzZvgO-9Mi_gA6-dma |
CitedBy_id | crossref_primary_10_1002_ima_22490 crossref_primary_10_1007_s10044_021_00984_y crossref_primary_10_1016_j_nxmate_2024_100282 crossref_primary_10_1109_ACCESS_2024_3433513 crossref_primary_10_3390_s22239259 crossref_primary_10_1109_ACCESS_2023_3269397 crossref_primary_10_3390_s21113929 crossref_primary_10_1007_s42600_022_00215_1 crossref_primary_10_1155_2022_3169927 crossref_primary_10_1080_23311916_2023_2181917 crossref_primary_10_3390_s20040969 crossref_primary_10_1109_ACCESS_2021_3082638 crossref_primary_10_1016_j_compbiomed_2020_103726 crossref_primary_10_3390_a16090433 crossref_primary_10_1016_j_compbiomed_2022_106155 crossref_primary_10_3390_sym12091526 crossref_primary_10_1016_j_pdpdt_2022_103107 crossref_primary_10_1007_s11517_022_02742_6 crossref_primary_10_3390_jpm13020373 crossref_primary_10_4018_ijrqeh_298630 crossref_primary_10_1016_j_pscychresns_2022_111537 crossref_primary_10_1080_10255842_2023_2286918 crossref_primary_10_1080_23311916_2022_2124635 crossref_primary_10_1016_j_aiia_2024_04_002 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_3390_diagnostics13010087 crossref_primary_10_3390_ijerph17176313 crossref_primary_10_1016_j_heliyon_2024_e36112 crossref_primary_10_1080_07391102_2021_1875049 crossref_primary_10_1007_s11042_022_12667_9 crossref_primary_10_1016_j_neucom_2021_06_100 crossref_primary_10_1016_j_measurement_2022_111543 crossref_primary_10_1111_exsy_12773 crossref_primary_10_1016_j_cmpb_2023_107678 crossref_primary_10_35609_gjbssr_2024_12_4_3 crossref_primary_10_1093_comjnl_bxab051 crossref_primary_10_3390_e22070733 crossref_primary_10_3390_s20092556 crossref_primary_10_1016_j_eswa_2021_116016 crossref_primary_10_1016_j_irbm_2020_11_002 crossref_primary_10_3233_JIFS_211784 crossref_primary_10_3390_app10248963 crossref_primary_10_1016_j_bspc_2020_102260 crossref_primary_10_1080_10255842_2024_2342512 crossref_primary_10_1088_1742_6596_2128_1_012012 crossref_primary_10_1088_1741_2552_adb998 crossref_primary_10_1007_s42979_024_03589_4 crossref_primary_10_1016_j_artmed_2019_101743 crossref_primary_10_3390_bioengineering12010004 crossref_primary_10_1016_j_jbi_2020_103565 crossref_primary_10_3389_fpubh_2022_959667 crossref_primary_10_1016_j_compbiomed_2023_107908 crossref_primary_10_1155_2021_6665357 crossref_primary_10_1016_j_bspc_2020_102227 crossref_primary_10_3390_ijerph18115780 crossref_primary_10_1016_j_compbiomed_2019_103419 crossref_primary_10_1109_JSEN_2021_3079570 crossref_primary_10_1016_j_patrec_2020_03_011 crossref_primary_10_1016_j_bspc_2022_103876 crossref_primary_10_25046_aj050573 crossref_primary_10_1007_s12539_021_00418_7 crossref_primary_10_2139_ssrn_4057307 crossref_primary_10_1016_j_asoc_2024_112118 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_17798_bitlisfen_1012489 crossref_primary_10_1371_journal_pdig_0000014 crossref_primary_10_3390_diagnostics13050824 crossref_primary_10_1007_s12559_023_10196_7 crossref_primary_10_1109_ACCESS_2020_3006491 crossref_primary_10_1016_j_bspc_2024_107250 crossref_primary_10_1016_j_cmpb_2020_105738 crossref_primary_10_1007_s11831_021_09667_7 crossref_primary_10_32604_cmc_2023_033860 crossref_primary_10_1109_LSENS_2020_3002991 crossref_primary_10_1007_s11571_020_09619_0 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_1136_bmjinnov_2021_000759 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_1002_cpe_7031 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_3390_brainsci13101428 crossref_primary_10_1109_ACCESS_2023_3235833 crossref_primary_10_1016_j_compbiomed_2023_107834 crossref_primary_10_1016_j_ijoes_2023_100212 crossref_primary_10_3390_s22134890 crossref_primary_10_1109_JSEN_2022_3219554 crossref_primary_10_1007_s12652_022_03756_6 crossref_primary_10_32604_jai_2022_028140 crossref_primary_10_3390_electronics9010121 crossref_primary_10_1016_j_drudis_2020_12_003 crossref_primary_10_1016_j_bbe_2021_07_003 crossref_primary_10_1155_2022_3408501 |
Cites_doi | 10.1161/CIRCULATIONAHA.106.634949 10.3390/ijerph16040599 10.1109/TBME.1985.325532 10.1109/TBME.2013.2282625 10.1016/j.compbiomed.2017.02.005 10.1016/j.procs.2017.08.193 10.2337/diacare.26.5.1553 10.23884/ejt.2017.7.2.11 10.1038/nature14539 10.1016/j.compbiomed.2013.05.024 10.1016/j.eswa.2015.01.051 10.1109/TBME.2013.2292936 10.1016/j.compbiomed.2018.09.009 10.3233/IDA-130580 10.1109/TMI.2009.2033909 10.1016/j.knosys.2015.02.005 10.1016/j.knosys.2012.09.008 10.1016/j.knosys.2015.03.015 10.1243/09544119JEIM486 10.1016/j.patrec.2019.02.016 10.1016/j.ins.2018.08.011 10.1080/10255842.2011.616945 10.2522/ptj.20080008 10.1021/acs.molpharmaceut.5b00982 10.1177/1479164109339965 10.1016/j.bspc.2011.06.002 10.1016/j.cogsys.2018.12.007 10.1016/j.compbiomed.2019.01.013 10.1016/j.cmpb.2018.04.005 10.1088/0967-3334/29/7/010 10.1002/cpe.4413 10.1016/j.ins.2018.09.010 10.1016/j.procs.2016.07.014 10.1016/j.ins.2016.09.031 10.1016/j.compbiomed.2013.10.007 10.1016/j.compbiomed.2018.12.012 10.1155/2016/6172453 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2019.103387 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
ExternalDocumentID | 31421276 10_1016_j_compbiomed_2019_103387 S0010482519302641 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR M0N RIG AAYXX AFCTW AGRNS ALIPV CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c509t-8550fc5e4b28c82275e685c0eaaefa09fa46850fc4ca27e99f2c52e5e3e963883 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Jul 11 03:18:07 EDT 2025 Wed Aug 13 06:37:09 EDT 2025 Mon Jul 21 06:07:35 EDT 2025 Tue Jul 01 03:28:34 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Fri Feb 23 02:49:33 EST 2024 Tue Aug 26 16:34:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Heart rate signals Transfer learning Diabetes mellitus |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-8550fc5e4b28c82275e685c0eaaefa09fa46850fc4ca27e99f2c52e5e3e963883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://research-information.bris.ac.uk/en/publications/37be720c-3632-44c5-8288-a77a22d93c48 |
PMID | 31421276 |
PQID | 2307689854 |
PQPubID | 1226355 |
ParticipantIDs | proquest_miscellaneous_2275266375 proquest_journals_2307689854 pubmed_primary_31421276 crossref_primary_10_1016_j_compbiomed_2019_103387 crossref_citationtrail_10_1016_j_compbiomed_2019_103387 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103387 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Pandey, Janghel (bib32) 2019 Cheng, Wang, Zhang, Hu (bib15) 2016 Nolan, Barry-Bianchi, Mechetiuc, Chen (bib24) 2009; 6 Pratt, Coenen, Broadbent, Harding, Zheng (bib38) 2016; 90 He, Zhang, Ren, Sun (bib50) 2016 Vinik, Ziegler (bib5) 2007; 115 Trunkvalterova, Javorka, Tonhajzerova, Javorkova, Lazarova, Javorka, Baumert (bib25) 2008; 29 (bib2) 2017 Faust, Acharya, Molinari, Chattopadhyay, Tamura (bib21) 2012; 7 Lu, Jiang, Liu (bib44) 2017; vol 299 Huang, Liu, Van Der Maaten, Weinberger (bib51) 2017 Krizhevsky, Sutskever, Hinton (bib48) 2012 Goodfellow, Bengio, Courville (bib29) 2016 Seyd, Ahamed, Jacob, Joseph (bib26) 2008; 4 Faust, Hagiwara, Hong, Lih, Acharya (bib35) 2018; 161 Cade (bib3) 2008; 88 Benjamin, Griggs, Wing, Fitz (bib1) 2015 Salem, Taheri, Yuan (bib45) 2018 Mookiah, Acharya, Martis, Chua, Lim, Ng, Laude (bib17) 2013; 39 Mamoshina, Vieira, Putin, Zhavoronkov (bib37) 2016; 13 Acharya, Faust, Kadri, Suri, Yu (bib19) 2013; 43 Yildirim, Baloglu, Acharya (bib31) 2019; 16 Niemeijer (bib6) 2009; 29 Acharya, Faust, Sree, Ghista, Dua, Joseph, Ahamed, Janarthanan, Tamura (bib20) 2013; 16 Oh, Ng, San Tan, Acharya (bib34) 2019; 105 Neammalai, Phimoltares, Lursinsap (bib43) 2014 Yıldırım, Pławiak, Tan, Acharya (bib46) 2018; 102 Simonyan K, Zisserman A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint 2014; arXiv:1409.1556. Acharya, Lim, Ng, Chee, Tamura (bib7) 2009; 223 Li, Zhang, Li, Wu, Zhang (bib11) 2017; 384 Shu, Zhang, Tang (bib12) 2018; 467 Vinik, Maser, Mitchell, Freeman (bib4) 2003; 26 Swapna, Acharya, VinithaSree, Suri (bib23) 2013; 17 Jian, Lim (bib52) 2013; 3 Lim, Jang, Lee (bib41) 2016 Nisar, Khan, Tariq (bib40) 2016; 2016 Talo, Baloglu, Yıldırım, Acharya (bib47) 2019; 54 Zhang, Kumar, Zhang (bib8) 2013; 61 Acharya, Vidya, Ghista, Lim, Molinari, Sankaranarayanan (bib18) 2015; 81 Mercaldo, Nardone, Santone (bib27) 2017; 112 Li, Zhang, Lu, You, Zhang (bib13) 2019; 472 Mookia, Acharya, Chua, Lim, Ng, Laude (bib16) 2013; 43 Baloglu, Talo, Yildirim, San Tan, Acharya (bib33) 2019; 122 Acharya, Fujita, Sudarshan, Sree, Eugene, Ghista, San Tan (bib14) 2015; 83 LeCun, Bengio, Hinton (bib28) 2015; 521 Coşkun, Yildirim, Uçar, Demir (bib30) 2017; 7 Michielli, Acharya, Molinari (bib36) 2019; 106 Pan, Tompkins (bib39) 1985; 32 Wang, Cao, Zhang, Gong, Sun, Wang (bib42) 2018; 30 Zhang, Zhang (bib9) 2013; 61 Pachori, Avinash, Shashank, Sharma, Acharya (bib22) 2015; 42 Shu, Zhang, Tang (bib10) 2017; 83 Pan (10.1016/j.compbiomed.2019.103387_bib39) 1985; 32 Yildirim (10.1016/j.compbiomed.2019.103387_bib31) 2019; 16 Jian (10.1016/j.compbiomed.2019.103387_bib52) 2013; 3 Zhang (10.1016/j.compbiomed.2019.103387_bib8) 2013; 61 Mookia (10.1016/j.compbiomed.2019.103387_bib16) 2013; 43 (10.1016/j.compbiomed.2019.103387_bib2) 2017 Acharya (10.1016/j.compbiomed.2019.103387_bib14) 2015; 83 Vinik (10.1016/j.compbiomed.2019.103387_bib4) 2003; 26 Huang (10.1016/j.compbiomed.2019.103387_bib51) 2017 Yıldırım (10.1016/j.compbiomed.2019.103387_bib46) 2018; 102 Baloglu (10.1016/j.compbiomed.2019.103387_bib33) 2019; 122 Faust (10.1016/j.compbiomed.2019.103387_bib21) 2012; 7 Pachori (10.1016/j.compbiomed.2019.103387_bib22) 2015; 42 Pandey (10.1016/j.compbiomed.2019.103387_bib32) 2019 Cade (10.1016/j.compbiomed.2019.103387_bib3) 2008; 88 Niemeijer (10.1016/j.compbiomed.2019.103387_bib6) 2009; 29 Coşkun (10.1016/j.compbiomed.2019.103387_bib30) 2017; 7 Acharya (10.1016/j.compbiomed.2019.103387_bib19) 2013; 43 Acharya (10.1016/j.compbiomed.2019.103387_bib20) 2013; 16 Krizhevsky (10.1016/j.compbiomed.2019.103387_bib48) 2012 Salem (10.1016/j.compbiomed.2019.103387_bib45) 2018 Goodfellow (10.1016/j.compbiomed.2019.103387_bib29) 2016 10.1016/j.compbiomed.2019.103387_bib49 Michielli (10.1016/j.compbiomed.2019.103387_bib36) 2019; 106 Li (10.1016/j.compbiomed.2019.103387_bib11) 2017; 384 Acharya (10.1016/j.compbiomed.2019.103387_bib18) 2015; 81 Faust (10.1016/j.compbiomed.2019.103387_bib35) 2018; 161 Shu (10.1016/j.compbiomed.2019.103387_bib12) 2018; 467 Shu (10.1016/j.compbiomed.2019.103387_bib10) 2017; 83 Vinik (10.1016/j.compbiomed.2019.103387_bib5) 2007; 115 Lim (10.1016/j.compbiomed.2019.103387_bib41) 2016 Nolan (10.1016/j.compbiomed.2019.103387_bib24) 2009; 6 Li (10.1016/j.compbiomed.2019.103387_bib13) 2019; 472 Talo (10.1016/j.compbiomed.2019.103387_bib47) 2019; 54 Zhang (10.1016/j.compbiomed.2019.103387_bib9) 2013; 61 Oh (10.1016/j.compbiomed.2019.103387_bib34) 2019; 105 Swapna (10.1016/j.compbiomed.2019.103387_bib23) 2013; 17 Acharya (10.1016/j.compbiomed.2019.103387_bib7) 2009; 223 Pratt (10.1016/j.compbiomed.2019.103387_bib38) 2016; 90 Mamoshina (10.1016/j.compbiomed.2019.103387_bib37) 2016; 13 Neammalai (10.1016/j.compbiomed.2019.103387_bib43) 2014 Cheng (10.1016/j.compbiomed.2019.103387_bib15) 2016 Trunkvalterova (10.1016/j.compbiomed.2019.103387_bib25) 2008; 29 Mercaldo (10.1016/j.compbiomed.2019.103387_bib27) 2017; 112 He (10.1016/j.compbiomed.2019.103387_bib50) 2016 Benjamin (10.1016/j.compbiomed.2019.103387_bib1) 2015 LeCun (10.1016/j.compbiomed.2019.103387_bib28) 2015; 521 Lu (10.1016/j.compbiomed.2019.103387_bib44) 2017; vol 299 Nisar (10.1016/j.compbiomed.2019.103387_bib40) 2016; 2016 Mookiah (10.1016/j.compbiomed.2019.103387_bib17) 2013; 39 Wang (10.1016/j.compbiomed.2019.103387_bib42) 2018; 30 Seyd (10.1016/j.compbiomed.2019.103387_bib26) 2008; 4 |
References_xml | – start-page: 4700 year: 2017 end-page: 4708 ident: bib51 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Simonyan K, Zisserman A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint 2014; arXiv:1409.1556. – year: 2017 ident: bib2 article-title: IDF Diabetes Atlas – volume: 29 start-page: 817 year: 2008 ident: bib25 article-title: Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis publication-title: Physiol. Meas. – start-page: 770 year: 2016 end-page: 778 ident: bib50 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 7 start-page: 165 year: 2017 end-page: 176 ident: bib30 article-title: An overview of popular deep learning methods publication-title: Eur J Tech – volume: 61 start-page: 1027 year: 2013 end-page: 1033 ident: bib9 article-title: Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier publication-title: IEEE Trans. Biomed. Eng. – volume: 29 start-page: 185 year: 2009 end-page: 195 ident: bib6 article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs publication-title: IEEE Trans. Med. Imaging – volume: 42 start-page: 4567 year: 2015 end-page: 4581 ident: bib22 article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals publication-title: Expert Syst. Appl. – year: 2016 ident: bib29 article-title: Deep Learning – volume: 26 start-page: 1553 year: 2003 end-page: 1579 ident: bib4 article-title: Diabetic autonomic neuropathy publication-title: Diabetes Care – volume: 467 start-page: 477 year: 2018 end-page: 488 ident: bib12 article-title: An improved noninvasive method to detect Diabetes Mellitus using the Probabilistic Collaborative Representation based Classifier publication-title: Inf. Sci. – volume: 4 start-page: 24 year: 2008 end-page: 27 ident: bib26 article-title: Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus publication-title: Int. J. Biol. Life Sci. – volume: 43 start-page: 1523 year: 2013 end-page: 1529 ident: bib19 article-title: Automated identification of normal and diabetes heart rate signals using nonlinear measures publication-title: Comput. Biol. Med. – volume: 521 start-page: 436 year: 2015 ident: bib28 article-title: Deep learning publication-title: Nature – volume: 39 start-page: 9 year: 2013 end-page: 22 ident: bib17 article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach publication-title: Knowl. Based Syst. – volume: 30 year: 2018 ident: bib42 article-title: Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition publication-title: Concurrency Comput. Pract. Ex. – volume: 115 start-page: 387 year: 2007 end-page: 397 ident: bib5 article-title: Diabetic cardiovascular autonomic neuropathy publication-title: Circulation – volume: 83 start-page: 149 year: 2015 end-page: 158 ident: bib14 article-title: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features publication-title: Knowl. Based Syst. – volume: 105 start-page: 92 year: 2019 end-page: 101 ident: bib34 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. – volume: 223 start-page: 545 year: 2009 end-page: 553 ident: bib7 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. H J. Eng. Med. – volume: 16 start-page: 222 year: 2013 end-page: 234 ident: bib20 article-title: An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes publication-title: Comput. Methods Biomech. Biomed. Eng. – start-page: 1 year: 2014 end-page: 6 ident: bib43 article-title: Speech and music classification using hybrid form of spectrogram and fourier transformation publication-title: Signal and Information Processing Association Annual Summit and Conference(APSIPA) – volume: 472 start-page: 1 year: 2019 end-page: 14 ident: bib13 article-title: Body surface feature-based multi-modal learning for diabetes mellitus detection publication-title: Inf. Sci. – volume: 83 start-page: 69 year: 2017 end-page: 83 ident: bib10 article-title: An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions publication-title: Comput. Biol. Med. – volume: 112 start-page: 2519 year: 2017 end-page: 2528 ident: bib27 article-title: Diabetes mellitus affected patients classification and diagnosis through machine learning techniques publication-title: Procedia comput. sci. – volume: 88 start-page: 1322 year: 2008 end-page: 1335 ident: bib3 article-title: Diabetes-related microvascular and macrovascular diseases in the physical therapy setting publication-title: Phys. Ther. – volume: 7 start-page: 295 year: 2012 end-page: 302 ident: bib21 article-title: Linear and non-linear analysis of cardiac health in diabetic subjects publication-title: Biomed. Signal Process. Control – volume: 16 start-page: 599 year: 2019 ident: bib31 article-title: A deep learning model for automated sleep stages classification using psg signals publication-title: Int. J. Environ. Res. Public Health – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: bib35 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput. Methods Progr. Biomed. – volume: 384 start-page: 191 year: 2017 end-page: 204 ident: bib11 article-title: Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection publication-title: Inf. Sci. – volume: 2016 year: 2016 ident: bib40 article-title: An efficient adaptive window size selection method for improving spectrogram visualization publication-title: Comput. Intell. Neurosci. – volume: 90 start-page: 200 year: 2016 end-page: 205 ident: bib38 article-title: Convolutional neural networks for diabetic retinopathy publication-title: Procedia comput. sci. – volume: 6 start-page: 276 year: 2009 end-page: 282 ident: bib24 article-title: Sex-based differences in the association between duration of type 2 diabetes and heart rate variability publication-title: Diabetes Vasc. Dis. Res. – volume: vol 299 start-page: 1 year: 2017 ident: bib44 article-title: Classification of eeg signal by stft-cnn framework: identification of right-/left-hand motor imagination in bci systems publication-title: The 7th International Conference on Computer Engineering and Networks – volume: 81 start-page: 56 year: 2015 end-page: 64 ident: bib18 article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method publication-title: Knowl. Based Syst. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: bib39 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. – volume: 3 start-page: 440 year: 2013 end-page: 447 ident: bib52 article-title: Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals publication-title: J. Med. Imag. Health Inf. – volume: 13 start-page: 1445 year: 2016 end-page: 1454 ident: bib37 article-title: Applications of deep learning in biomedicine publication-title: Mol. Pharm. – volume: 17 start-page: 309 year: 2013 end-page: 326 ident: bib23 article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals publication-title: Intell. Data Anal. – start-page: 1097 year: 2012 end-page: 1105 ident: bib48 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 43 start-page: 2136 year: 2013 end-page: 2155 ident: bib16 article-title: Computer-aided diagnosis of diabetic retinopathy: a review publication-title: Comput. Biol. Med. – start-page: 1 year: 2019 end-page: 29 ident: bib32 article-title: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review publication-title: Neural Process. Lett. – volume: 122 start-page: 23 year: 2019 end-page: 30 ident: bib33 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. – start-page: 432 year: 2016 end-page: 440 ident: bib15 article-title: Risk prediction with electronic health records: a deep learning approach publication-title: Proc. 2016 SIAM International Conference on Data Mining – year: 2015 ident: bib1 article-title: Andreoli and Carpenter's Cecil Essentials of Medicine E-Book – volume: 106 start-page: 71 year: 2019 end-page: 81 ident: bib36 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Comput. Biol. Med. – start-page: 1 year: 2018 end-page: 4 ident: bib45 article-title: ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features publication-title: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) – start-page: 1 year: 2016 end-page: 4 ident: bib41 article-title: Speech emotion recognition using convolutional and recurrent neural networks publication-title: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) – volume: 61 start-page: 491 year: 2013 end-page: 501 ident: bib8 article-title: Detecting diabetes mellitus and nonproliferative diabetic retinopathy using tongue color, texture, and geometry features publication-title: IEEE Trans. Biomed. Eng. – volume: 102 start-page: 411 year: 2018 end-page: 420 ident: bib46 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. – volume: 54 start-page: 176 year: 2019 end-page: 188 ident: bib47 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cogn. Syst. Res. – volume: 115 start-page: 387 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2019.103387_bib5 article-title: Diabetic cardiovascular autonomic neuropathy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.634949 – volume: 16 start-page: 599 issue: 4 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib31 article-title: A deep learning model for automated sleep stages classification using psg signals publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16040599 – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.compbiomed.2019.103387_bib39 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 61 start-page: 491 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib8 article-title: Detecting diabetes mellitus and nonproliferative diabetic retinopathy using tongue color, texture, and geometry features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2282625 – volume: 83 start-page: 69 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib10 article-title: An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.02.005 – volume: vol 299 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib44 article-title: Classification of eeg signal by stft-cnn framework: identification of right-/left-hand motor imagination in bci systems – volume: 4 start-page: 24 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2019.103387_bib26 article-title: Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus publication-title: Int. J. Biol. Life Sci. – volume: 112 start-page: 2519 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib27 article-title: Diabetes mellitus affected patients classification and diagnosis through machine learning techniques publication-title: Procedia comput. sci. doi: 10.1016/j.procs.2017.08.193 – start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2019.103387_bib48 article-title: Imagenet classification with deep convolutional neural networks – volume: 26 start-page: 1553 issue: 5 year: 2003 ident: 10.1016/j.compbiomed.2019.103387_bib4 article-title: Diabetic autonomic neuropathy publication-title: Diabetes Care doi: 10.2337/diacare.26.5.1553 – volume: 7 start-page: 165 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib30 article-title: An overview of popular deep learning methods publication-title: Eur J Tech doi: 10.23884/ejt.2017.7.2.11 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.compbiomed.2019.103387_bib28 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 43 start-page: 1523 issue: 10 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib19 article-title: Automated identification of normal and diabetes heart rate signals using nonlinear measures publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.05.024 – volume: 42 start-page: 4567 issue: 9 year: 2015 ident: 10.1016/j.compbiomed.2019.103387_bib22 article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.051 – volume: 61 start-page: 1027 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib9 article-title: Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2292936 – volume: 102 start-page: 411 year: 2018 ident: 10.1016/j.compbiomed.2019.103387_bib46 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.009 – volume: 17 start-page: 309 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib23 article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals publication-title: Intell. Data Anal. doi: 10.3233/IDA-130580 – volume: 29 start-page: 185 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2019.103387_bib6 article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2033909 – volume: 81 start-page: 56 year: 2015 ident: 10.1016/j.compbiomed.2019.103387_bib18 article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.02.005 – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib32 article-title: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review publication-title: Neural Process. Lett. – volume: 39 start-page: 9 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib17 article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.09.008 – volume: 83 start-page: 149 year: 2015 ident: 10.1016/j.compbiomed.2019.103387_bib14 article-title: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.03.015 – start-page: 4700 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib51 article-title: Densely connected convolutional networks – volume: 223 start-page: 545 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2019.103387_bib7 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. H J. Eng. Med. doi: 10.1243/09544119JEIM486 – volume: 122 start-page: 23 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib33 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib2 – volume: 467 start-page: 477 year: 2018 ident: 10.1016/j.compbiomed.2019.103387_bib12 article-title: An improved noninvasive method to detect Diabetes Mellitus using the Probabilistic Collaborative Representation based Classifier publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.08.011 – volume: 16 start-page: 222 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib20 article-title: An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.616945 – volume: 88 start-page: 1322 issue: 11 year: 2008 ident: 10.1016/j.compbiomed.2019.103387_bib3 article-title: Diabetes-related microvascular and macrovascular diseases in the physical therapy setting publication-title: Phys. Ther. doi: 10.2522/ptj.20080008 – volume: 13 start-page: 1445 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib37 article-title: Applications of deep learning in biomedicine publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.5b00982 – volume: 6 start-page: 276 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2019.103387_bib24 article-title: Sex-based differences in the association between duration of type 2 diabetes and heart rate variability publication-title: Diabetes Vasc. Dis. Res. doi: 10.1177/1479164109339965 – volume: 7 start-page: 295 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2019.103387_bib21 article-title: Linear and non-linear analysis of cardiac health in diabetic subjects publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.06.002 – volume: 3 start-page: 440 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib52 article-title: Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals publication-title: J. Med. Imag. Health Inf. – volume: 54 start-page: 176 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib47 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.12.007 – year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib29 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib50 article-title: Deep residual learning for image recognition – start-page: 432 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib15 article-title: Risk prediction with electronic health records: a deep learning approach – volume: 106 start-page: 71 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib36 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.013 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.103387_bib43 article-title: Speech and music classification using hybrid form of spectrogram and fourier transformation – volume: 161 start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103387_bib35 article-title: Deep learning for healthcare applications based on physiological signals: a review publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.04.005 – volume: 29 start-page: 817 issue: 7 year: 2008 ident: 10.1016/j.compbiomed.2019.103387_bib25 article-title: Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis publication-title: Physiol. Meas. doi: 10.1088/0967-3334/29/7/010 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2019.103387_bib45 article-title: ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features – volume: 30 issue: 23 year: 2018 ident: 10.1016/j.compbiomed.2019.103387_bib42 article-title: Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition publication-title: Concurrency Comput. Pract. Ex. doi: 10.1002/cpe.4413 – volume: 472 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib13 article-title: Body surface feature-based multi-modal learning for diabetes mellitus detection publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.09.010 – volume: 90 start-page: 200 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib38 article-title: Convolutional neural networks for diabetic retinopathy publication-title: Procedia comput. sci. doi: 10.1016/j.procs.2016.07.014 – year: 2015 ident: 10.1016/j.compbiomed.2019.103387_bib1 – volume: 384 start-page: 191 year: 2017 ident: 10.1016/j.compbiomed.2019.103387_bib11 article-title: Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.09.031 – ident: 10.1016/j.compbiomed.2019.103387_bib49 – volume: 43 start-page: 2136 issue: 12 year: 2013 ident: 10.1016/j.compbiomed.2019.103387_bib16 article-title: Computer-aided diagnosis of diabetic retinopathy: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.10.007 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib41 article-title: Speech emotion recognition using convolutional and recurrent neural networks – volume: 105 start-page: 92 year: 2019 ident: 10.1016/j.compbiomed.2019.103387_bib34 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.12.012 – volume: 2016 year: 2016 ident: 10.1016/j.compbiomed.2019.103387_bib40 article-title: An efficient adaptive window size selection method for improving spectrogram visualization publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/6172453 |
SSID | ssj0004030 |
Score | 2.5574763 |
Snippet | In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103387 |
SubjectTerms | Accuracy Annotations Artificial intelligence Automation Classification Conflicts of interest Data processing Datasets Decision trees Deep learning Diabetes Diabetes mellitus Diabetic neuropathy Diabetic retinopathy EKG Electrocardiography Fourier transforms Frequency spectrum Heart rate Heart rate signals Image detection Insulin Machine learning Medical imaging Model accuracy Model testing Neural networks Performance evaluation Signal analysis Signal processing Transfer learning Two dimensional models Wavelet transforms Weighting |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s2WggaJa0Q2thNbHFBVqCqk7olKe7McP1ARTdome-Af8LM7Ezu7F0B7jOKJEs94_GX8zQxjH3xZtjF6i0u8doVw3BX4nxWKSgfvas95qrN9vqrPLsS3tVzngNuQaZWzT5wcte8dxcg_EmG5VlpJ8fn6pqCuUXS6mlto3GcPqHQZWXWzbnZ5kSVPKSjoawT-CmUmT-J3EWU7pbgTwUtT9jknYt3ft6d_wc9pGzp9wh5n_AjHSeFP2b3QPWMPz_MJ-XP253gz9ohCgwcfxoln1UEfIcVYLx0Mm5ZCL0CE9x9AJJCpSwSOr74UJ6sVTL1xBqAALcTbxLT-DVNG5u3mCi6v0AMNgD59KvTsgRJUgPpij0BlJ4AYIWjTL9jF6dfvJ2dF7rZQOAQNY0GVzaKTQbSVcggbGhlqJV0ZrA3Rljpagdc4RDhbNUHrWDlZBRl4oEWs-Et20PVdeM1Aqegp2GyVtKL0eE87zVVr3dLVVjQL1syTbFwuRU7f-svMnLOfZqceQ-oxST0LttxKXqdyHHvI6FmPZk43RQdpcM_YQ_bTVjZDkgQ19pQ-ms3GZNcwmJ0hL9j77W1c1HRSY7vQb3AMzj4iJ97IBXuVzG37uXxJh_hNffj_h79hj-hNEu_wiB2giYS3iJ_G9t20SO4AsiQb2Q priority: 102 providerName: ProQuest |
Title | Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519302641 https://dx.doi.org/10.1016/j.compbiomed.2019.103387 https://www.ncbi.nlm.nih.gov/pubmed/31421276 https://www.proquest.com/docview/2307689854 https://www.proquest.com/docview/2275266375 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBalhbHLWPczW1veYFevjiXbEjulWbNso2aMFXIzsiSXjNUpjXPYZef92XtPklMGGwR2sZGlB7L09PQkfd8TY69tmjZtazUO8cIkwnCT4DrLJZly1hSW8xBn-6Iq5pfi4yJf7LHpwIUhWGW0_cGme2sdv5zG1jy9WS6J44tLCc-85LiQ8OR1IUrS8jc_72AeIuWBhoL2hkpHNE_AeBFsO9DcCeSliIHOCVz39ynqXy6on4pmD9mD6EPCJFTzkO257hG7dxFPyR-zX5NNv0JP1FmwrvdYqw5WLYR91qWB9aah7Rcg0PsVEBDE3xSB5bN3ybSqwN-PswbapIX2NqCtf4BnZd5urmF5jVZoDWjXfbBnC0RSAbobuwcKPQGECkG9fsIuZ-dfp_Mk3riQGHQc-oSim7Umd6LJpEHXocxdIXOTOq1dq1PVaoFpLCKMzkqnVJuZPHO5444GsuRP2X636txzBlK2ljactcy1SC3mKaO4bLQZm0KLcsTKoZFrE8OR079-rwfc2bf6rntq6p46dM-IjbeSNyEkxw4yaujHeqCcopGscd7YQfbtVvYP1dxR-mhQmzqah3VN6PtCKpmLEXu1zcaBTac1unOrDZbB1kfviZf5iD0L6rb9XT6mg_yyePFfVXvJ7lMqQBOP2D5qkDtGF6tvTvwYwme5KPEpZ-9P2MHkw6d5he-z8-rzl9-3_yvh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGdZKDBIcIzIxs5LCKGqZdnS7p5aqTfj2A4qoknbZIX6D_g1_EZm4mT3AmgvPUbxREnm6fE3MwBvbBgWZWk1qXhiAmmECWif5YIod9YkVgjfZ3s2T6Yn8stpfLoBv4daGIZVDjaxM9S2Npwjf8eA5STLs1h-vLgMeGoUn64OIzS8WBy665-0ZWs-HOwTf99G0eTT8d406KcKBIacYxtwB6_SxE4WUWbIPaaxS7LYhE5rV-owL7Wka1oijY5Sl-dlZOLIxU44FtZM0HNvwW0pyJNzZfrk86oOMxS-5IVsm6StV48c8ngyhoj7knoGlOVc7S4YyPd3d_ivcLdze5P7cK-PV3HXC9gD2HDVQ7gz60_kH8Gv3UVbU9TrLFrXdriuCusSfU73zGCzKDjVgwyw_4YMOummUtD6aD_Ym8-xm8XTICeEsbzyyO5r7CpArxbneHZOFq9B8iFdY2mLXBCDPIe7RW5zgYxAIR16DCc3wocnsFnVlXsKmGWl5eS2zmItQ0v3cpOLrNBmbBIt0xGkw09Wpm99zt_6Qw0Yt-9qxR7F7FGePSMYLykvfPuPNWjygY9qKG8lg6zIR61B-35J24dAPrRZk3pnEBvVm6JGrRRnBK-Xt8mI8MmQrly9oDX09ylSE2k8gm0vbsvPFWMGDaTJs_8__BXcnR7PjtTRwfzwOWzxW3nM4w5skri4FxS7tcXLTmEQvt60hv4BSB9ZHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFYov4ndPq66gj6G5bDYfiJTa69FaG4pY6Nu62Q-p2KQ2OaT_gX9T_zpnssndi8q99DFkJySZz539zQzAGxOGpXNGoYonOog11wHus2wQ5dboxHDu-2wfF8nBafzxTJytwc1QC0OwysEmdoba1Jpy5NsEWE6yPBPxtuthESfT2c7lz4AmSNFJ6zBOw4vIkb3-hdu35v3hFHn9Nopm-1_2DoJ-wkCg0VG2AXXzclrYuIwyja4yFTbJhA6tUtapMHcqxmtcEmsVpTbPXaRFZIXllgQ34_jcO7Ce0q5oBOsf9ouTz8uqzJD7Ahi0dDFuxHockUeXEWDcF9gTvCyn2ndOsL6_O8d_Bb-dE5zdh3t99Mp2vbg9gDVbPYSN4_58_hH83p23NcbA1jBj2w7lVbHaMZ_hPdesmZeU-GEEt__GCILSzajA9dE02CsK1k3maRilh5m78jjva9bVg17NL9j5Bdq_hiFbujbThlF5DKOp3C2jpheM8CioUY_h9FY48QRGVV3ZTWBZ5gylulUmVBwavJfrnGel0hOdqDgdQzr8ZKn7Ruj0rT_kgHj7LpfskcQe6dkzhsmC8tI3A1mBJh_4KIdiVzTPEj3WCrTvFrR9QOQDnRWptwaxkb1hauRSjcbwenEbTQqdE6nK1nNcg38f4zaeijE89eK2-Fw-IQhBmjz7_8NfwQZqp_x0WBw9h7v0Uh4AuQUjlBb7AgO5tnzZawyDr7etpH8A-fderw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+diabetic+subject+using+pre-trained+2D-CNN+models+with+frequency+spectrum+images+extracted+from+heart+rate+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Yildirim%2C+Ozal&rft.au=Talo%2C+Muhammed&rft.au=Ay%2C+Betul&rft.au=Baloglu%2C+Ulas+Baran&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=113&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103387&rft.externalDocID=S0010482519302641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |