Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals

In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 113; p. 103387
Main Authors Yildirim, Ozal, Talo, Muhammed, Ay, Betul, Baloglu, Ulas Baran, Aydin, Galip, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2019
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis. •A deep-transfer learning approach was proposed for automated diagnosis of diabetes mellitus.•The HR signals were converted into frequency spectrum images.•Well-known 2D-CNN models were applied on the spectrogram images.•Classification performance was improved on small HR signals (71 DM and 71 health) via transferring 2D-CNN weights.•High classification performance was obtained with 97.62% accuracy and 100% sensitivity.
AbstractList In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.
In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis.
In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from electrocardiogram (ECG) data. Recent progress in deep learning has contributed significantly to improvement in the quality of healthcare. In order for deep learning models to perform well, large datasets are required for training. However, a difficulty in the biomedical field is the lack of clinical data with expert annotation. A recent, commonly implemented technique to train deep learning models using small datasets is to transfer the weighting, developed from a large dataset, to the current model. This deep learning transfer strategy is generally employed for two-dimensional signals. Herein, the weighting of models pre-trained using two-dimensional large image data was applied to one-dimensional HR signals. The one-dimensional HR signals were then converted into frequency spectrum images, which were utilized for application to well-known pre-trained models, specifically: AlexNet, VggNet, ResNet, and DenseNet. The DenseNet pre-trained model yielded the highest classification average accuracy of 97.62%, and sensitivity of 100%, to detect DM subjects via HR signal recordings. In the future, we intend to further test this developed model by utilizing additional data along with cloud-based storage to diagnose DM via heart signal analysis. •A deep-transfer learning approach was proposed for automated diagnosis of diabetes mellitus.•The HR signals were converted into frequency spectrum images.•Well-known 2D-CNN models were applied on the spectrogram images.•Classification performance was improved on small HR signals (71 DM and 71 health) via transferring 2D-CNN weights.•High classification performance was obtained with 97.62% accuracy and 100% sensitivity.
ArticleNumber 103387
Author Ay, Betul
Acharya, U. Rajendra
Baloglu, Ulas Baran
Talo, Muhammed
Aydin, Galip
Yildirim, Ozal
Author_xml – sequence: 1
  givenname: Ozal
  surname: Yildirim
  fullname: Yildirim, Ozal
  email: oyildirim@munzur.edu.tr
  organization: Department of Computer Engineering, Munzur University, Tunceli, Turkey
– sequence: 2
  givenname: Muhammed
  surname: Talo
  fullname: Talo, Muhammed
  organization: Department of Computer Engineering, Munzur University, Tunceli, Turkey
– sequence: 3
  givenname: Betul
  surname: Ay
  fullname: Ay, Betul
  organization: Department of Computer Engineering, Fırat University, Elazığ, Turkey
– sequence: 4
  givenname: Ulas Baran
  surname: Baloglu
  fullname: Baloglu, Ulas Baran
  organization: Department of Computer Science, University of Bristol, Bristol, United Kingdom
– sequence: 5
  givenname: Galip
  surname: Aydin
  fullname: Aydin, Galip
  organization: Department of Computer Engineering, Fırat University, Elazığ, Turkey
– sequence: 6
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31421276$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQhy1URLeFV0CWuHDJ4thx4lwQ7VL-SFW5wNlynMnWIYkX2wH2DfrYTLQFpD3taWTrm9-M_V2Qs8lPQAjN2TpnefmmX1s_7hrnR2jXnOU1XguhqidklauqzpgUxRlZMZazrFBcnpOLGHvGWMEEe0bORV7wnFflijxczcmPJkFLW0hgk_MT9R1tnWkgOUvj3PR4Tefopi3dBchSMG5Cnr_PNnd3dPQtDJH-cumedgF-zDDZPY07bArzSN1othAp_MY2u4zpgh_pPZiQaMC5NLrtZIb4nDztsMCLx3pJvn24-br5lN1--fh5c3WbWcnqlCkpWWclFA1XVnFeSSiVtAyMgc6wujMFnhEprOEV1HXHreQgQUBdCqXEJXl9yN0Fj7vGpEcXLQyDmcDPUS-RvCxFJRF9dYT2fg7LspoLVpWqVrJA6uUjNTeoQ-8CPjns9d8_RkAdABt8jAG6f0jO9KJT9_q_Tr3o1Aed2Pr2qNW6ZBZHi4ThlIDrQwAqgp8Ogo7WoSBoXUBBuvXulJB3RyF2cJOzZvgO-9Mi_gA6-dma
CitedBy_id crossref_primary_10_1002_ima_22490
crossref_primary_10_1007_s10044_021_00984_y
crossref_primary_10_1016_j_nxmate_2024_100282
crossref_primary_10_1109_ACCESS_2024_3433513
crossref_primary_10_3390_s22239259
crossref_primary_10_1109_ACCESS_2023_3269397
crossref_primary_10_3390_s21113929
crossref_primary_10_1007_s42600_022_00215_1
crossref_primary_10_1155_2022_3169927
crossref_primary_10_1080_23311916_2023_2181917
crossref_primary_10_3390_s20040969
crossref_primary_10_1109_ACCESS_2021_3082638
crossref_primary_10_1016_j_compbiomed_2020_103726
crossref_primary_10_3390_a16090433
crossref_primary_10_1016_j_compbiomed_2022_106155
crossref_primary_10_3390_sym12091526
crossref_primary_10_1016_j_pdpdt_2022_103107
crossref_primary_10_1007_s11517_022_02742_6
crossref_primary_10_3390_jpm13020373
crossref_primary_10_4018_ijrqeh_298630
crossref_primary_10_1016_j_pscychresns_2022_111537
crossref_primary_10_1080_10255842_2023_2286918
crossref_primary_10_1080_23311916_2022_2124635
crossref_primary_10_1016_j_aiia_2024_04_002
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_3390_diagnostics13010087
crossref_primary_10_3390_ijerph17176313
crossref_primary_10_1016_j_heliyon_2024_e36112
crossref_primary_10_1080_07391102_2021_1875049
crossref_primary_10_1007_s11042_022_12667_9
crossref_primary_10_1016_j_neucom_2021_06_100
crossref_primary_10_1016_j_measurement_2022_111543
crossref_primary_10_1111_exsy_12773
crossref_primary_10_1016_j_cmpb_2023_107678
crossref_primary_10_35609_gjbssr_2024_12_4_3
crossref_primary_10_1093_comjnl_bxab051
crossref_primary_10_3390_e22070733
crossref_primary_10_3390_s20092556
crossref_primary_10_1016_j_eswa_2021_116016
crossref_primary_10_1016_j_irbm_2020_11_002
crossref_primary_10_3233_JIFS_211784
crossref_primary_10_3390_app10248963
crossref_primary_10_1016_j_bspc_2020_102260
crossref_primary_10_1080_10255842_2024_2342512
crossref_primary_10_1088_1742_6596_2128_1_012012
crossref_primary_10_1088_1741_2552_adb998
crossref_primary_10_1007_s42979_024_03589_4
crossref_primary_10_1016_j_artmed_2019_101743
crossref_primary_10_3390_bioengineering12010004
crossref_primary_10_1016_j_jbi_2020_103565
crossref_primary_10_3389_fpubh_2022_959667
crossref_primary_10_1016_j_compbiomed_2023_107908
crossref_primary_10_1155_2021_6665357
crossref_primary_10_1016_j_bspc_2020_102227
crossref_primary_10_3390_ijerph18115780
crossref_primary_10_1016_j_compbiomed_2019_103419
crossref_primary_10_1109_JSEN_2021_3079570
crossref_primary_10_1016_j_patrec_2020_03_011
crossref_primary_10_1016_j_bspc_2022_103876
crossref_primary_10_25046_aj050573
crossref_primary_10_1007_s12539_021_00418_7
crossref_primary_10_2139_ssrn_4057307
crossref_primary_10_1016_j_asoc_2024_112118
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_17798_bitlisfen_1012489
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_3390_diagnostics13050824
crossref_primary_10_1007_s12559_023_10196_7
crossref_primary_10_1109_ACCESS_2020_3006491
crossref_primary_10_1016_j_bspc_2024_107250
crossref_primary_10_1016_j_cmpb_2020_105738
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_32604_cmc_2023_033860
crossref_primary_10_1109_LSENS_2020_3002991
crossref_primary_10_1007_s11571_020_09619_0
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_1136_bmjinnov_2021_000759
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_1002_cpe_7031
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_3390_brainsci13101428
crossref_primary_10_1109_ACCESS_2023_3235833
crossref_primary_10_1016_j_compbiomed_2023_107834
crossref_primary_10_1016_j_ijoes_2023_100212
crossref_primary_10_3390_s22134890
crossref_primary_10_1109_JSEN_2022_3219554
crossref_primary_10_1007_s12652_022_03756_6
crossref_primary_10_32604_jai_2022_028140
crossref_primary_10_3390_electronics9010121
crossref_primary_10_1016_j_drudis_2020_12_003
crossref_primary_10_1016_j_bbe_2021_07_003
crossref_primary_10_1155_2022_3408501
Cites_doi 10.1161/CIRCULATIONAHA.106.634949
10.3390/ijerph16040599
10.1109/TBME.1985.325532
10.1109/TBME.2013.2282625
10.1016/j.compbiomed.2017.02.005
10.1016/j.procs.2017.08.193
10.2337/diacare.26.5.1553
10.23884/ejt.2017.7.2.11
10.1038/nature14539
10.1016/j.compbiomed.2013.05.024
10.1016/j.eswa.2015.01.051
10.1109/TBME.2013.2292936
10.1016/j.compbiomed.2018.09.009
10.3233/IDA-130580
10.1109/TMI.2009.2033909
10.1016/j.knosys.2015.02.005
10.1016/j.knosys.2012.09.008
10.1016/j.knosys.2015.03.015
10.1243/09544119JEIM486
10.1016/j.patrec.2019.02.016
10.1016/j.ins.2018.08.011
10.1080/10255842.2011.616945
10.2522/ptj.20080008
10.1021/acs.molpharmaceut.5b00982
10.1177/1479164109339965
10.1016/j.bspc.2011.06.002
10.1016/j.cogsys.2018.12.007
10.1016/j.compbiomed.2019.01.013
10.1016/j.cmpb.2018.04.005
10.1088/0967-3334/29/7/010
10.1002/cpe.4413
10.1016/j.ins.2018.09.010
10.1016/j.procs.2016.07.014
10.1016/j.ins.2016.09.031
10.1016/j.compbiomed.2013.10.007
10.1016/j.compbiomed.2018.12.012
10.1155/2016/6172453
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103387
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
ExternalDocumentID 31421276
10_1016_j_compbiomed_2019_103387
S0010482519302641
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
AAYXX
AFCTW
AGRNS
ALIPV
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c509t-8550fc5e4b28c82275e685c0eaaefa09fa46850fc4ca27e99f2c52e5e3e963883
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 03:18:07 EDT 2025
Wed Aug 13 06:37:09 EDT 2025
Mon Jul 21 06:07:35 EDT 2025
Tue Jul 01 03:28:34 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Fri Feb 23 02:49:33 EST 2024
Tue Aug 26 16:34:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Heart rate signals
Transfer learning
Diabetes mellitus
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-8550fc5e4b28c82275e685c0eaaefa09fa46850fc4ca27e99f2c52e5e3e963883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://research-information.bris.ac.uk/en/publications/37be720c-3632-44c5-8288-a77a22d93c48
PMID 31421276
PQID 2307689854
PQPubID 1226355
ParticipantIDs proquest_miscellaneous_2275266375
proquest_journals_2307689854
pubmed_primary_31421276
crossref_primary_10_1016_j_compbiomed_2019_103387
crossref_citationtrail_10_1016_j_compbiomed_2019_103387
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103387
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Pandey, Janghel (bib32) 2019
Cheng, Wang, Zhang, Hu (bib15) 2016
Nolan, Barry-Bianchi, Mechetiuc, Chen (bib24) 2009; 6
Pratt, Coenen, Broadbent, Harding, Zheng (bib38) 2016; 90
He, Zhang, Ren, Sun (bib50) 2016
Vinik, Ziegler (bib5) 2007; 115
Trunkvalterova, Javorka, Tonhajzerova, Javorkova, Lazarova, Javorka, Baumert (bib25) 2008; 29
(bib2) 2017
Faust, Acharya, Molinari, Chattopadhyay, Tamura (bib21) 2012; 7
Lu, Jiang, Liu (bib44) 2017; vol 299
Huang, Liu, Van Der Maaten, Weinberger (bib51) 2017
Krizhevsky, Sutskever, Hinton (bib48) 2012
Goodfellow, Bengio, Courville (bib29) 2016
Seyd, Ahamed, Jacob, Joseph (bib26) 2008; 4
Faust, Hagiwara, Hong, Lih, Acharya (bib35) 2018; 161
Cade (bib3) 2008; 88
Benjamin, Griggs, Wing, Fitz (bib1) 2015
Salem, Taheri, Yuan (bib45) 2018
Mookiah, Acharya, Martis, Chua, Lim, Ng, Laude (bib17) 2013; 39
Mamoshina, Vieira, Putin, Zhavoronkov (bib37) 2016; 13
Acharya, Faust, Kadri, Suri, Yu (bib19) 2013; 43
Yildirim, Baloglu, Acharya (bib31) 2019; 16
Niemeijer (bib6) 2009; 29
Acharya, Faust, Sree, Ghista, Dua, Joseph, Ahamed, Janarthanan, Tamura (bib20) 2013; 16
Oh, Ng, San Tan, Acharya (bib34) 2019; 105
Neammalai, Phimoltares, Lursinsap (bib43) 2014
Yıldırım, Pławiak, Tan, Acharya (bib46) 2018; 102
Simonyan K, Zisserman A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint 2014; arXiv:1409.1556.
Acharya, Lim, Ng, Chee, Tamura (bib7) 2009; 223
Li, Zhang, Li, Wu, Zhang (bib11) 2017; 384
Shu, Zhang, Tang (bib12) 2018; 467
Vinik, Maser, Mitchell, Freeman (bib4) 2003; 26
Swapna, Acharya, VinithaSree, Suri (bib23) 2013; 17
Jian, Lim (bib52) 2013; 3
Lim, Jang, Lee (bib41) 2016
Nisar, Khan, Tariq (bib40) 2016; 2016
Talo, Baloglu, Yıldırım, Acharya (bib47) 2019; 54
Zhang, Kumar, Zhang (bib8) 2013; 61
Acharya, Vidya, Ghista, Lim, Molinari, Sankaranarayanan (bib18) 2015; 81
Mercaldo, Nardone, Santone (bib27) 2017; 112
Li, Zhang, Lu, You, Zhang (bib13) 2019; 472
Mookia, Acharya, Chua, Lim, Ng, Laude (bib16) 2013; 43
Baloglu, Talo, Yildirim, San Tan, Acharya (bib33) 2019; 122
Acharya, Fujita, Sudarshan, Sree, Eugene, Ghista, San Tan (bib14) 2015; 83
LeCun, Bengio, Hinton (bib28) 2015; 521
Coşkun, Yildirim, Uçar, Demir (bib30) 2017; 7
Michielli, Acharya, Molinari (bib36) 2019; 106
Pan, Tompkins (bib39) 1985; 32
Wang, Cao, Zhang, Gong, Sun, Wang (bib42) 2018; 30
Zhang, Zhang (bib9) 2013; 61
Pachori, Avinash, Shashank, Sharma, Acharya (bib22) 2015; 42
Shu, Zhang, Tang (bib10) 2017; 83
Pan (10.1016/j.compbiomed.2019.103387_bib39) 1985; 32
Yildirim (10.1016/j.compbiomed.2019.103387_bib31) 2019; 16
Jian (10.1016/j.compbiomed.2019.103387_bib52) 2013; 3
Zhang (10.1016/j.compbiomed.2019.103387_bib8) 2013; 61
Mookia (10.1016/j.compbiomed.2019.103387_bib16) 2013; 43
(10.1016/j.compbiomed.2019.103387_bib2) 2017
Acharya (10.1016/j.compbiomed.2019.103387_bib14) 2015; 83
Vinik (10.1016/j.compbiomed.2019.103387_bib4) 2003; 26
Huang (10.1016/j.compbiomed.2019.103387_bib51) 2017
Yıldırım (10.1016/j.compbiomed.2019.103387_bib46) 2018; 102
Baloglu (10.1016/j.compbiomed.2019.103387_bib33) 2019; 122
Faust (10.1016/j.compbiomed.2019.103387_bib21) 2012; 7
Pachori (10.1016/j.compbiomed.2019.103387_bib22) 2015; 42
Pandey (10.1016/j.compbiomed.2019.103387_bib32) 2019
Cade (10.1016/j.compbiomed.2019.103387_bib3) 2008; 88
Niemeijer (10.1016/j.compbiomed.2019.103387_bib6) 2009; 29
Coşkun (10.1016/j.compbiomed.2019.103387_bib30) 2017; 7
Acharya (10.1016/j.compbiomed.2019.103387_bib19) 2013; 43
Acharya (10.1016/j.compbiomed.2019.103387_bib20) 2013; 16
Krizhevsky (10.1016/j.compbiomed.2019.103387_bib48) 2012
Salem (10.1016/j.compbiomed.2019.103387_bib45) 2018
Goodfellow (10.1016/j.compbiomed.2019.103387_bib29) 2016
10.1016/j.compbiomed.2019.103387_bib49
Michielli (10.1016/j.compbiomed.2019.103387_bib36) 2019; 106
Li (10.1016/j.compbiomed.2019.103387_bib11) 2017; 384
Acharya (10.1016/j.compbiomed.2019.103387_bib18) 2015; 81
Faust (10.1016/j.compbiomed.2019.103387_bib35) 2018; 161
Shu (10.1016/j.compbiomed.2019.103387_bib12) 2018; 467
Shu (10.1016/j.compbiomed.2019.103387_bib10) 2017; 83
Vinik (10.1016/j.compbiomed.2019.103387_bib5) 2007; 115
Lim (10.1016/j.compbiomed.2019.103387_bib41) 2016
Nolan (10.1016/j.compbiomed.2019.103387_bib24) 2009; 6
Li (10.1016/j.compbiomed.2019.103387_bib13) 2019; 472
Talo (10.1016/j.compbiomed.2019.103387_bib47) 2019; 54
Zhang (10.1016/j.compbiomed.2019.103387_bib9) 2013; 61
Oh (10.1016/j.compbiomed.2019.103387_bib34) 2019; 105
Swapna (10.1016/j.compbiomed.2019.103387_bib23) 2013; 17
Acharya (10.1016/j.compbiomed.2019.103387_bib7) 2009; 223
Pratt (10.1016/j.compbiomed.2019.103387_bib38) 2016; 90
Mamoshina (10.1016/j.compbiomed.2019.103387_bib37) 2016; 13
Neammalai (10.1016/j.compbiomed.2019.103387_bib43) 2014
Cheng (10.1016/j.compbiomed.2019.103387_bib15) 2016
Trunkvalterova (10.1016/j.compbiomed.2019.103387_bib25) 2008; 29
Mercaldo (10.1016/j.compbiomed.2019.103387_bib27) 2017; 112
He (10.1016/j.compbiomed.2019.103387_bib50) 2016
Benjamin (10.1016/j.compbiomed.2019.103387_bib1) 2015
LeCun (10.1016/j.compbiomed.2019.103387_bib28) 2015; 521
Lu (10.1016/j.compbiomed.2019.103387_bib44) 2017; vol 299
Nisar (10.1016/j.compbiomed.2019.103387_bib40) 2016; 2016
Mookiah (10.1016/j.compbiomed.2019.103387_bib17) 2013; 39
Wang (10.1016/j.compbiomed.2019.103387_bib42) 2018; 30
Seyd (10.1016/j.compbiomed.2019.103387_bib26) 2008; 4
References_xml – start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib51
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Simonyan K, Zisserman A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint 2014; arXiv:1409.1556.
– year: 2017
  ident: bib2
  article-title: IDF Diabetes Atlas
– volume: 29
  start-page: 817
  year: 2008
  ident: bib25
  article-title: Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis
  publication-title: Physiol. Meas.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib50
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 165
  year: 2017
  end-page: 176
  ident: bib30
  article-title: An overview of popular deep learning methods
  publication-title: Eur J Tech
– volume: 61
  start-page: 1027
  year: 2013
  end-page: 1033
  ident: bib9
  article-title: Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 185
  year: 2009
  end-page: 195
  ident: bib6
  article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  start-page: 4567
  year: 2015
  end-page: 4581
  ident: bib22
  article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals
  publication-title: Expert Syst. Appl.
– year: 2016
  ident: bib29
  article-title: Deep Learning
– volume: 26
  start-page: 1553
  year: 2003
  end-page: 1579
  ident: bib4
  article-title: Diabetic autonomic neuropathy
  publication-title: Diabetes Care
– volume: 467
  start-page: 477
  year: 2018
  end-page: 488
  ident: bib12
  article-title: An improved noninvasive method to detect Diabetes Mellitus using the Probabilistic Collaborative Representation based Classifier
  publication-title: Inf. Sci.
– volume: 4
  start-page: 24
  year: 2008
  end-page: 27
  ident: bib26
  article-title: Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus
  publication-title: Int. J. Biol. Life Sci.
– volume: 43
  start-page: 1523
  year: 2013
  end-page: 1529
  ident: bib19
  article-title: Automated identification of normal and diabetes heart rate signals using nonlinear measures
  publication-title: Comput. Biol. Med.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib28
  article-title: Deep learning
  publication-title: Nature
– volume: 39
  start-page: 9
  year: 2013
  end-page: 22
  ident: bib17
  article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach
  publication-title: Knowl. Based Syst.
– volume: 30
  year: 2018
  ident: bib42
  article-title: Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition
  publication-title: Concurrency Comput. Pract. Ex.
– volume: 115
  start-page: 387
  year: 2007
  end-page: 397
  ident: bib5
  article-title: Diabetic cardiovascular autonomic neuropathy
  publication-title: Circulation
– volume: 83
  start-page: 149
  year: 2015
  end-page: 158
  ident: bib14
  article-title: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features
  publication-title: Knowl. Based Syst.
– volume: 105
  start-page: 92
  year: 2019
  end-page: 101
  ident: bib34
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
– volume: 223
  start-page: 545
  year: 2009
  end-page: 553
  ident: bib7
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. H J. Eng. Med.
– volume: 16
  start-page: 222
  year: 2013
  end-page: 234
  ident: bib20
  article-title: An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib43
  article-title: Speech and music classification using hybrid form of spectrogram and fourier transformation
  publication-title: Signal and Information Processing Association Annual Summit and Conference(APSIPA)
– volume: 472
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib13
  article-title: Body surface feature-based multi-modal learning for diabetes mellitus detection
  publication-title: Inf. Sci.
– volume: 83
  start-page: 69
  year: 2017
  end-page: 83
  ident: bib10
  article-title: An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions
  publication-title: Comput. Biol. Med.
– volume: 112
  start-page: 2519
  year: 2017
  end-page: 2528
  ident: bib27
  article-title: Diabetes mellitus affected patients classification and diagnosis through machine learning techniques
  publication-title: Procedia comput. sci.
– volume: 88
  start-page: 1322
  year: 2008
  end-page: 1335
  ident: bib3
  article-title: Diabetes-related microvascular and macrovascular diseases in the physical therapy setting
  publication-title: Phys. Ther.
– volume: 7
  start-page: 295
  year: 2012
  end-page: 302
  ident: bib21
  article-title: Linear and non-linear analysis of cardiac health in diabetic subjects
  publication-title: Biomed. Signal Process. Control
– volume: 16
  start-page: 599
  year: 2019
  ident: bib31
  article-title: A deep learning model for automated sleep stages classification using psg signals
  publication-title: Int. J. Environ. Res. Public Health
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib35
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput. Methods Progr. Biomed.
– volume: 384
  start-page: 191
  year: 2017
  end-page: 204
  ident: bib11
  article-title: Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection
  publication-title: Inf. Sci.
– volume: 2016
  year: 2016
  ident: bib40
  article-title: An efficient adaptive window size selection method for improving spectrogram visualization
  publication-title: Comput. Intell. Neurosci.
– volume: 90
  start-page: 200
  year: 2016
  end-page: 205
  ident: bib38
  article-title: Convolutional neural networks for diabetic retinopathy
  publication-title: Procedia comput. sci.
– volume: 6
  start-page: 276
  year: 2009
  end-page: 282
  ident: bib24
  article-title: Sex-based differences in the association between duration of type 2 diabetes and heart rate variability
  publication-title: Diabetes Vasc. Dis. Res.
– volume: vol 299
  start-page: 1
  year: 2017
  ident: bib44
  article-title: Classification of eeg signal by stft-cnn framework: identification of right-/left-hand motor imagination in bci systems
  publication-title: The 7th International Conference on Computer Engineering and Networks
– volume: 81
  start-page: 56
  year: 2015
  end-page: 64
  ident: bib18
  article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method
  publication-title: Knowl. Based Syst.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bib39
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 3
  start-page: 440
  year: 2013
  end-page: 447
  ident: bib52
  article-title: Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals
  publication-title: J. Med. Imag. Health Inf.
– volume: 13
  start-page: 1445
  year: 2016
  end-page: 1454
  ident: bib37
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol. Pharm.
– volume: 17
  start-page: 309
  year: 2013
  end-page: 326
  ident: bib23
  article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals
  publication-title: Intell. Data Anal.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib48
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 43
  start-page: 2136
  year: 2013
  end-page: 2155
  ident: bib16
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2019
  end-page: 29
  ident: bib32
  article-title: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review
  publication-title: Neural Process. Lett.
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: bib33
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
– start-page: 432
  year: 2016
  end-page: 440
  ident: bib15
  article-title: Risk prediction with electronic health records: a deep learning approach
  publication-title: Proc. 2016 SIAM International Conference on Data Mining
– year: 2015
  ident: bib1
  article-title: Andreoli and Carpenter's Cecil Essentials of Medicine E-Book
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: bib36
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib45
  article-title: ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features
  publication-title: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib41
  article-title: Speech emotion recognition using convolutional and recurrent neural networks
  publication-title: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)
– volume: 61
  start-page: 491
  year: 2013
  end-page: 501
  ident: bib8
  article-title: Detecting diabetes mellitus and nonproliferative diabetic retinopathy using tongue color, texture, and geometry features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib46
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
– volume: 54
  start-page: 176
  year: 2019
  end-page: 188
  ident: bib47
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cogn. Syst. Res.
– volume: 115
  start-page: 387
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103387_bib5
  article-title: Diabetic cardiovascular autonomic neuropathy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.634949
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib31
  article-title: A deep learning model for automated sleep stages classification using psg signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.compbiomed.2019.103387_bib39
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 61
  start-page: 491
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib8
  article-title: Detecting diabetes mellitus and nonproliferative diabetic retinopathy using tongue color, texture, and geometry features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2282625
– volume: 83
  start-page: 69
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib10
  article-title: An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.02.005
– volume: vol 299
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib44
  article-title: Classification of eeg signal by stft-cnn framework: identification of right-/left-hand motor imagination in bci systems
– volume: 4
  start-page: 24
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103387_bib26
  article-title: Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus
  publication-title: Int. J. Biol. Life Sci.
– volume: 112
  start-page: 2519
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib27
  article-title: Diabetes mellitus affected patients classification and diagnosis through machine learning techniques
  publication-title: Procedia comput. sci.
  doi: 10.1016/j.procs.2017.08.193
– start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103387_bib48
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 26
  start-page: 1553
  issue: 5
  year: 2003
  ident: 10.1016/j.compbiomed.2019.103387_bib4
  article-title: Diabetic autonomic neuropathy
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.5.1553
– volume: 7
  start-page: 165
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib30
  article-title: An overview of popular deep learning methods
  publication-title: Eur J Tech
  doi: 10.23884/ejt.2017.7.2.11
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103387_bib28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 43
  start-page: 1523
  issue: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib19
  article-title: Automated identification of normal and diabetes heart rate signals using nonlinear measures
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.05.024
– volume: 42
  start-page: 4567
  issue: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103387_bib22
  article-title: Application of empirical mode decomposition for analysis of normal and diabetic RR-interval signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.051
– volume: 61
  start-page: 1027
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib9
  article-title: Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2292936
– volume: 102
  start-page: 411
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103387_bib46
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 17
  start-page: 309
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib23
  article-title: Automated detection of diabetes using higher order spectral features extracted from heart rate signals
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-130580
– volume: 29
  start-page: 185
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103387_bib6
  article-title: Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2033909
– volume: 81
  start-page: 56
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103387_bib18
  article-title: Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.02.005
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib32
  article-title: Recent deep learning techniques, challenges and its applications for medical healthcare system: a review
  publication-title: Neural Process. Lett.
– volume: 39
  start-page: 9
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib17
  article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.09.008
– volume: 83
  start-page: 149
  year: 2015
  ident: 10.1016/j.compbiomed.2019.103387_bib14
  article-title: An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.03.015
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib51
  article-title: Densely connected convolutional networks
– volume: 223
  start-page: 545
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103387_bib7
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. H J. Eng. Med.
  doi: 10.1243/09544119JEIM486
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib33
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib2
– volume: 467
  start-page: 477
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103387_bib12
  article-title: An improved noninvasive method to detect Diabetes Mellitus using the Probabilistic Collaborative Representation based Classifier
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.08.011
– volume: 16
  start-page: 222
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib20
  article-title: An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.616945
– volume: 88
  start-page: 1322
  issue: 11
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103387_bib3
  article-title: Diabetes-related microvascular and macrovascular diseases in the physical therapy setting
  publication-title: Phys. Ther.
  doi: 10.2522/ptj.20080008
– volume: 13
  start-page: 1445
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib37
  article-title: Applications of deep learning in biomedicine
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.5b00982
– volume: 6
  start-page: 276
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103387_bib24
  article-title: Sex-based differences in the association between duration of type 2 diabetes and heart rate variability
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.1177/1479164109339965
– volume: 7
  start-page: 295
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103387_bib21
  article-title: Linear and non-linear analysis of cardiac health in diabetic subjects
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.06.002
– volume: 3
  start-page: 440
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib52
  article-title: Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals
  publication-title: J. Med. Imag. Health Inf.
– volume: 54
  start-page: 176
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib47
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.12.007
– year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib29
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib50
  article-title: Deep residual learning for image recognition
– start-page: 432
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib15
  article-title: Risk prediction with electronic health records: a deep learning approach
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib36
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103387_bib43
  article-title: Speech and music classification using hybrid form of spectrogram and fourier transformation
– volume: 161
  start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103387_bib35
  article-title: Deep learning for healthcare applications based on physiological signals: a review
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 29
  start-page: 817
  issue: 7
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103387_bib25
  article-title: Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/29/7/010
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103387_bib45
  article-title: ECG arrhythmia classification using transfer learning from 2-dimensional deep CNN features
– volume: 30
  issue: 23
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103387_bib42
  article-title: Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition
  publication-title: Concurrency Comput. Pract. Ex.
  doi: 10.1002/cpe.4413
– volume: 472
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib13
  article-title: Body surface feature-based multi-modal learning for diabetes mellitus detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.09.010
– volume: 90
  start-page: 200
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib38
  article-title: Convolutional neural networks for diabetic retinopathy
  publication-title: Procedia comput. sci.
  doi: 10.1016/j.procs.2016.07.014
– year: 2015
  ident: 10.1016/j.compbiomed.2019.103387_bib1
– volume: 384
  start-page: 191
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103387_bib11
  article-title: Joint similar and specific learning for diabetes mellitus and impaired glucose regulation detection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.09.031
– ident: 10.1016/j.compbiomed.2019.103387_bib49
– volume: 43
  start-page: 2136
  issue: 12
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103387_bib16
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.10.007
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib41
  article-title: Speech emotion recognition using convolutional and recurrent neural networks
– volume: 105
  start-page: 92
  year: 2019
  ident: 10.1016/j.compbiomed.2019.103387_bib34
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 2016
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103387_bib40
  article-title: An efficient adaptive window size selection method for improving spectrogram visualization
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/6172453
SSID ssj0004030
Score 2.5574763
Snippet In this study, a deep-transfer learning approach is proposed for the automated diagnosis of diabetes mellitus (DM), using heart rate (HR) signals obtained from...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103387
SubjectTerms Accuracy
Annotations
Artificial intelligence
Automation
Classification
Conflicts of interest
Data processing
Datasets
Decision trees
Deep learning
Diabetes
Diabetes mellitus
Diabetic neuropathy
Diabetic retinopathy
EKG
Electrocardiography
Fourier transforms
Frequency spectrum
Heart rate
Heart rate signals
Image detection
Insulin
Machine learning
Medical imaging
Model accuracy
Model testing
Neural networks
Performance evaluation
Signal analysis
Signal processing
Transfer learning
Two dimensional models
Wavelet transforms
Weighting
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s2WggaJa0Q2thNbHFBVqCqk7olKe7McP1ARTdome-Af8LM7Ezu7F0B7jOKJEs94_GX8zQxjH3xZtjF6i0u8doVw3BX4nxWKSgfvas95qrN9vqrPLsS3tVzngNuQaZWzT5wcte8dxcg_EmG5VlpJ8fn6pqCuUXS6mlto3GcPqHQZWXWzbnZ5kSVPKSjoawT-CmUmT-J3EWU7pbgTwUtT9jknYt3ft6d_wc9pGzp9wh5n_AjHSeFP2b3QPWMPz_MJ-XP253gz9ohCgwcfxoln1UEfIcVYLx0Mm5ZCL0CE9x9AJJCpSwSOr74UJ6sVTL1xBqAALcTbxLT-DVNG5u3mCi6v0AMNgD59KvTsgRJUgPpij0BlJ4AYIWjTL9jF6dfvJ2dF7rZQOAQNY0GVzaKTQbSVcggbGhlqJV0ZrA3Rljpagdc4RDhbNUHrWDlZBRl4oEWs-Et20PVdeM1Aqegp2GyVtKL0eE87zVVr3dLVVjQL1syTbFwuRU7f-svMnLOfZqceQ-oxST0LttxKXqdyHHvI6FmPZk43RQdpcM_YQ_bTVjZDkgQ19pQ-ms3GZNcwmJ0hL9j77W1c1HRSY7vQb3AMzj4iJ97IBXuVzG37uXxJh_hNffj_h79hj-hNEu_wiB2giYS3iJ_G9t20SO4AsiQb2Q
  priority: 102
  providerName: ProQuest
Title Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519302641
https://dx.doi.org/10.1016/j.compbiomed.2019.103387
https://www.ncbi.nlm.nih.gov/pubmed/31421276
https://www.proquest.com/docview/2307689854
https://www.proquest.com/docview/2275266375
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBalhbHLWPczW1veYFevjiXbEjulWbNso2aMFXIzsiSXjNUpjXPYZef92XtPklMGGwR2sZGlB7L09PQkfd8TY69tmjZtazUO8cIkwnCT4DrLJZly1hSW8xBn-6Iq5pfi4yJf7LHpwIUhWGW0_cGme2sdv5zG1jy9WS6J44tLCc-85LiQ8OR1IUrS8jc_72AeIuWBhoL2hkpHNE_AeBFsO9DcCeSliIHOCVz39ynqXy6on4pmD9mD6EPCJFTzkO257hG7dxFPyR-zX5NNv0JP1FmwrvdYqw5WLYR91qWB9aah7Rcg0PsVEBDE3xSB5bN3ybSqwN-PswbapIX2NqCtf4BnZd5urmF5jVZoDWjXfbBnC0RSAbobuwcKPQGECkG9fsIuZ-dfp_Mk3riQGHQc-oSim7Umd6LJpEHXocxdIXOTOq1dq1PVaoFpLCKMzkqnVJuZPHO5444GsuRP2X636txzBlK2ljactcy1SC3mKaO4bLQZm0KLcsTKoZFrE8OR079-rwfc2bf6rntq6p46dM-IjbeSNyEkxw4yaujHeqCcopGscd7YQfbtVvYP1dxR-mhQmzqah3VN6PtCKpmLEXu1zcaBTac1unOrDZbB1kfviZf5iD0L6rb9XT6mg_yyePFfVXvJ7lMqQBOP2D5qkDtGF6tvTvwYwme5KPEpZ-9P2MHkw6d5he-z8-rzl9-3_yvh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviGdZKDBIcIzIxs5LCKGqZdnS7p5aqTfj2A4qoknbZIX6D_g1_EZm4mT3AmgvPUbxREnm6fE3MwBvbBgWZWk1qXhiAmmECWif5YIod9YkVgjfZ3s2T6Yn8stpfLoBv4daGIZVDjaxM9S2Npwjf8eA5STLs1h-vLgMeGoUn64OIzS8WBy665-0ZWs-HOwTf99G0eTT8d406KcKBIacYxtwB6_SxE4WUWbIPaaxS7LYhE5rV-owL7Wka1oijY5Sl-dlZOLIxU44FtZM0HNvwW0pyJNzZfrk86oOMxS-5IVsm6StV48c8ngyhoj7knoGlOVc7S4YyPd3d_ivcLdze5P7cK-PV3HXC9gD2HDVQ7gz60_kH8Gv3UVbU9TrLFrXdriuCusSfU73zGCzKDjVgwyw_4YMOummUtD6aD_Ym8-xm8XTICeEsbzyyO5r7CpArxbneHZOFq9B8iFdY2mLXBCDPIe7RW5zgYxAIR16DCc3wocnsFnVlXsKmGWl5eS2zmItQ0v3cpOLrNBmbBIt0xGkw09Wpm99zt_6Qw0Yt-9qxR7F7FGePSMYLykvfPuPNWjygY9qKG8lg6zIR61B-35J24dAPrRZk3pnEBvVm6JGrRRnBK-Xt8mI8MmQrly9oDX09ylSE2k8gm0vbsvPFWMGDaTJs_8__BXcnR7PjtTRwfzwOWzxW3nM4w5skri4FxS7tcXLTmEQvt60hv4BSB9ZHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFYov4ndPq66gj6G5bDYfiJTa69FaG4pY6Nu62Q-p2KQ2OaT_gX9T_zpnssndi8q99DFkJySZz539zQzAGxOGpXNGoYonOog11wHus2wQ5dboxHDu-2wfF8nBafzxTJytwc1QC0OwysEmdoba1Jpy5NsEWE6yPBPxtuthESfT2c7lz4AmSNFJ6zBOw4vIkb3-hdu35v3hFHn9Nopm-1_2DoJ-wkCg0VG2AXXzclrYuIwyja4yFTbJhA6tUtapMHcqxmtcEmsVpTbPXaRFZIXllgQ34_jcO7Ce0q5oBOsf9ouTz8uqzJD7Ahi0dDFuxHockUeXEWDcF9gTvCyn2ndOsL6_O8d_Bb-dE5zdh3t99Mp2vbg9gDVbPYSN4_58_hH83p23NcbA1jBj2w7lVbHaMZ_hPdesmZeU-GEEt__GCILSzajA9dE02CsK1k3maRilh5m78jjva9bVg17NL9j5Bdq_hiFbujbThlF5DKOp3C2jpheM8CioUY_h9FY48QRGVV3ZTWBZ5gylulUmVBwavJfrnGel0hOdqDgdQzr8ZKn7Ruj0rT_kgHj7LpfskcQe6dkzhsmC8tI3A1mBJh_4KIdiVzTPEj3WCrTvFrR9QOQDnRWptwaxkb1hauRSjcbwenEbTQqdE6nK1nNcg38f4zaeijE89eK2-Fw-IQhBmjz7_8NfwQZqp_x0WBw9h7v0Uh4AuQUjlBb7AgO5tnzZawyDr7etpH8A-fderw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+diabetic+subject+using+pre-trained+2D-CNN+models+with+frequency+spectrum+images+extracted+from+heart+rate+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Yildirim%2C+Ozal&rft.au=Talo%2C+Muhammed&rft.au=Ay%2C+Betul&rft.au=Baloglu%2C+Ulas+Baran&rft.date=2019-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=113&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103387&rft.externalDocID=S0010482519302641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon