Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch

Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...

Full description

Saved in:
Bibliographic Details
Published inEukaryotic Cell Vol. 12; no. 6; pp. 776 - 793
Main Authors Johnson, Xenie, Alric, Jean
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.06.2013
Subjects
Online AccessGet full text
ISSN1535-9778
1535-9786
1535-9786
DOI10.1128/EC.00318-12

Cover

Loading…
Abstract Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
AbstractList The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production.
The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production.
The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production.The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production.
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to EC .asm.org, visit: EC       
Author Jean Alric
Xenie Johnson
Author_xml – sequence: 1
  givenname: Xenie
  surname: Johnson
  fullname: Johnson, Xenie
  organization: Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, France, CNRS, UMR Biologie Végétale et Microbiologie Environnementale, Saint-Paul-lez-Durance, France, Aix Marseille Université, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance, France
– sequence: 2
  givenname: Jean
  surname: Alric
  fullname: Alric, Jean
  organization: Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA, UMR 7141, CNRS et Université Pierre et Marie Curie (Paris VI), Institut de Biologie Physico-Chimique, Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23543671$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gxB35wAEJpdhxHDsckFC0fEhFRaKcrYkz2RgSe2t7qfo7-MMk3e4KEBInj-xn3nn1ek6zI-cdZtlTRs8ZK9SrVXNOKWcqZ8WD7IQJLvJaquroUEt1nJ3G-I1SJmrJH2XHBRclryQ7yX426FKAkTQQWu_IJ0zQ-tHGiYDryGpEk8J8fxXAxY0PiVhHmmGE6bbzk3cQSUDrBghdsvb1od-Qxrs4K1uXIul92A_4DCHZZL2zbk1aTDeIjlza8W7clwTBDI-zhz2MEZ_cn2fZ13erq-ZDfnH5_mPz9iI3gtYplxKBg1Fd2WFVKgY1tKbohRFzXXaqVy1jhvV1SaXquCj6QrAKF6YDZJyfZW92upttO2FndknoTbAThFvtweo_X5wd9Nr_0HN0oq7LWeDFvUDw11uMSU82GhxHcOi3UbOy5FxKScX_UV4JKpjiC_rsd1sHP_tPmwG2A0zwMQbstbEJlkyXvEfNqF4WQ68afbcYmhVzz8u_evay_6af7-jBrocbG1BDnDRuvy-OZ0BXWsqK_wKeusjf
CitedBy_id crossref_primary_10_3390_microorganisms12040715
crossref_primary_10_1007_s10811_023_02946_9
crossref_primary_10_1016_j_algal_2020_101835
crossref_primary_10_1186_s13068_017_1000_0
crossref_primary_10_1016_j_biteb_2019_100239
crossref_primary_10_1016_j_biortech_2014_08_090
crossref_primary_10_1016_j_biteb_2023_101746
crossref_primary_10_1021_acs_iecr_9b05948
crossref_primary_10_1534_g3_117_300253
crossref_primary_10_1016_j_algal_2020_102004
crossref_primary_10_1111_raq_12700
crossref_primary_10_1105_tpc_114_129965
crossref_primary_10_1371_journal_pone_0198976
crossref_primary_10_3389_fbioe_2024_1350722
crossref_primary_10_3389_fmicb_2017_00858
crossref_primary_10_1007_s40518_014_0011_8
crossref_primary_10_3390_plants13213015
crossref_primary_10_1007_s12155_025_10829_9
crossref_primary_10_3389_fpls_2022_876439
crossref_primary_10_1016_j_algal_2020_101825
crossref_primary_10_1007_s00253_017_8322_5
crossref_primary_10_1111_febs_14989
crossref_primary_10_1007_s10811_016_0932_2
crossref_primary_10_1016_j_copbio_2015_08_001
crossref_primary_10_3389_fmolb_2018_00103
crossref_primary_10_1007_s10811_017_1326_9
crossref_primary_10_1002_jctb_5059
crossref_primary_10_1016_j_algal_2018_02_009
crossref_primary_10_3390_ijms23094927
crossref_primary_10_2521_jswtb_56_57
crossref_primary_10_1016_j_biortech_2019_121894
crossref_primary_10_1038_srep45471
crossref_primary_10_3390_ijms21207787
crossref_primary_10_1016_j_bbabio_2014_01_024
crossref_primary_10_1038_s41467_023_39898_0
crossref_primary_10_1016_j_algal_2018_05_014
crossref_primary_10_1104_pp_114_250530
crossref_primary_10_3390_phycology4020012
crossref_primary_10_1016_j_pmpp_2021_101757
crossref_primary_10_1016_j_biortech_2015_01_005
crossref_primary_10_1111_tpj_12823
crossref_primary_10_1111_tpj_12944
crossref_primary_10_1016_j_biotechadv_2017_09_009
crossref_primary_10_3389_fmicb_2016_00546
crossref_primary_10_1016_j_algal_2015_04_002
crossref_primary_10_1080_03067319_2021_2004590
crossref_primary_10_1146_annurev_arplant_043014_114744
crossref_primary_10_1007_s11120_017_0350_6
crossref_primary_10_1016_j_bcab_2024_103224
crossref_primary_10_1016_j_biortech_2014_04_083
crossref_primary_10_1073_pnas_2115261119
crossref_primary_10_3389_fpls_2022_960133
crossref_primary_10_1016_j_biortech_2019_121786
crossref_primary_10_1111_tpj_12829
crossref_primary_10_1093_mp_sst139
crossref_primary_10_54097_cskyny85
crossref_primary_10_1016_j_algal_2016_06_003
crossref_primary_10_1016_j_algal_2017_08_010
crossref_primary_10_1016_j_jplph_2022_153629
crossref_primary_10_1098_rstb_2016_0402
crossref_primary_10_1007_s00018_018_2793_0
crossref_primary_10_1098_rstb_2016_0401
crossref_primary_10_1007_s00253_015_6698_7
crossref_primary_10_1093_pcp_pcz010
crossref_primary_10_1071_FP24185
crossref_primary_10_1093_pcp_pcw048
crossref_primary_10_1016_j_algal_2016_03_026
crossref_primary_10_1016_j_algal_2018_01_020
crossref_primary_10_1021_pr501316h
crossref_primary_10_1111_pce_14507
crossref_primary_10_1128_EC_00104_15
crossref_primary_10_1016_j_algal_2019_101587
crossref_primary_10_1016_j_ijbiomac_2020_04_273
crossref_primary_10_1186_s13568_015_0126_3
crossref_primary_10_1104_pp_15_01907
crossref_primary_10_1016_j_algal_2017_08_007
crossref_primary_10_1111_nph_19328
crossref_primary_10_1111_pce_14074
crossref_primary_10_1093_jxb_erz380
crossref_primary_10_1016_j_biortech_2017_11_067
crossref_primary_10_1134_S0003683815010135
crossref_primary_10_1016_j_plaphy_2020_08_038
crossref_primary_10_1016_j_envexpbot_2021_104492
crossref_primary_10_1016_j_jhazmat_2024_135145
crossref_primary_10_1093_jxb_erad170
crossref_primary_10_1007_s10499_020_00531_2
crossref_primary_10_1007_s13205_021_02851_3
crossref_primary_10_1007_s10811_014_0445_9
crossref_primary_10_1016_j_ecoenv_2020_110737
crossref_primary_10_1016_j_biotechadv_2017_06_001
crossref_primary_10_1111_pce_13674
crossref_primary_10_1016_j_algal_2016_08_011
crossref_primary_10_3390_pr9081333
crossref_primary_10_1111_jeu_12672
crossref_primary_10_1007_s12155_022_10454_w
crossref_primary_10_1016_j_biortech_2024_131794
crossref_primary_10_1007_s11306_024_02170_7
crossref_primary_10_1016_j_biortech_2019_122145
crossref_primary_10_1186_s13068_021_01970_6
crossref_primary_10_1016_j_mimet_2018_07_023
crossref_primary_10_1007_s11157_024_09682_7
crossref_primary_10_1093_mp_ssu083
crossref_primary_10_1111_pbi_13645
crossref_primary_10_1039_C4AN01368A
crossref_primary_10_1093_jxb_erad405
crossref_primary_10_1002_etc_5617
crossref_primary_10_1007_s11274_016_2008_5
crossref_primary_10_1016_j_algal_2025_103963
crossref_primary_10_1016_j_biortech_2023_129512
crossref_primary_10_1016_j_algal_2016_03_007
crossref_primary_10_1016_j_aquatox_2015_05_012
crossref_primary_10_1016_j_scitotenv_2016_02_175
crossref_primary_10_1016_j_algal_2020_102060
crossref_primary_10_1016_j_biortech_2017_05_177
crossref_primary_10_1134_S0026893320040147
crossref_primary_10_3390_cells8101154
crossref_primary_10_1042_BCJ20180648
crossref_primary_10_1074_jbc_RA118_004667
crossref_primary_10_1111_oik_08186
crossref_primary_10_3389_fmicb_2022_1029828
crossref_primary_10_3390_molecules24183237
crossref_primary_10_1016_j_algal_2018_02_034
crossref_primary_10_1186_s13068_017_0882_1
crossref_primary_10_1186_s13068_024_02493_6
crossref_primary_10_1186_s12934_019_1163_4
crossref_primary_10_1111_1462_2920_12372
crossref_primary_10_1016_j_bpj_2020_10_006
crossref_primary_10_1016_j_cell_2017_08_044
crossref_primary_10_1016_j_biortech_2017_08_120
crossref_primary_10_1186_s13068_016_0671_2
crossref_primary_10_3390_antiox8050123
crossref_primary_10_1016_j_aqrep_2022_101403
crossref_primary_10_3390_cimb44050128
crossref_primary_10_3389_fenrg_2015_00001
crossref_primary_10_1002_pld3_148
crossref_primary_10_1007_s11120_020_00756_5
crossref_primary_10_3390_plants13152103
crossref_primary_10_1016_j_biteb_2023_101342
crossref_primary_10_1016_j_algal_2018_07_005
crossref_primary_10_1016_j_algal_2019_101782
crossref_primary_10_1093_pcp_pcaa023
crossref_primary_10_1111_jpy_13417
crossref_primary_10_1016_j_jmb_2023_168271
crossref_primary_10_1021_acs_iecr_8b02509
crossref_primary_10_1186_1754_6834_7_69
crossref_primary_10_1073_pnas_2005600117
crossref_primary_10_1016_j_carbpol_2018_12_057
crossref_primary_10_1016_j_scitotenv_2020_142168
crossref_primary_10_1111_tpj_13530
crossref_primary_10_1186_s12859_019_3325_0
crossref_primary_10_3390_plants9040473
crossref_primary_10_3390_biotech14010006
crossref_primary_10_1016_j_freeradbiomed_2019_02_006
crossref_primary_10_1002_bit_26894
crossref_primary_10_1016_j_biotechadv_2020_107609
crossref_primary_10_1016_j_biortech_2023_129141
crossref_primary_10_1371_journal_pone_0106457
crossref_primary_10_1007_s43630_023_00478_2
crossref_primary_10_1016_j_algal_2016_12_015
crossref_primary_10_1007_s00425_014_2108_0
crossref_primary_10_1016_j_ygeno_2022_110444
crossref_primary_10_1016_j_eti_2021_102082
crossref_primary_10_1111_tpj_13787
crossref_primary_10_1016_j_scitotenv_2022_161136
crossref_primary_10_1111_ppl_14539
crossref_primary_10_1016_j_jhazmat_2023_130997
crossref_primary_10_1038_srep45732
crossref_primary_10_1186_s13068_019_1523_7
crossref_primary_10_1016_j_algal_2014_11_005
crossref_primary_10_1016_j_algal_2016_07_020
crossref_primary_10_1007_s11120_015_0152_7
crossref_primary_10_1016_j_ijbiomac_2023_123193
crossref_primary_10_1134_S0026261720030169
crossref_primary_10_1073_pnas_1521916113
crossref_primary_10_3390_life13061398
crossref_primary_10_1016_j_biortech_2022_127019
crossref_primary_10_7717_peerj_11809
crossref_primary_10_3390_fermentation10110582
crossref_primary_10_1016_j_biosystems_2017_09_014
crossref_primary_10_1016_j_algal_2024_103848
crossref_primary_10_1111_tpj_12781
crossref_primary_10_1007_s12237_018_0369_8
crossref_primary_10_3390_cells12101379
crossref_primary_10_3390_ijms23169412
crossref_primary_10_1007_s00253_019_10258_7
crossref_primary_10_1016_j_aquatox_2015_01_002
crossref_primary_10_1016_j_jbc_2023_105470
crossref_primary_10_1371_journal_pone_0177292
crossref_primary_10_1093_plcell_koad095
crossref_primary_10_1007_s11356_016_6224_1
crossref_primary_10_1186_s13068_015_0341_9
crossref_primary_10_1093_plphys_kiae617
crossref_primary_10_1016_j_algal_2021_102270
crossref_primary_10_1111_tpj_13642
crossref_primary_10_1073_pnas_1903185116
crossref_primary_10_3389_fmars_2022_1064077
crossref_primary_10_3390_microorganisms11030633
crossref_primary_10_1016_j_ccst_2023_100142
crossref_primary_10_3390_ijms19123817
crossref_primary_10_1038_s42003_022_03359_z
crossref_primary_10_1007_s10529_016_2216_y
crossref_primary_10_1128_mBio_01470_21
crossref_primary_10_1515_jib_2018_0018
crossref_primary_10_1042_BCJ20190914
crossref_primary_10_1007_s11120_016_0298_y
crossref_primary_10_1007_s11120_018_0549_1
crossref_primary_10_1038_s41598_018_24979_8
crossref_primary_10_1038_srep37235
crossref_primary_10_1016_j_jiec_2018_09_031
crossref_primary_10_4014_jmb_2005_05048
crossref_primary_10_1021_pr400952z
crossref_primary_10_1140_epjs_s11734_024_01186_3
crossref_primary_10_1007_s11120_022_00900_3
crossref_primary_10_1016_j_envint_2019_105175
crossref_primary_10_1016_j_plantsci_2018_04_020
crossref_primary_10_1016_j_electacta_2024_144597
crossref_primary_10_1002_biot_201500270
crossref_primary_10_1016_j_algal_2017_07_027
crossref_primary_10_1016_j_algal_2020_101937
crossref_primary_10_1016_j_algal_2021_102626
crossref_primary_10_1016_j_biortech_2017_04_093
crossref_primary_10_1007_s12155_016_9783_6
crossref_primary_10_1186_s13068_014_0117_7
crossref_primary_10_1002_bit_26744
crossref_primary_10_3389_fpls_2016_01817
crossref_primary_10_1016_j_algal_2024_103805
crossref_primary_10_1128_EC_00013_14
crossref_primary_10_1007_s10811_024_03389_6
crossref_primary_10_1007_s10811_015_0709_z
crossref_primary_10_3390_ijms23052710
crossref_primary_10_1016_j_jbiotec_2023_03_009
crossref_primary_10_3389_fpls_2022_904943
crossref_primary_10_1007_s00203_021_02570_6
crossref_primary_10_1093_plphys_kiad680
crossref_primary_10_1111_nph_19811
crossref_primary_10_21789_22561498_1821
crossref_primary_10_1016_j_biotechadv_2016_06_004
crossref_primary_10_1039_D2SE00124A
crossref_primary_10_1007_s10811_017_1163_x
crossref_primary_10_1016_j_chemosphere_2017_01_073
crossref_primary_10_1186_s13068_020_01769_x
crossref_primary_10_1111_tpj_14136
crossref_primary_10_1186_s12934_022_02004_y
crossref_primary_10_1186_s13068_021_01912_2
crossref_primary_10_1371_journal_pone_0092533
Cites_doi 10.1016/j.bbabio.2012.08.002
10.1093/molbev/msp068
10.1038/205056a0
10.1073/pnas.0806896105
10.1146/annurev.pp.25.060174.002141
10.1038/291025a0
10.1128/EC.05242-11
10.1146/annurev.pp.45.060194.003045
10.1111/j.1399-3054.1987.tb09229.x
10.1046/j.1365-313x.2000.00712.x
10.1105/tpc.109.071084
10.1016/0014-5793(69)80280-2
10.1105/tpc.109.071167
10.1073/pnas.0914299107
10.1091/mbc.e05-04-0347
10.1128/EC.00272-09
10.1016/j.ymben.2010.02.002
10.1105/tpc.108.062752
10.1007/s00294-004-0526-4
10.1021/pr900866e
10.1111/j.1399-3054.2009.01252.x
10.1074/mcp.M111.016733
10.1016/0005-2728(69)90168-6
10.1016/j.jbiotec.2007.05.017
10.1038/188919a0
10.1105/tpc.111.086876
10.1038/nature08587
10.1111/j.1399-3054.1963.tb08355.x
10.1006/abbi.1994.1374
10.1016/0014-5793(81)80716-8
10.1016/B978-0-12-370873-1.00016-2
10.1016/0005-2728(75)90040-7
10.1016/0005-2728(90)90095-L
10.1104/pp.82.1.160
10.1007/s00294-011-0339-1
10.1038/201725a0
10.1007/BF00312603
10.1073/pnas.1110518109
10.1093/jxb/erq361
10.1093/jxb/eri178
10.1104/pp.105.071589
10.1111/j.1432-1033.1992.tb16641.x
10.1074/jbc.M908732199
10.1016/S0163-7827(01)00023-6
10.1016/j.jbiotec.2012.04.006
10.1126/science.1115581
10.1146/annurev.arplant.56.032604.144257
10.1002/bit.22807
10.1099/00221287-108-1-79
10.1126/science.1081397
10.1104/pp.88.4.973
10.1083/jcb.200504008
10.1074/jbc.M111.334052
10.1007/BF00326284
10.1017/S0016672300012015
10.1111/j.1365-3040.2010.02183.x
10.1007/BF00446372
10.1007/BF00016065
10.1016/S0005-2728(98)00126-1
10.1016/j.phytochem.2011.12.007
10.1104/pp.110.165159
10.1104/pp.90.3.788
10.1073/pnas.102306999
10.1016/0014-5793(95)01143-3
10.1016/S0022-2275(20)43004-4
10.1016/j.bbabio.2006.02.018
10.1016/0304-4165(89)90127-X
10.1186/1472-6750-11-7
10.1186/1471-2105-12-282
10.1104/pp.41.5.885
10.1002/pmic.201100114
10.1128/EC.00075-10
10.1104/pp.106.081885
10.1074/jbc.M112.370205
10.1016/0005-2728(90)90226-T
10.1073/pnas.85.5.1344
10.1083/jcb.85.1.136
10.1016/j.copbio.2011.12.001
10.1016/j.molcel.2012.11.030
10.1016/j.febslet.2011.05.018
10.1126/science.1143609
10.1073/pnas.79.14.4352
10.1016/0005-2728(85)90071-4
10.1016/0168-9452(90)90162-H
10.1104/pp.98.4.1233
10.1146/annurev-arplant-042110-103903
10.1007/s11120-010-9566-4
10.1105/tpc.111.084400
10.1016/0012-1606(73)90318-7
10.1016/0304-4165(91)90150-F
10.1021/bi00008a028
10.1016/0014-5793(70)80438-0
10.1038/nature08885
10.1146/annurev.arplant.47.1.185
10.1016/B978-0-12-370873-1.00021-6
10.1126/science.127.3305.1026
10.1126/science.162.3855.768
10.1128/JB.183.3.1069-1077.2001
10.1104/pp.96.2.355
10.1093/oxfordjournals.pcp.a029353
10.1007/s00425-011-1537-2
10.1016/j.ijhydene.2011.04.229
10.1038/216597a0
10.1007/BF00424940
10.1128/EC.4.2.242-252.2005
10.1111/j.1365-313X.2008.03492.x
10.1104/pp.122.4.1193
10.1111/j.0031-9317.2004.0222.x
10.1006/abbi.1998.0900
10.1126/science.7992056
10.1104/pp.72.2.488
10.1016/S0005-2728(01)00190-6
10.1016/j.bbabio.2009.07.009
10.1128/EC.00203-09
10.1104/pp.79.1.11
10.1016/0005-2728(74)90100-5
10.1016/j.plipres.2009.10.003
10.1016/0005-2728(69)90067-X
ContentType Journal Article
Copyright Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
Copyright_xml – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
F1W
H95
L.G
M7N
5PM
DOI 10.1128/EC.00318-12
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 793
ExternalDocumentID PMC3675994
23543671
10_1128_EC_00318_12
eukcell_12_6_776
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
AAFWJ
AAGFI
AAYXX
ACGFO
ADBBV
ADXHL
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
F1W
H95
L.G
M7N
5PM
ID FETCH-LOGICAL-c509t-77ea3ac8d4de6481a9abc2f5c581a4d8f8b11c1f94078d352f2516ebc2fdae133
ISSN 1535-9778
1535-9786
IngestDate Thu Aug 21 13:59:25 EDT 2025
Fri Jul 11 04:01:27 EDT 2025
Fri Jul 11 05:38:38 EDT 2025
Thu Apr 03 06:57:24 EDT 2025
Tue Jul 01 00:51:36 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed May 18 15:27:29 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-77ea3ac8d4de6481a9abc2f5c581a4d8f8b11c1f94078d352f2516ebc2fdae133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Present address: Jean Alric, CNRS, UMR Biologie Végétale et Microbiologie Environnementale, Saint-Paul-lez-Durance, France.
OpenAccessLink https://ec.asm.org/content/eukcell/12/6/776.full.pdf
PMID 23543671
PQID 1365051835
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_1365051835
pubmed_primary_23543671
crossref_citationtrail_10_1128_EC_00318_12
proquest_miscellaneous_1443377705
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675994
highwire_asm_eukcell_12_6_776
crossref_primary_10_1128_EC_00318_12
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130601
2013-06-00
2013-Jun
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 20130601
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Eukaryotic Cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2013
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
Rabinowitch E (e_1_3_2_67_2) 1951
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_25_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_122_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_119_2
e_1_3_2_49_2
Harris EH (e_1_3_2_26_2) 2009
e_1_3_2_41_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_125_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
Cardol P (e_1_3_2_66_2) 2009
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_124_2
e_1_3_2_61_2
e_1_3_2_120_2
Norris SR (e_1_3_2_20_2) 1995; 7
e_1_3_2_80_2
e_1_3_2_101_2
Ohlrogge J (e_1_3_2_78_2) 1995; 7
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
Yang W (e_1_3_2_64_2)
e_1_3_2_91_2
e_1_3_2_113_2
Spalding MH (e_1_3_2_27_2) 2009
e_1_3_2_72_2
Ball SG (e_1_3_2_44_2) 1998
e_1_3_2_117_2
15863446 - J Exp Bot. 2005 Jun;56(416):1469-79
11945379 - FEBS Lett. 1970 Oct 5;10(3):143-148
21928291 - Proteomics. 2011 Nov;11(21):4266-73
14134734 - Nature. 1964 Feb 15;201:725-6
16030251 - Mol Biol Cell. 2005 Oct;16(10):4509-18
15459796 - Curr Genet. 2004 Nov;46(5):304-15
4392141 - J Lipid Res. 1970 Mar;11(2):131-43
19940928 - Nature. 2009 Nov 26;462(7272):518-21
23290914 - Mol Cell. 2013 Feb 7;49(3):511-23
16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005
16668781 - Plant Physiol. 1992 Apr;98(4):1233-8
24241735 - Planta. 1986 Jan;167(1):81-6
7992056 - Science. 1994 Dec 9;266(5191):1717-9
4386796 - Science. 1968 Nov 15;162(3855):768-71
16668193 - Plant Physiol. 1991 Jun;96(2):355-62
20172043 - Metab Eng. 2010 Jul;12(4):387-91
8053679 - Arch Biochem Biophys. 1994 Aug 15;313(1):173-8
10792819 - Plant J. 2000 Apr;22(1):39-50
5775694 - Biochim Biophys Acta. 1969 Feb 25;172(2):242-51
4423963 - Biochim Biophys Acta. 1974 Oct 18;368(1):97-112
8718624 - Plant Cell. 1995 Dec;7(12):2139-49
16664354 - Plant Physiol. 1985 Sep;79(1):11-7
19651104 - Biochim Biophys Acta. 2010 Jan;1797(1):44-51
20081115 - Plant Cell. 2010 Jan;22(1):221-33
11947226 - FEBS Lett. 1969 Sep;5(1):11-14
15701786 - Eukaryot Cell. 2005 Feb;4(2):242-52
15032873 - Physiol Plant. 2004 Jan;120(1):21-26
21749710 - BMC Bioinformatics. 2011;12:282
14283135 - Nature. 1965 Jan 2;205:56-7
21764992 - Plant Cell. 2011 Jul;23(7):2619-30
11755683 - Prog Lipid Res. 2002 Mar;41(2):182-96
20364124 - Nature. 2010 Apr 22;464(7292):1210-3
2894027 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1344-8
2065364 - Curr Genet. 1991 Feb;19(2):65-71
7589569 - FEBS Lett. 1995 Nov 6;374(3):351-5
19558416 - Physiol Plant. 2009 Dec;137(4):371-82
11522255 - Biochim Biophys Acta. 2001 Aug 17;1506(2):133-42
21533645 - Curr Genet. 2011 Jun;57(3):151-68
239745 - Biochim Biophys Acta. 1975 Aug 11;396(2):260-75
6767730 - J Cell Biol. 1980 Apr;85(1):136-45
20587772 - Plant Cell. 2010 Jun;22(6):2058-84
16844835 - Plant Physiol. 2006 Sep;142(1):305-17
20439704 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63
22692199 - J Biol Chem. 2012 Jul 27;287(31):26445-52
15998802 - J Cell Biol. 2005 Jul 4;170(1):103-13
19349646 - Mol Biol Evol. 2009 Jul;26(7):1533-48
16663029 - Plant Physiol. 1983 Jun;72(2):488-91
15012287 - Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214
21255402 - BMC Biotechnol. 2011;11:7
22902601 - Biochim Biophys Acta. 2013 Feb;1827(2):210-23
22209109 - Curr Opin Biotechnol. 2012 Jun;23(3):352-63
17932292 - Science. 2007 Oct 12;318(5848):245-50
16593210 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4352-6
7640528 - Plant Cell. 1995 Jul;7(7):957-70
2225144 - Curr Genet. 1990 Aug;18(2):155-60
9808758 - Arch Biochem Biophys. 1998 Nov 15;359(2):170-8
17793272 - Science. 1958 May 2;127(3305):1026-34
21575636 - FEBS Lett. 2011 Jun 23;585(12):1985-91
4764234 - Arch Mikrobiol. 1973 Oct 19;93(2):91-100
22037181 - Eukaryot Cell. 2011 Dec;10(12):1592-606
16666488 - Plant Physiol. 1988 Dec;88(4):973-5
1740146 - Eur J Biochem. 1992 Feb 15;204(1):327-36
15862090 - Annu Rev Plant Biol. 2005;56:73-98
19879895 - Prog Lipid Res. 2010 Apr;49(2):128-58
16656335 - Plant Physiol. 1966 May;41(5):885-90
22403401 - J Biol Chem. 2012 May 4;287(19):15811-25
4787191 - Dev Biol. 1973 Mar;31(1):31-7
1826218 - Biochim Biophys Acta. 1991 Mar 4;1073(2):410-5
22226037 - Phytochemistry. 2012 Mar;75:50-9
7873543 - Biochemistry. 1995 Feb 28;34(8):2621-7
22143777 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20820-5
18476868 - Plant J. 2008 May;54(4):621-39
10759515 - Plant Physiol. 2000 Apr;122(4):1193-9
5370012 - Biochim Biophys Acta. 1969;189(3):366-83
20532629 - Photosynth Res. 2010 Nov;106(1-2):47-56
20506159 - Biotechnol Bioeng. 2010 Oct 1;107(2):258-68
2719977 - Biochim Biophys Acta. 1989 May 31;991(2):347-52
11208806 - J Bacteriol. 2001 Feb;183(3):1069-77
22787274 - Mol Cell Proteomics. 2012 Oct;11(10):973-88
20935180 - Plant Physiol. 2010 Dec;154(4):1737-52
21526967 - Annu Rev Plant Biol. 2011;62:53-77
20545877 - Plant Cell Environ. 2010 Nov;33(11):1779-88
12119384 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10209-14
22020754 - Planta. 2012 Apr;235(4):729-45
16762315 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):362-8
16040710 - Science. 2005 Jul 22;309(5734):630-3
16664985 - Plant Physiol. 1986 Sep;82(1):160-6
19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68
20562225 - Eukaryot Cell. 2010 Aug;9(8):1251-61
21498682 - Plant Cell. 2011 Apr;23(4):1273-92
19915074 - Eukaryot Cell. 2010 Jan;9(1):97-106
19074271 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20546-51
22542934 - J Biotechnol. 2012 Nov 30;162(1):13-20
12624266 - Science. 2003 Mar 7;299(5612):1572-5
20408572 - J Proteome Res. 2010 Jun 4;9(6):2825-38
24310351 - Plant Mol Biol. 1984 May;3(3):177-90
17624461 - J Biotechnol. 2007 Aug 1;131(1):27-33
16666878 - Plant Physiol. 1989 Jul;90(3):788-91
10748104 - J Biol Chem. 2000 Jun 9;275(23):17256-62
19897671 - Plant Cell. 2009 Nov;21(11):3473-92
21511915 - J Exp Bot. 2011 Apr;62(7):2381-92
References_xml – ident: e_1_3_2_63_2
  doi: 10.1016/j.bbabio.2012.08.002
– ident: e_1_3_2_6_2
  doi: 10.1093/molbev/msp068
– ident: e_1_3_2_29_2
  doi: 10.1038/205056a0
– start-page: 1313
  volume-title: Photosynthesis and related processes
  year: 1951
  ident: e_1_3_2_67_2
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.0806896105
– ident: e_1_3_2_42_2
  doi: 10.1146/annurev.pp.25.060174.002141
– ident: e_1_3_2_72_2
  doi: 10.1038/291025a0
– ident: e_1_3_2_83_2
  doi: 10.1128/EC.05242-11
– volume: 7
  start-page: 957
  year: 1995
  ident: e_1_3_2_78_2
  article-title: Lipid biosynthesis
  publication-title: Plant Cell
– ident: e_1_3_2_96_2
  doi: 10.1146/annurev.pp.45.060194.003045
– ident: e_1_3_2_65_2
  doi: 10.1111/j.1399-3054.1987.tb09229.x
– ident: e_1_3_2_81_2
  doi: 10.1046/j.1365-313x.2000.00712.x
– ident: e_1_3_2_112_2
  doi: 10.1105/tpc.109.071084
– ident: e_1_3_2_57_2
  doi: 10.1016/0014-5793(69)80280-2
– ident: e_1_3_2_4_2
  doi: 10.1105/tpc.109.071167
– ident: e_1_3_2_116_2
  doi: 10.1073/pnas.0914299107
– ident: e_1_3_2_46_2
  doi: 10.1091/mbc.e05-04-0347
– ident: e_1_3_2_94_2
  doi: 10.1128/EC.00272-09
– ident: e_1_3_2_92_2
  doi: 10.1016/j.ymben.2010.02.002
– ident: e_1_3_2_21_2
  doi: 10.1105/tpc.108.062752
– ident: e_1_3_2_121_2
  doi: 10.1007/s00294-004-0526-4
– ident: e_1_3_2_24_2
  doi: 10.1021/pr900866e
– ident: e_1_3_2_25_2
  doi: 10.1111/j.1399-3054.2009.01252.x
– ident: e_1_3_2_10_2
  doi: 10.1074/mcp.M111.016733
– ident: e_1_3_2_70_2
  doi: 10.1016/0005-2728(69)90168-6
– ident: e_1_3_2_47_2
  doi: 10.1016/j.jbiotec.2007.05.017
– ident: e_1_3_2_32_2
  doi: 10.1038/188919a0
– ident: e_1_3_2_12_2
  doi: 10.1105/tpc.111.086876
– ident: e_1_3_2_15_2
  doi: 10.1038/nature08587
– ident: e_1_3_2_30_2
  doi: 10.1111/j.1399-3054.1963.tb08355.x
– ident: e_1_3_2_45_2
  doi: 10.1006/abbi.1994.1374
– ident: e_1_3_2_73_2
  doi: 10.1016/0014-5793(81)80716-8
– start-page: 257
  volume-title: The Chlamydomonas sourcebook. Organellar and metabolic processes
  year: 2009
  ident: e_1_3_2_27_2
  doi: 10.1016/B978-0-12-370873-1.00016-2
– ident: e_1_3_2_37_2
  doi: 10.1016/0005-2728(75)90040-7
– ident: e_1_3_2_77_2
  doi: 10.1016/0005-2728(90)90095-L
– ident: e_1_3_2_28_2
  doi: 10.1104/pp.82.1.160
– ident: e_1_3_2_8_2
  doi: 10.1007/s00294-011-0339-1
– ident: e_1_3_2_33_2
  doi: 10.1038/201725a0
– ident: e_1_3_2_103_2
  doi: 10.1007/BF00312603
– ident: e_1_3_2_22_2
  doi: 10.1073/pnas.1110518109
– ident: e_1_3_2_59_2
  doi: 10.1093/jxb/erq361
– ident: e_1_3_2_80_2
  doi: 10.1093/jxb/eri178
– ident: e_1_3_2_9_2
  doi: 10.1104/pp.105.071589
– ident: e_1_3_2_104_2
  doi: 10.1111/j.1432-1033.1992.tb16641.x
– ident: e_1_3_2_62_2
  doi: 10.1074/jbc.M908732199
– ident: e_1_3_2_102_2
  doi: 10.1016/S0163-7827(01)00023-6
– ident: e_1_3_2_91_2
  doi: 10.1016/j.jbiotec.2012.04.006
– ident: e_1_3_2_117_2
  doi: 10.1126/science.1115581
– ident: e_1_3_2_41_2
  doi: 10.1146/annurev.arplant.56.032604.144257
– ident: e_1_3_2_93_2
  doi: 10.1002/bit.22807
– start-page: 550
  volume-title: The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Advances in photosynthesis
  year: 1998
  ident: e_1_3_2_44_2
– ident: e_1_3_2_98_2
  doi: 10.1099/00221287-108-1-79
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1081397
– ident: e_1_3_2_38_2
  doi: 10.1104/pp.88.4.973
– ident: e_1_3_2_7_2
  doi: 10.1083/jcb.200504008
– ident: e_1_3_2_89_2
  doi: 10.1074/jbc.M111.334052
– ident: e_1_3_2_122_2
  doi: 10.1007/BF00326284
– ident: e_1_3_2_99_2
  doi: 10.1017/S0016672300012015
– ident: e_1_3_2_113_2
  doi: 10.1111/j.1365-3040.2010.02183.x
– ident: e_1_3_2_36_2
  doi: 10.1007/BF00446372
– ident: e_1_3_2_54_2
  doi: 10.1007/BF00016065
– ident: e_1_3_2_43_2
  doi: 10.1016/S0005-2728(98)00126-1
– ident: e_1_3_2_90_2
  doi: 10.1016/j.phytochem.2011.12.007
– ident: e_1_3_2_82_2
  doi: 10.1104/pp.110.165159
– ident: e_1_3_2_124_2
  doi: 10.1104/pp.90.3.788
– ident: e_1_3_2_110_2
  doi: 10.1073/pnas.102306999
– ident: e_1_3_2_58_2
  doi: 10.1016/0014-5793(95)01143-3
– ident: e_1_3_2_108_2
  doi: 10.1016/S0022-2275(20)43004-4
– ident: e_1_3_2_111_2
  doi: 10.1016/j.bbabio.2006.02.018
– ident: e_1_3_2_125_2
  doi: 10.1016/0304-4165(89)90127-X
– ident: e_1_3_2_84_2
  doi: 10.1186/1472-6750-11-7
– ident: e_1_3_2_5_2
  doi: 10.1186/1471-2105-12-282
– ident: e_1_3_2_31_2
  doi: 10.1104/pp.41.5.885
– ident: e_1_3_2_88_2
  doi: 10.1002/pmic.201100114
– ident: e_1_3_2_95_2
  doi: 10.1128/EC.00075-10
– ident: e_1_3_2_115_2
  doi: 10.1104/pp.106.081885
– volume-title: The Chlamydomonas sourcebook. Introduction to Chlamydomonas and its laboratory use
  year: 2009
  ident: e_1_3_2_26_2
– ident: e_1_3_2_53_2
  doi: 10.1074/jbc.M112.370205
– ident: e_1_3_2_56_2
  doi: 10.1016/0005-2728(90)90226-T
– ident: e_1_3_2_61_2
  doi: 10.1073/pnas.85.5.1344
– ident: e_1_3_2_114_2
  doi: 10.1083/jcb.85.1.136
– ident: e_1_3_2_85_2
  doi: 10.1016/j.copbio.2011.12.001
– ident: e_1_3_2_13_2
  doi: 10.1016/j.molcel.2012.11.030
– ident: e_1_3_2_86_2
  doi: 10.1016/j.febslet.2011.05.018
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1143609
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.79.14.4352
– ident: e_1_3_2_76_2
  doi: 10.1016/0005-2728(85)90071-4
– ident: e_1_3_2_34_2
  doi: 10.1016/0168-9452(90)90162-H
– ident: e_1_3_2_107_2
  doi: 10.1104/pp.98.4.1233
– ident: e_1_3_2_60_2
  doi: 10.1146/annurev-arplant-042110-103903
– ident: e_1_3_2_74_2
  doi: 10.1007/s11120-010-9566-4
– ident: e_1_3_2_3_2
  doi: 10.1105/tpc.111.084400
– ident: e_1_3_2_119_2
  doi: 10.1016/0012-1606(73)90318-7
– ident: e_1_3_2_35_2
  doi: 10.1016/0304-4165(91)90150-F
– ident: e_1_3_2_48_2
  doi: 10.1021/bi00008a028
– ident: e_1_3_2_49_2
  doi: 10.1016/0014-5793(70)80438-0
– ident: e_1_3_2_18_2
  doi: 10.1038/nature08885
– ident: e_1_3_2_40_2
  doi: 10.1146/annurev.arplant.47.1.185
– start-page: 469
  volume-title: The Chlamydomonas sourcebook. Organellar and metabolic processes
  year: 2009
  ident: e_1_3_2_66_2
  doi: 10.1016/B978-0-12-370873-1.00021-6
– ident: e_1_3_2_11_2
  doi: 10.1126/science.127.3305.1026
– ident: e_1_3_2_55_2
  doi: 10.1126/science.162.3855.768
– ident: e_1_3_2_97_2
  doi: 10.1128/JB.183.3.1069-1077.2001
– ident: e_1_3_2_120_2
  doi: 10.1104/pp.96.2.355
– ident: e_1_3_2_50_2
  doi: 10.1093/oxfordjournals.pcp.a029353
– ident: e_1_3_2_118_2
  doi: 10.1007/s00425-011-1537-2
– ident: e_1_3_2_105_2
  doi: 10.1016/j.ijhydene.2011.04.229
– ident: e_1_3_2_52_2
  doi: 10.1038/216597a0
– ident: e_1_3_2_69_2
  doi: 10.1007/BF00424940
– ident: e_1_3_2_79_2
  doi: 10.1128/EC.4.2.242-252.2005
– ident: e_1_3_2_106_2
  doi: 10.1111/j.1365-313X.2008.03492.x
– ident: e_1_3_2_123_2
  doi: 10.1104/pp.122.4.1193
– ident: e_1_3_2_23_2
  doi: 10.1111/j.0031-9317.2004.0222.x
– ident: e_1_3_2_100_2
  doi: 10.1006/abbi.1998.0900
– ident: e_1_3_2_19_2
  doi: 10.1126/science.7992056
– ident: e_1_3_2_51_2
  doi: 10.1104/pp.72.2.488
– ident: e_1_3_2_75_2
  doi: 10.1016/S0005-2728(01)00190-6
– ident: e_1_3_2_109_2
  doi: 10.1016/j.bbabio.2009.07.009
– ident: e_1_3_2_87_2
  doi: 10.1128/EC.00203-09
– ident: e_1_3_2_101_2
  doi: 10.1104/pp.79.1.11
– ident: e_1_3_2_68_2
  doi: 10.1016/0005-2728(74)90100-5
– volume: 7
  start-page: 2139
  year: 1995
  ident: e_1_3_2_20_2
  article-title: Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation
  publication-title: Plant Cell
– volume-title: Insights into algal fermentation metabolism
  ident: e_1_3_2_64_2
– ident: e_1_3_2_39_2
  doi: 10.1016/j.plipres.2009.10.003
– ident: e_1_3_2_71_2
  doi: 10.1016/0005-2728(69)90067-X
– reference: 5370012 - Biochim Biophys Acta. 1969;189(3):366-83
– reference: 24310351 - Plant Mol Biol. 1984 May;3(3):177-90
– reference: 20935180 - Plant Physiol. 2010 Dec;154(4):1737-52
– reference: 14134734 - Nature. 1964 Feb 15;201:725-6
– reference: 2225144 - Curr Genet. 1990 Aug;18(2):155-60
– reference: 22037181 - Eukaryot Cell. 2011 Dec;10(12):1592-606
– reference: 19940928 - Nature. 2009 Nov 26;462(7272):518-21
– reference: 21511915 - J Exp Bot. 2011 Apr;62(7):2381-92
– reference: 16593210 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4352-6
– reference: 16762315 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):362-8
– reference: 10748104 - J Biol Chem. 2000 Jun 9;275(23):17256-62
– reference: 15032873 - Physiol Plant. 2004 Jan;120(1):21-26
– reference: 239745 - Biochim Biophys Acta. 1975 Aug 11;396(2):260-75
– reference: 20081115 - Plant Cell. 2010 Jan;22(1):221-33
– reference: 4787191 - Dev Biol. 1973 Mar;31(1):31-7
– reference: 21533645 - Curr Genet. 2011 Jun;57(3):151-68
– reference: 16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005
– reference: 16668193 - Plant Physiol. 1991 Jun;96(2):355-62
– reference: 4386796 - Science. 1968 Nov 15;162(3855):768-71
– reference: 21575636 - FEBS Lett. 2011 Jun 23;585(12):1985-91
– reference: 2719977 - Biochim Biophys Acta. 1989 May 31;991(2):347-52
– reference: 17932292 - Science. 2007 Oct 12;318(5848):245-50
– reference: 21255402 - BMC Biotechnol. 2011;11:7
– reference: 16030251 - Mol Biol Cell. 2005 Oct;16(10):4509-18
– reference: 22209109 - Curr Opin Biotechnol. 2012 Jun;23(3):352-63
– reference: 14283135 - Nature. 1965 Jan 2;205:56-7
– reference: 16656335 - Plant Physiol. 1966 May;41(5):885-90
– reference: 22403401 - J Biol Chem. 2012 May 4;287(19):15811-25
– reference: 16040710 - Science. 2005 Jul 22;309(5734):630-3
– reference: 19074271 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20546-51
– reference: 7589569 - FEBS Lett. 1995 Nov 6;374(3):351-5
– reference: 16664354 - Plant Physiol. 1985 Sep;79(1):11-7
– reference: 21526967 - Annu Rev Plant Biol. 2011;62:53-77
– reference: 4392141 - J Lipid Res. 1970 Mar;11(2):131-43
– reference: 21498682 - Plant Cell. 2011 Apr;23(4):1273-92
– reference: 22143777 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20820-5
– reference: 6767730 - J Cell Biol. 1980 Apr;85(1):136-45
– reference: 11522255 - Biochim Biophys Acta. 2001 Aug 17;1506(2):133-42
– reference: 16666488 - Plant Physiol. 1988 Dec;88(4):973-5
– reference: 4423963 - Biochim Biophys Acta. 1974 Oct 18;368(1):97-112
– reference: 22226037 - Phytochemistry. 2012 Mar;75:50-9
– reference: 16663029 - Plant Physiol. 1983 Jun;72(2):488-91
– reference: 1826218 - Biochim Biophys Acta. 1991 Mar 4;1073(2):410-5
– reference: 18476868 - Plant J. 2008 May;54(4):621-39
– reference: 16666878 - Plant Physiol. 1989 Jul;90(3):788-91
– reference: 12119384 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10209-14
– reference: 22020754 - Planta. 2012 Apr;235(4):729-45
– reference: 15701786 - Eukaryot Cell. 2005 Feb;4(2):242-52
– reference: 9808758 - Arch Biochem Biophys. 1998 Nov 15;359(2):170-8
– reference: 4764234 - Arch Mikrobiol. 1973 Oct 19;93(2):91-100
– reference: 21764992 - Plant Cell. 2011 Jul;23(7):2619-30
– reference: 8718624 - Plant Cell. 1995 Dec;7(12):2139-49
– reference: 19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68
– reference: 20506159 - Biotechnol Bioeng. 2010 Oct 1;107(2):258-68
– reference: 19897671 - Plant Cell. 2009 Nov;21(11):3473-92
– reference: 2065364 - Curr Genet. 1991 Feb;19(2):65-71
– reference: 20172043 - Metab Eng. 2010 Jul;12(4):387-91
– reference: 22692199 - J Biol Chem. 2012 Jul 27;287(31):26445-52
– reference: 22902601 - Biochim Biophys Acta. 2013 Feb;1827(2):210-23
– reference: 17624461 - J Biotechnol. 2007 Aug 1;131(1):27-33
– reference: 19558416 - Physiol Plant. 2009 Dec;137(4):371-82
– reference: 15862090 - Annu Rev Plant Biol. 2005;56:73-98
– reference: 19915074 - Eukaryot Cell. 2010 Jan;9(1):97-106
– reference: 20532629 - Photosynth Res. 2010 Nov;106(1-2):47-56
– reference: 7992056 - Science. 1994 Dec 9;266(5191):1717-9
– reference: 20587772 - Plant Cell. 2010 Jun;22(6):2058-84
– reference: 8053679 - Arch Biochem Biophys. 1994 Aug 15;313(1):173-8
– reference: 11755683 - Prog Lipid Res. 2002 Mar;41(2):182-96
– reference: 15863446 - J Exp Bot. 2005 Jun;56(416):1469-79
– reference: 21749710 - BMC Bioinformatics. 2011;12:282
– reference: 17793272 - Science. 1958 May 2;127(3305):1026-34
– reference: 2894027 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1344-8
– reference: 16844835 - Plant Physiol. 2006 Sep;142(1):305-17
– reference: 20562225 - Eukaryot Cell. 2010 Aug;9(8):1251-61
– reference: 20545877 - Plant Cell Environ. 2010 Nov;33(11):1779-88
– reference: 20408572 - J Proteome Res. 2010 Jun 4;9(6):2825-38
– reference: 20439704 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63
– reference: 15012287 - Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214
– reference: 16668781 - Plant Physiol. 1992 Apr;98(4):1233-8
– reference: 11208806 - J Bacteriol. 2001 Feb;183(3):1069-77
– reference: 1740146 - Eur J Biochem. 1992 Feb 15;204(1):327-36
– reference: 10792819 - Plant J. 2000 Apr;22(1):39-50
– reference: 20364124 - Nature. 2010 Apr 22;464(7292):1210-3
– reference: 15459796 - Curr Genet. 2004 Nov;46(5):304-15
– reference: 23290914 - Mol Cell. 2013 Feb 7;49(3):511-23
– reference: 22787274 - Mol Cell Proteomics. 2012 Oct;11(10):973-88
– reference: 15998802 - J Cell Biol. 2005 Jul 4;170(1):103-13
– reference: 16664985 - Plant Physiol. 1986 Sep;82(1):160-6
– reference: 19349646 - Mol Biol Evol. 2009 Jul;26(7):1533-48
– reference: 19879895 - Prog Lipid Res. 2010 Apr;49(2):128-58
– reference: 5775694 - Biochim Biophys Acta. 1969 Feb 25;172(2):242-51
– reference: 7873543 - Biochemistry. 1995 Feb 28;34(8):2621-7
– reference: 11947226 - FEBS Lett. 1969 Sep;5(1):11-14
– reference: 24241735 - Planta. 1986 Jan;167(1):81-6
– reference: 11945379 - FEBS Lett. 1970 Oct 5;10(3):143-148
– reference: 12624266 - Science. 2003 Mar 7;299(5612):1572-5
– reference: 10759515 - Plant Physiol. 2000 Apr;122(4):1193-9
– reference: 22542934 - J Biotechnol. 2012 Nov 30;162(1):13-20
– reference: 21928291 - Proteomics. 2011 Nov;11(21):4266-73
– reference: 7640528 - Plant Cell. 1995 Jul;7(7):957-70
– reference: 19651104 - Biochim Biophys Acta. 2010 Jan;1797(1):44-51
SSID ssj0015973
Score 2.525544
SecondaryResourceType review_article
Snippet Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 776
SubjectTerms Adenosine Triphosphate - metabolism
Carbon - metabolism
Chlamydomonas reinhardtii
Chlamydomonas reinhardtii - metabolism
Chloroplasts - metabolism
Electron Transport
Gluconeogenesis
Glycolysis
Lipid Metabolism
Lipids - biosynthesis
Minireview
Mitochondria - metabolism
NADP - metabolism
Oxidative Phosphorylation
Photosynthesis
Plant Oils - metabolism
Starch - metabolism
Title Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch
URI http://ec.asm.org/content/12/6/776.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23543671
https://www.proquest.com/docview/1365051835
https://www.proquest.com/docview/1443377705
https://pubmed.ncbi.nlm.nih.gov/PMC3675994
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWRUhcEG8WKDJST0gpm5edcEOrRRUSj0MrrbhEju2oUZcEtdnDcuI_8IeZ8SPrLStUuERW4sRJ5stkxp75hpCjZtYUTSpZxJOagYNSqkjIOI9YyiSTPGeFxEThj5_YyVn2YZkvJ5OfQdTSeqiP5Y-9eSX_I1XYB3LFLNl_kOx4UdgBbZAvbEHCsL2RjN3ULEZt1D0uugwg0pUve7FwFW62BOYmxe8cMLBRPdykwCWDtsO8q6HFULnxCtIU8jTlIwZD2OCH-IJ34edwfYzX59byDYDh6ifGxrn-C3G56ZEUFlcIwnAdl-m11F27Rd0KtLKNuXGgdfMRpjaEn4_wKjSPwKq0WlWH-xzptde7SYCvUIlyzoL_MbcVFP9U9QmmLyzmx0YvRe5qO4Ta1350Y_ihcXySolrMDTVqUWGZ6lsJOBozP9_j1qHA3Uot4659JpfhCSe_CUbetWk8z_Q-n-V66G1gy5zeI3edE0LfWUTdJxPdPSC3bVnSDbS-9qb1kPxyCKNW_HSLMAoCpx5hdEQYbTu6gzAaIOzteL6kAb4o4MsPEOKLOnxRwJcZzuLrETl7vzidn0SujEckwRodwH_TIhWyUJnSLCtiUYpaJk0uc2hnqmiKOo5l3JS4pKzAIWjA5mYa-yih4zR9TA66vtNPCW1KXCfkuSyVyBqFxEg5vMo6UZlUMkmm5LUXRCUdxz0-y6raI_IpORo7f7fULvu7HXqJVuLqW6XXF_jFwJGKVQDVKXnlxVyBasZjotP9-qrCCFL454GP85c-WZamnPMZ9HlioTHeTJLmWcp4PCV8BzRjB6SG3z3SteeGIh5Oy8sye3azR3xO7my_5BfkYLhc60OwtYf6pfkcfgN5VtpY
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+Carbon+Metabolism+and+Electron+Transport+in+Chlamydomonas+reinhardtii%3A+Metabolic+Constraints+for+Carbon+Partitioning+between+Oil+and+Starch&rft.jtitle=Eukaryotic+cell&rft.au=Johnson%2C+Xenie&rft.au=Alric%2C+Jean&rft.date=2013-06-01&rft.issn=1535-9778&rft.eissn=1535-9786&rft.volume=12&rft.issue=6&rft.spage=776&rft.epage=793&rft_id=info:doi/10.1128%2FEC.00318-12&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_EC_00318_12
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon