Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch
Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Pr...
Saved in:
Published in | Eukaryotic Cell Vol. 12; no. 6; pp. 776 - 793 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1535-9778 1535-9786 1535-9786 |
DOI | 10.1128/EC.00318-12 |
Cover
Loading…
Abstract | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
EC
About
EC
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
EC
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
1535-9778
Online ISSN:
1535-9786
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
EC
.asm.org, visit:
EC
|
---|---|
AbstractList | The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in
Chlamydomonas reinhardtii
that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production. The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production. The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production.The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic pathways. There are, however, constraints that govern central carbon metabolism in Chlamydomonas reinhardtii that are revealed by the compartmentalization and regulation of the pathways and their relation to key cellular processes such as cell motility, division, carbon uptake and partitioning, external and internal rhythms, and nutrient stress. Both photosynthetic and mitochondrial electron transfer provide energy for metabolic processes and how energy transfer impacts metabolism and vice versa is a means of exploring the regulation and function of these pathways. A key example is the specific chloroplast localization of glycolysis/gluconeogenesis and how it impacts the redox poise and ATP budget of the plastid in the dark. To compare starch and lipids as carbon reserves, their value can be calculated in terms of NAD(P)H and ATP. As microalgae are now considered a potential renewable feedstock, we examine current work on the subject and also explore the possibility of rerouting metabolism toward lipid production. Classifications Services EC Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue EC About EC Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy EC RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1535-9778 Online ISSN: 1535-9786 Copyright © 2014 by the American Society for Microbiology. For an alternate route to EC .asm.org, visit: EC |
Author | Jean Alric Xenie Johnson |
Author_xml | – sequence: 1 givenname: Xenie surname: Johnson fullname: Johnson, Xenie organization: Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction des Sciences du Vivant, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lez-Durance, France, CNRS, UMR Biologie Végétale et Microbiologie Environnementale, Saint-Paul-lez-Durance, France, Aix Marseille Université, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, Saint-Paul-lez-Durance, France – sequence: 2 givenname: Jean surname: Alric fullname: Alric, Jean organization: Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA, UMR 7141, CNRS et Université Pierre et Marie Curie (Paris VI), Institut de Biologie Physico-Chimique, Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23543671$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1v1DAQhiNURD_gxB35wAEJpdhxHDsckFC0fEhFRaKcrYkz2RgSe2t7qfo7-MMk3e4KEBInj-xn3nn1ek6zI-cdZtlTRs8ZK9SrVXNOKWcqZ8WD7IQJLvJaquroUEt1nJ3G-I1SJmrJH2XHBRclryQ7yX426FKAkTQQWu_IJ0zQ-tHGiYDryGpEk8J8fxXAxY0PiVhHmmGE6bbzk3cQSUDrBghdsvb1od-Qxrs4K1uXIul92A_4DCHZZL2zbk1aTDeIjlza8W7clwTBDI-zhz2MEZ_cn2fZ13erq-ZDfnH5_mPz9iI3gtYplxKBg1Fd2WFVKgY1tKbohRFzXXaqVy1jhvV1SaXquCj6QrAKF6YDZJyfZW92upttO2FndknoTbAThFvtweo_X5wd9Nr_0HN0oq7LWeDFvUDw11uMSU82GhxHcOi3UbOy5FxKScX_UV4JKpjiC_rsd1sHP_tPmwG2A0zwMQbstbEJlkyXvEfNqF4WQ68afbcYmhVzz8u_evay_6af7-jBrocbG1BDnDRuvy-OZ0BXWsqK_wKeusjf |
CitedBy_id | crossref_primary_10_3390_microorganisms12040715 crossref_primary_10_1007_s10811_023_02946_9 crossref_primary_10_1016_j_algal_2020_101835 crossref_primary_10_1186_s13068_017_1000_0 crossref_primary_10_1016_j_biteb_2019_100239 crossref_primary_10_1016_j_biortech_2014_08_090 crossref_primary_10_1016_j_biteb_2023_101746 crossref_primary_10_1021_acs_iecr_9b05948 crossref_primary_10_1534_g3_117_300253 crossref_primary_10_1016_j_algal_2020_102004 crossref_primary_10_1111_raq_12700 crossref_primary_10_1105_tpc_114_129965 crossref_primary_10_1371_journal_pone_0198976 crossref_primary_10_3389_fbioe_2024_1350722 crossref_primary_10_3389_fmicb_2017_00858 crossref_primary_10_1007_s40518_014_0011_8 crossref_primary_10_3390_plants13213015 crossref_primary_10_1007_s12155_025_10829_9 crossref_primary_10_3389_fpls_2022_876439 crossref_primary_10_1016_j_algal_2020_101825 crossref_primary_10_1007_s00253_017_8322_5 crossref_primary_10_1111_febs_14989 crossref_primary_10_1007_s10811_016_0932_2 crossref_primary_10_1016_j_copbio_2015_08_001 crossref_primary_10_3389_fmolb_2018_00103 crossref_primary_10_1007_s10811_017_1326_9 crossref_primary_10_1002_jctb_5059 crossref_primary_10_1016_j_algal_2018_02_009 crossref_primary_10_3390_ijms23094927 crossref_primary_10_2521_jswtb_56_57 crossref_primary_10_1016_j_biortech_2019_121894 crossref_primary_10_1038_srep45471 crossref_primary_10_3390_ijms21207787 crossref_primary_10_1016_j_bbabio_2014_01_024 crossref_primary_10_1038_s41467_023_39898_0 crossref_primary_10_1016_j_algal_2018_05_014 crossref_primary_10_1104_pp_114_250530 crossref_primary_10_3390_phycology4020012 crossref_primary_10_1016_j_pmpp_2021_101757 crossref_primary_10_1016_j_biortech_2015_01_005 crossref_primary_10_1111_tpj_12823 crossref_primary_10_1111_tpj_12944 crossref_primary_10_1016_j_biotechadv_2017_09_009 crossref_primary_10_3389_fmicb_2016_00546 crossref_primary_10_1016_j_algal_2015_04_002 crossref_primary_10_1080_03067319_2021_2004590 crossref_primary_10_1146_annurev_arplant_043014_114744 crossref_primary_10_1007_s11120_017_0350_6 crossref_primary_10_1016_j_bcab_2024_103224 crossref_primary_10_1016_j_biortech_2014_04_083 crossref_primary_10_1073_pnas_2115261119 crossref_primary_10_3389_fpls_2022_960133 crossref_primary_10_1016_j_biortech_2019_121786 crossref_primary_10_1111_tpj_12829 crossref_primary_10_1093_mp_sst139 crossref_primary_10_54097_cskyny85 crossref_primary_10_1016_j_algal_2016_06_003 crossref_primary_10_1016_j_algal_2017_08_010 crossref_primary_10_1016_j_jplph_2022_153629 crossref_primary_10_1098_rstb_2016_0402 crossref_primary_10_1007_s00018_018_2793_0 crossref_primary_10_1098_rstb_2016_0401 crossref_primary_10_1007_s00253_015_6698_7 crossref_primary_10_1093_pcp_pcz010 crossref_primary_10_1071_FP24185 crossref_primary_10_1093_pcp_pcw048 crossref_primary_10_1016_j_algal_2016_03_026 crossref_primary_10_1016_j_algal_2018_01_020 crossref_primary_10_1021_pr501316h crossref_primary_10_1111_pce_14507 crossref_primary_10_1128_EC_00104_15 crossref_primary_10_1016_j_algal_2019_101587 crossref_primary_10_1016_j_ijbiomac_2020_04_273 crossref_primary_10_1186_s13568_015_0126_3 crossref_primary_10_1104_pp_15_01907 crossref_primary_10_1016_j_algal_2017_08_007 crossref_primary_10_1111_nph_19328 crossref_primary_10_1111_pce_14074 crossref_primary_10_1093_jxb_erz380 crossref_primary_10_1016_j_biortech_2017_11_067 crossref_primary_10_1134_S0003683815010135 crossref_primary_10_1016_j_plaphy_2020_08_038 crossref_primary_10_1016_j_envexpbot_2021_104492 crossref_primary_10_1016_j_jhazmat_2024_135145 crossref_primary_10_1093_jxb_erad170 crossref_primary_10_1007_s10499_020_00531_2 crossref_primary_10_1007_s13205_021_02851_3 crossref_primary_10_1007_s10811_014_0445_9 crossref_primary_10_1016_j_ecoenv_2020_110737 crossref_primary_10_1016_j_biotechadv_2017_06_001 crossref_primary_10_1111_pce_13674 crossref_primary_10_1016_j_algal_2016_08_011 crossref_primary_10_3390_pr9081333 crossref_primary_10_1111_jeu_12672 crossref_primary_10_1007_s12155_022_10454_w crossref_primary_10_1016_j_biortech_2024_131794 crossref_primary_10_1007_s11306_024_02170_7 crossref_primary_10_1016_j_biortech_2019_122145 crossref_primary_10_1186_s13068_021_01970_6 crossref_primary_10_1016_j_mimet_2018_07_023 crossref_primary_10_1007_s11157_024_09682_7 crossref_primary_10_1093_mp_ssu083 crossref_primary_10_1111_pbi_13645 crossref_primary_10_1039_C4AN01368A crossref_primary_10_1093_jxb_erad405 crossref_primary_10_1002_etc_5617 crossref_primary_10_1007_s11274_016_2008_5 crossref_primary_10_1016_j_algal_2025_103963 crossref_primary_10_1016_j_biortech_2023_129512 crossref_primary_10_1016_j_algal_2016_03_007 crossref_primary_10_1016_j_aquatox_2015_05_012 crossref_primary_10_1016_j_scitotenv_2016_02_175 crossref_primary_10_1016_j_algal_2020_102060 crossref_primary_10_1016_j_biortech_2017_05_177 crossref_primary_10_1134_S0026893320040147 crossref_primary_10_3390_cells8101154 crossref_primary_10_1042_BCJ20180648 crossref_primary_10_1074_jbc_RA118_004667 crossref_primary_10_1111_oik_08186 crossref_primary_10_3389_fmicb_2022_1029828 crossref_primary_10_3390_molecules24183237 crossref_primary_10_1016_j_algal_2018_02_034 crossref_primary_10_1186_s13068_017_0882_1 crossref_primary_10_1186_s13068_024_02493_6 crossref_primary_10_1186_s12934_019_1163_4 crossref_primary_10_1111_1462_2920_12372 crossref_primary_10_1016_j_bpj_2020_10_006 crossref_primary_10_1016_j_cell_2017_08_044 crossref_primary_10_1016_j_biortech_2017_08_120 crossref_primary_10_1186_s13068_016_0671_2 crossref_primary_10_3390_antiox8050123 crossref_primary_10_1016_j_aqrep_2022_101403 crossref_primary_10_3390_cimb44050128 crossref_primary_10_3389_fenrg_2015_00001 crossref_primary_10_1002_pld3_148 crossref_primary_10_1007_s11120_020_00756_5 crossref_primary_10_3390_plants13152103 crossref_primary_10_1016_j_biteb_2023_101342 crossref_primary_10_1016_j_algal_2018_07_005 crossref_primary_10_1016_j_algal_2019_101782 crossref_primary_10_1093_pcp_pcaa023 crossref_primary_10_1111_jpy_13417 crossref_primary_10_1016_j_jmb_2023_168271 crossref_primary_10_1021_acs_iecr_8b02509 crossref_primary_10_1186_1754_6834_7_69 crossref_primary_10_1073_pnas_2005600117 crossref_primary_10_1016_j_carbpol_2018_12_057 crossref_primary_10_1016_j_scitotenv_2020_142168 crossref_primary_10_1111_tpj_13530 crossref_primary_10_1186_s12859_019_3325_0 crossref_primary_10_3390_plants9040473 crossref_primary_10_3390_biotech14010006 crossref_primary_10_1016_j_freeradbiomed_2019_02_006 crossref_primary_10_1002_bit_26894 crossref_primary_10_1016_j_biotechadv_2020_107609 crossref_primary_10_1016_j_biortech_2023_129141 crossref_primary_10_1371_journal_pone_0106457 crossref_primary_10_1007_s43630_023_00478_2 crossref_primary_10_1016_j_algal_2016_12_015 crossref_primary_10_1007_s00425_014_2108_0 crossref_primary_10_1016_j_ygeno_2022_110444 crossref_primary_10_1016_j_eti_2021_102082 crossref_primary_10_1111_tpj_13787 crossref_primary_10_1016_j_scitotenv_2022_161136 crossref_primary_10_1111_ppl_14539 crossref_primary_10_1016_j_jhazmat_2023_130997 crossref_primary_10_1038_srep45732 crossref_primary_10_1186_s13068_019_1523_7 crossref_primary_10_1016_j_algal_2014_11_005 crossref_primary_10_1016_j_algal_2016_07_020 crossref_primary_10_1007_s11120_015_0152_7 crossref_primary_10_1016_j_ijbiomac_2023_123193 crossref_primary_10_1134_S0026261720030169 crossref_primary_10_1073_pnas_1521916113 crossref_primary_10_3390_life13061398 crossref_primary_10_1016_j_biortech_2022_127019 crossref_primary_10_7717_peerj_11809 crossref_primary_10_3390_fermentation10110582 crossref_primary_10_1016_j_biosystems_2017_09_014 crossref_primary_10_1016_j_algal_2024_103848 crossref_primary_10_1111_tpj_12781 crossref_primary_10_1007_s12237_018_0369_8 crossref_primary_10_3390_cells12101379 crossref_primary_10_3390_ijms23169412 crossref_primary_10_1007_s00253_019_10258_7 crossref_primary_10_1016_j_aquatox_2015_01_002 crossref_primary_10_1016_j_jbc_2023_105470 crossref_primary_10_1371_journal_pone_0177292 crossref_primary_10_1093_plcell_koad095 crossref_primary_10_1007_s11356_016_6224_1 crossref_primary_10_1186_s13068_015_0341_9 crossref_primary_10_1093_plphys_kiae617 crossref_primary_10_1016_j_algal_2021_102270 crossref_primary_10_1111_tpj_13642 crossref_primary_10_1073_pnas_1903185116 crossref_primary_10_3389_fmars_2022_1064077 crossref_primary_10_3390_microorganisms11030633 crossref_primary_10_1016_j_ccst_2023_100142 crossref_primary_10_3390_ijms19123817 crossref_primary_10_1038_s42003_022_03359_z crossref_primary_10_1007_s10529_016_2216_y crossref_primary_10_1128_mBio_01470_21 crossref_primary_10_1515_jib_2018_0018 crossref_primary_10_1042_BCJ20190914 crossref_primary_10_1007_s11120_016_0298_y crossref_primary_10_1007_s11120_018_0549_1 crossref_primary_10_1038_s41598_018_24979_8 crossref_primary_10_1038_srep37235 crossref_primary_10_1016_j_jiec_2018_09_031 crossref_primary_10_4014_jmb_2005_05048 crossref_primary_10_1021_pr400952z crossref_primary_10_1140_epjs_s11734_024_01186_3 crossref_primary_10_1007_s11120_022_00900_3 crossref_primary_10_1016_j_envint_2019_105175 crossref_primary_10_1016_j_plantsci_2018_04_020 crossref_primary_10_1016_j_electacta_2024_144597 crossref_primary_10_1002_biot_201500270 crossref_primary_10_1016_j_algal_2017_07_027 crossref_primary_10_1016_j_algal_2020_101937 crossref_primary_10_1016_j_algal_2021_102626 crossref_primary_10_1016_j_biortech_2017_04_093 crossref_primary_10_1007_s12155_016_9783_6 crossref_primary_10_1186_s13068_014_0117_7 crossref_primary_10_1002_bit_26744 crossref_primary_10_3389_fpls_2016_01817 crossref_primary_10_1016_j_algal_2024_103805 crossref_primary_10_1128_EC_00013_14 crossref_primary_10_1007_s10811_024_03389_6 crossref_primary_10_1007_s10811_015_0709_z crossref_primary_10_3390_ijms23052710 crossref_primary_10_1016_j_jbiotec_2023_03_009 crossref_primary_10_3389_fpls_2022_904943 crossref_primary_10_1007_s00203_021_02570_6 crossref_primary_10_1093_plphys_kiad680 crossref_primary_10_1111_nph_19811 crossref_primary_10_21789_22561498_1821 crossref_primary_10_1016_j_biotechadv_2016_06_004 crossref_primary_10_1039_D2SE00124A crossref_primary_10_1007_s10811_017_1163_x crossref_primary_10_1016_j_chemosphere_2017_01_073 crossref_primary_10_1186_s13068_020_01769_x crossref_primary_10_1111_tpj_14136 crossref_primary_10_1186_s12934_022_02004_y crossref_primary_10_1186_s13068_021_01912_2 crossref_primary_10_1371_journal_pone_0092533 |
Cites_doi | 10.1016/j.bbabio.2012.08.002 10.1093/molbev/msp068 10.1038/205056a0 10.1073/pnas.0806896105 10.1146/annurev.pp.25.060174.002141 10.1038/291025a0 10.1128/EC.05242-11 10.1146/annurev.pp.45.060194.003045 10.1111/j.1399-3054.1987.tb09229.x 10.1046/j.1365-313x.2000.00712.x 10.1105/tpc.109.071084 10.1016/0014-5793(69)80280-2 10.1105/tpc.109.071167 10.1073/pnas.0914299107 10.1091/mbc.e05-04-0347 10.1128/EC.00272-09 10.1016/j.ymben.2010.02.002 10.1105/tpc.108.062752 10.1007/s00294-004-0526-4 10.1021/pr900866e 10.1111/j.1399-3054.2009.01252.x 10.1074/mcp.M111.016733 10.1016/0005-2728(69)90168-6 10.1016/j.jbiotec.2007.05.017 10.1038/188919a0 10.1105/tpc.111.086876 10.1038/nature08587 10.1111/j.1399-3054.1963.tb08355.x 10.1006/abbi.1994.1374 10.1016/0014-5793(81)80716-8 10.1016/B978-0-12-370873-1.00016-2 10.1016/0005-2728(75)90040-7 10.1016/0005-2728(90)90095-L 10.1104/pp.82.1.160 10.1007/s00294-011-0339-1 10.1038/201725a0 10.1007/BF00312603 10.1073/pnas.1110518109 10.1093/jxb/erq361 10.1093/jxb/eri178 10.1104/pp.105.071589 10.1111/j.1432-1033.1992.tb16641.x 10.1074/jbc.M908732199 10.1016/S0163-7827(01)00023-6 10.1016/j.jbiotec.2012.04.006 10.1126/science.1115581 10.1146/annurev.arplant.56.032604.144257 10.1002/bit.22807 10.1099/00221287-108-1-79 10.1126/science.1081397 10.1104/pp.88.4.973 10.1083/jcb.200504008 10.1074/jbc.M111.334052 10.1007/BF00326284 10.1017/S0016672300012015 10.1111/j.1365-3040.2010.02183.x 10.1007/BF00446372 10.1007/BF00016065 10.1016/S0005-2728(98)00126-1 10.1016/j.phytochem.2011.12.007 10.1104/pp.110.165159 10.1104/pp.90.3.788 10.1073/pnas.102306999 10.1016/0014-5793(95)01143-3 10.1016/S0022-2275(20)43004-4 10.1016/j.bbabio.2006.02.018 10.1016/0304-4165(89)90127-X 10.1186/1472-6750-11-7 10.1186/1471-2105-12-282 10.1104/pp.41.5.885 10.1002/pmic.201100114 10.1128/EC.00075-10 10.1104/pp.106.081885 10.1074/jbc.M112.370205 10.1016/0005-2728(90)90226-T 10.1073/pnas.85.5.1344 10.1083/jcb.85.1.136 10.1016/j.copbio.2011.12.001 10.1016/j.molcel.2012.11.030 10.1016/j.febslet.2011.05.018 10.1126/science.1143609 10.1073/pnas.79.14.4352 10.1016/0005-2728(85)90071-4 10.1016/0168-9452(90)90162-H 10.1104/pp.98.4.1233 10.1146/annurev-arplant-042110-103903 10.1007/s11120-010-9566-4 10.1105/tpc.111.084400 10.1016/0012-1606(73)90318-7 10.1016/0304-4165(91)90150-F 10.1021/bi00008a028 10.1016/0014-5793(70)80438-0 10.1038/nature08885 10.1146/annurev.arplant.47.1.185 10.1016/B978-0-12-370873-1.00021-6 10.1126/science.127.3305.1026 10.1126/science.162.3855.768 10.1128/JB.183.3.1069-1077.2001 10.1104/pp.96.2.355 10.1093/oxfordjournals.pcp.a029353 10.1007/s00425-011-1537-2 10.1016/j.ijhydene.2011.04.229 10.1038/216597a0 10.1007/BF00424940 10.1128/EC.4.2.242-252.2005 10.1111/j.1365-313X.2008.03492.x 10.1104/pp.122.4.1193 10.1111/j.0031-9317.2004.0222.x 10.1006/abbi.1998.0900 10.1126/science.7992056 10.1104/pp.72.2.488 10.1016/S0005-2728(01)00190-6 10.1016/j.bbabio.2009.07.009 10.1128/EC.00203-09 10.1104/pp.79.1.11 10.1016/0005-2728(74)90100-5 10.1016/j.plipres.2009.10.003 10.1016/0005-2728(69)90067-X |
ContentType | Journal Article |
Copyright | Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 F1W H95 L.G M7N 5PM |
DOI | 10.1128/EC.00318-12 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1535-9786 |
EndPage | 793 |
ExternalDocumentID | PMC3675994 23543671 10_1128_EC_00318_12 eukcell_12_6_776 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS AAFWJ AAGFI AAYXX ACGFO ADBBV ADXHL AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ KQ8 O9- OK1 P2P RHI RNS RPM RSF TR2 W8F WHG WOQ CGR CUY CVF ECM EIF NPM 7X8 F1W H95 L.G M7N 5PM |
ID | FETCH-LOGICAL-c509t-77ea3ac8d4de6481a9abc2f5c581a4d8f8b11c1f94078d352f2516ebc2fdae133 |
ISSN | 1535-9778 1535-9786 |
IngestDate | Thu Aug 21 13:59:25 EDT 2025 Fri Jul 11 04:01:27 EDT 2025 Fri Jul 11 05:38:38 EDT 2025 Thu Apr 03 06:57:24 EDT 2025 Tue Jul 01 00:51:36 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed May 18 15:27:29 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-77ea3ac8d4de6481a9abc2f5c581a4d8f8b11c1f94078d352f2516ebc2fdae133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Present address: Jean Alric, CNRS, UMR Biologie Végétale et Microbiologie Environnementale, Saint-Paul-lez-Durance, France. |
OpenAccessLink | https://ec.asm.org/content/eukcell/12/6/776.full.pdf |
PMID | 23543671 |
PQID | 1365051835 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1365051835 pubmed_primary_23543671 crossref_citationtrail_10_1128_EC_00318_12 proquest_miscellaneous_1443377705 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3675994 highwire_asm_eukcell_12_6_776 crossref_primary_10_1128_EC_00318_12 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130601 2013-06-00 2013-Jun |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 20130601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Eukaryotic Cell |
PublicationTitleAlternate | Eukaryot Cell |
PublicationYear | 2013 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 Rabinowitch E (e_1_3_2_67_2) 1951 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_25_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_122_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_119_2 e_1_3_2_49_2 Harris EH (e_1_3_2_26_2) 2009 e_1_3_2_41_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 Cardol P (e_1_3_2_66_2) 2009 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_61_2 e_1_3_2_120_2 Norris SR (e_1_3_2_20_2) 1995; 7 e_1_3_2_80_2 e_1_3_2_101_2 Ohlrogge J (e_1_3_2_78_2) 1995; 7 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 Yang W (e_1_3_2_64_2) e_1_3_2_91_2 e_1_3_2_113_2 Spalding MH (e_1_3_2_27_2) 2009 e_1_3_2_72_2 Ball SG (e_1_3_2_44_2) 1998 e_1_3_2_117_2 15863446 - J Exp Bot. 2005 Jun;56(416):1469-79 11945379 - FEBS Lett. 1970 Oct 5;10(3):143-148 21928291 - Proteomics. 2011 Nov;11(21):4266-73 14134734 - Nature. 1964 Feb 15;201:725-6 16030251 - Mol Biol Cell. 2005 Oct;16(10):4509-18 15459796 - Curr Genet. 2004 Nov;46(5):304-15 4392141 - J Lipid Res. 1970 Mar;11(2):131-43 19940928 - Nature. 2009 Nov 26;462(7272):518-21 23290914 - Mol Cell. 2013 Feb 7;49(3):511-23 16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005 16668781 - Plant Physiol. 1992 Apr;98(4):1233-8 24241735 - Planta. 1986 Jan;167(1):81-6 7992056 - Science. 1994 Dec 9;266(5191):1717-9 4386796 - Science. 1968 Nov 15;162(3855):768-71 16668193 - Plant Physiol. 1991 Jun;96(2):355-62 20172043 - Metab Eng. 2010 Jul;12(4):387-91 8053679 - Arch Biochem Biophys. 1994 Aug 15;313(1):173-8 10792819 - Plant J. 2000 Apr;22(1):39-50 5775694 - Biochim Biophys Acta. 1969 Feb 25;172(2):242-51 4423963 - Biochim Biophys Acta. 1974 Oct 18;368(1):97-112 8718624 - Plant Cell. 1995 Dec;7(12):2139-49 16664354 - Plant Physiol. 1985 Sep;79(1):11-7 19651104 - Biochim Biophys Acta. 2010 Jan;1797(1):44-51 20081115 - Plant Cell. 2010 Jan;22(1):221-33 11947226 - FEBS Lett. 1969 Sep;5(1):11-14 15701786 - Eukaryot Cell. 2005 Feb;4(2):242-52 15032873 - Physiol Plant. 2004 Jan;120(1):21-26 21749710 - BMC Bioinformatics. 2011;12:282 14283135 - Nature. 1965 Jan 2;205:56-7 21764992 - Plant Cell. 2011 Jul;23(7):2619-30 11755683 - Prog Lipid Res. 2002 Mar;41(2):182-96 20364124 - Nature. 2010 Apr 22;464(7292):1210-3 2894027 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1344-8 2065364 - Curr Genet. 1991 Feb;19(2):65-71 7589569 - FEBS Lett. 1995 Nov 6;374(3):351-5 19558416 - Physiol Plant. 2009 Dec;137(4):371-82 11522255 - Biochim Biophys Acta. 2001 Aug 17;1506(2):133-42 21533645 - Curr Genet. 2011 Jun;57(3):151-68 239745 - Biochim Biophys Acta. 1975 Aug 11;396(2):260-75 6767730 - J Cell Biol. 1980 Apr;85(1):136-45 20587772 - Plant Cell. 2010 Jun;22(6):2058-84 16844835 - Plant Physiol. 2006 Sep;142(1):305-17 20439704 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63 22692199 - J Biol Chem. 2012 Jul 27;287(31):26445-52 15998802 - J Cell Biol. 2005 Jul 4;170(1):103-13 19349646 - Mol Biol Evol. 2009 Jul;26(7):1533-48 16663029 - Plant Physiol. 1983 Jun;72(2):488-91 15012287 - Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214 21255402 - BMC Biotechnol. 2011;11:7 22902601 - Biochim Biophys Acta. 2013 Feb;1827(2):210-23 22209109 - Curr Opin Biotechnol. 2012 Jun;23(3):352-63 17932292 - Science. 2007 Oct 12;318(5848):245-50 16593210 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4352-6 7640528 - Plant Cell. 1995 Jul;7(7):957-70 2225144 - Curr Genet. 1990 Aug;18(2):155-60 9808758 - Arch Biochem Biophys. 1998 Nov 15;359(2):170-8 17793272 - Science. 1958 May 2;127(3305):1026-34 21575636 - FEBS Lett. 2011 Jun 23;585(12):1985-91 4764234 - Arch Mikrobiol. 1973 Oct 19;93(2):91-100 22037181 - Eukaryot Cell. 2011 Dec;10(12):1592-606 16666488 - Plant Physiol. 1988 Dec;88(4):973-5 1740146 - Eur J Biochem. 1992 Feb 15;204(1):327-36 15862090 - Annu Rev Plant Biol. 2005;56:73-98 19879895 - Prog Lipid Res. 2010 Apr;49(2):128-58 16656335 - Plant Physiol. 1966 May;41(5):885-90 22403401 - J Biol Chem. 2012 May 4;287(19):15811-25 4787191 - Dev Biol. 1973 Mar;31(1):31-7 1826218 - Biochim Biophys Acta. 1991 Mar 4;1073(2):410-5 22226037 - Phytochemistry. 2012 Mar;75:50-9 7873543 - Biochemistry. 1995 Feb 28;34(8):2621-7 22143777 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20820-5 18476868 - Plant J. 2008 May;54(4):621-39 10759515 - Plant Physiol. 2000 Apr;122(4):1193-9 5370012 - Biochim Biophys Acta. 1969;189(3):366-83 20532629 - Photosynth Res. 2010 Nov;106(1-2):47-56 20506159 - Biotechnol Bioeng. 2010 Oct 1;107(2):258-68 2719977 - Biochim Biophys Acta. 1989 May 31;991(2):347-52 11208806 - J Bacteriol. 2001 Feb;183(3):1069-77 22787274 - Mol Cell Proteomics. 2012 Oct;11(10):973-88 20935180 - Plant Physiol. 2010 Dec;154(4):1737-52 21526967 - Annu Rev Plant Biol. 2011;62:53-77 20545877 - Plant Cell Environ. 2010 Nov;33(11):1779-88 12119384 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10209-14 22020754 - Planta. 2012 Apr;235(4):729-45 16762315 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):362-8 16040710 - Science. 2005 Jul 22;309(5734):630-3 16664985 - Plant Physiol. 1986 Sep;82(1):160-6 19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68 20562225 - Eukaryot Cell. 2010 Aug;9(8):1251-61 21498682 - Plant Cell. 2011 Apr;23(4):1273-92 19915074 - Eukaryot Cell. 2010 Jan;9(1):97-106 19074271 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20546-51 22542934 - J Biotechnol. 2012 Nov 30;162(1):13-20 12624266 - Science. 2003 Mar 7;299(5612):1572-5 20408572 - J Proteome Res. 2010 Jun 4;9(6):2825-38 24310351 - Plant Mol Biol. 1984 May;3(3):177-90 17624461 - J Biotechnol. 2007 Aug 1;131(1):27-33 16666878 - Plant Physiol. 1989 Jul;90(3):788-91 10748104 - J Biol Chem. 2000 Jun 9;275(23):17256-62 19897671 - Plant Cell. 2009 Nov;21(11):3473-92 21511915 - J Exp Bot. 2011 Apr;62(7):2381-92 |
References_xml | – ident: e_1_3_2_63_2 doi: 10.1016/j.bbabio.2012.08.002 – ident: e_1_3_2_6_2 doi: 10.1093/molbev/msp068 – ident: e_1_3_2_29_2 doi: 10.1038/205056a0 – start-page: 1313 volume-title: Photosynthesis and related processes year: 1951 ident: e_1_3_2_67_2 – ident: e_1_3_2_14_2 doi: 10.1073/pnas.0806896105 – ident: e_1_3_2_42_2 doi: 10.1146/annurev.pp.25.060174.002141 – ident: e_1_3_2_72_2 doi: 10.1038/291025a0 – ident: e_1_3_2_83_2 doi: 10.1128/EC.05242-11 – volume: 7 start-page: 957 year: 1995 ident: e_1_3_2_78_2 article-title: Lipid biosynthesis publication-title: Plant Cell – ident: e_1_3_2_96_2 doi: 10.1146/annurev.pp.45.060194.003045 – ident: e_1_3_2_65_2 doi: 10.1111/j.1399-3054.1987.tb09229.x – ident: e_1_3_2_81_2 doi: 10.1046/j.1365-313x.2000.00712.x – ident: e_1_3_2_112_2 doi: 10.1105/tpc.109.071084 – ident: e_1_3_2_57_2 doi: 10.1016/0014-5793(69)80280-2 – ident: e_1_3_2_4_2 doi: 10.1105/tpc.109.071167 – ident: e_1_3_2_116_2 doi: 10.1073/pnas.0914299107 – ident: e_1_3_2_46_2 doi: 10.1091/mbc.e05-04-0347 – ident: e_1_3_2_94_2 doi: 10.1128/EC.00272-09 – ident: e_1_3_2_92_2 doi: 10.1016/j.ymben.2010.02.002 – ident: e_1_3_2_21_2 doi: 10.1105/tpc.108.062752 – ident: e_1_3_2_121_2 doi: 10.1007/s00294-004-0526-4 – ident: e_1_3_2_24_2 doi: 10.1021/pr900866e – ident: e_1_3_2_25_2 doi: 10.1111/j.1399-3054.2009.01252.x – ident: e_1_3_2_10_2 doi: 10.1074/mcp.M111.016733 – ident: e_1_3_2_70_2 doi: 10.1016/0005-2728(69)90168-6 – ident: e_1_3_2_47_2 doi: 10.1016/j.jbiotec.2007.05.017 – ident: e_1_3_2_32_2 doi: 10.1038/188919a0 – ident: e_1_3_2_12_2 doi: 10.1105/tpc.111.086876 – ident: e_1_3_2_15_2 doi: 10.1038/nature08587 – ident: e_1_3_2_30_2 doi: 10.1111/j.1399-3054.1963.tb08355.x – ident: e_1_3_2_45_2 doi: 10.1006/abbi.1994.1374 – ident: e_1_3_2_73_2 doi: 10.1016/0014-5793(81)80716-8 – start-page: 257 volume-title: The Chlamydomonas sourcebook. Organellar and metabolic processes year: 2009 ident: e_1_3_2_27_2 doi: 10.1016/B978-0-12-370873-1.00016-2 – ident: e_1_3_2_37_2 doi: 10.1016/0005-2728(75)90040-7 – ident: e_1_3_2_77_2 doi: 10.1016/0005-2728(90)90095-L – ident: e_1_3_2_28_2 doi: 10.1104/pp.82.1.160 – ident: e_1_3_2_8_2 doi: 10.1007/s00294-011-0339-1 – ident: e_1_3_2_33_2 doi: 10.1038/201725a0 – ident: e_1_3_2_103_2 doi: 10.1007/BF00312603 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.1110518109 – ident: e_1_3_2_59_2 doi: 10.1093/jxb/erq361 – ident: e_1_3_2_80_2 doi: 10.1093/jxb/eri178 – ident: e_1_3_2_9_2 doi: 10.1104/pp.105.071589 – ident: e_1_3_2_104_2 doi: 10.1111/j.1432-1033.1992.tb16641.x – ident: e_1_3_2_62_2 doi: 10.1074/jbc.M908732199 – ident: e_1_3_2_102_2 doi: 10.1016/S0163-7827(01)00023-6 – ident: e_1_3_2_91_2 doi: 10.1016/j.jbiotec.2012.04.006 – ident: e_1_3_2_117_2 doi: 10.1126/science.1115581 – ident: e_1_3_2_41_2 doi: 10.1146/annurev.arplant.56.032604.144257 – ident: e_1_3_2_93_2 doi: 10.1002/bit.22807 – start-page: 550 volume-title: The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Advances in photosynthesis year: 1998 ident: e_1_3_2_44_2 – ident: e_1_3_2_98_2 doi: 10.1099/00221287-108-1-79 – ident: e_1_3_2_17_2 doi: 10.1126/science.1081397 – ident: e_1_3_2_38_2 doi: 10.1104/pp.88.4.973 – ident: e_1_3_2_7_2 doi: 10.1083/jcb.200504008 – ident: e_1_3_2_89_2 doi: 10.1074/jbc.M111.334052 – ident: e_1_3_2_122_2 doi: 10.1007/BF00326284 – ident: e_1_3_2_99_2 doi: 10.1017/S0016672300012015 – ident: e_1_3_2_113_2 doi: 10.1111/j.1365-3040.2010.02183.x – ident: e_1_3_2_36_2 doi: 10.1007/BF00446372 – ident: e_1_3_2_54_2 doi: 10.1007/BF00016065 – ident: e_1_3_2_43_2 doi: 10.1016/S0005-2728(98)00126-1 – ident: e_1_3_2_90_2 doi: 10.1016/j.phytochem.2011.12.007 – ident: e_1_3_2_82_2 doi: 10.1104/pp.110.165159 – ident: e_1_3_2_124_2 doi: 10.1104/pp.90.3.788 – ident: e_1_3_2_110_2 doi: 10.1073/pnas.102306999 – ident: e_1_3_2_58_2 doi: 10.1016/0014-5793(95)01143-3 – ident: e_1_3_2_108_2 doi: 10.1016/S0022-2275(20)43004-4 – ident: e_1_3_2_111_2 doi: 10.1016/j.bbabio.2006.02.018 – ident: e_1_3_2_125_2 doi: 10.1016/0304-4165(89)90127-X – ident: e_1_3_2_84_2 doi: 10.1186/1472-6750-11-7 – ident: e_1_3_2_5_2 doi: 10.1186/1471-2105-12-282 – ident: e_1_3_2_31_2 doi: 10.1104/pp.41.5.885 – ident: e_1_3_2_88_2 doi: 10.1002/pmic.201100114 – ident: e_1_3_2_95_2 doi: 10.1128/EC.00075-10 – ident: e_1_3_2_115_2 doi: 10.1104/pp.106.081885 – volume-title: The Chlamydomonas sourcebook. Introduction to Chlamydomonas and its laboratory use year: 2009 ident: e_1_3_2_26_2 – ident: e_1_3_2_53_2 doi: 10.1074/jbc.M112.370205 – ident: e_1_3_2_56_2 doi: 10.1016/0005-2728(90)90226-T – ident: e_1_3_2_61_2 doi: 10.1073/pnas.85.5.1344 – ident: e_1_3_2_114_2 doi: 10.1083/jcb.85.1.136 – ident: e_1_3_2_85_2 doi: 10.1016/j.copbio.2011.12.001 – ident: e_1_3_2_13_2 doi: 10.1016/j.molcel.2012.11.030 – ident: e_1_3_2_86_2 doi: 10.1016/j.febslet.2011.05.018 – ident: e_1_3_2_2_2 doi: 10.1126/science.1143609 – ident: e_1_3_2_16_2 doi: 10.1073/pnas.79.14.4352 – ident: e_1_3_2_76_2 doi: 10.1016/0005-2728(85)90071-4 – ident: e_1_3_2_34_2 doi: 10.1016/0168-9452(90)90162-H – ident: e_1_3_2_107_2 doi: 10.1104/pp.98.4.1233 – ident: e_1_3_2_60_2 doi: 10.1146/annurev-arplant-042110-103903 – ident: e_1_3_2_74_2 doi: 10.1007/s11120-010-9566-4 – ident: e_1_3_2_3_2 doi: 10.1105/tpc.111.084400 – ident: e_1_3_2_119_2 doi: 10.1016/0012-1606(73)90318-7 – ident: e_1_3_2_35_2 doi: 10.1016/0304-4165(91)90150-F – ident: e_1_3_2_48_2 doi: 10.1021/bi00008a028 – ident: e_1_3_2_49_2 doi: 10.1016/0014-5793(70)80438-0 – ident: e_1_3_2_18_2 doi: 10.1038/nature08885 – ident: e_1_3_2_40_2 doi: 10.1146/annurev.arplant.47.1.185 – start-page: 469 volume-title: The Chlamydomonas sourcebook. Organellar and metabolic processes year: 2009 ident: e_1_3_2_66_2 doi: 10.1016/B978-0-12-370873-1.00021-6 – ident: e_1_3_2_11_2 doi: 10.1126/science.127.3305.1026 – ident: e_1_3_2_55_2 doi: 10.1126/science.162.3855.768 – ident: e_1_3_2_97_2 doi: 10.1128/JB.183.3.1069-1077.2001 – ident: e_1_3_2_120_2 doi: 10.1104/pp.96.2.355 – ident: e_1_3_2_50_2 doi: 10.1093/oxfordjournals.pcp.a029353 – ident: e_1_3_2_118_2 doi: 10.1007/s00425-011-1537-2 – ident: e_1_3_2_105_2 doi: 10.1016/j.ijhydene.2011.04.229 – ident: e_1_3_2_52_2 doi: 10.1038/216597a0 – ident: e_1_3_2_69_2 doi: 10.1007/BF00424940 – ident: e_1_3_2_79_2 doi: 10.1128/EC.4.2.242-252.2005 – ident: e_1_3_2_106_2 doi: 10.1111/j.1365-313X.2008.03492.x – ident: e_1_3_2_123_2 doi: 10.1104/pp.122.4.1193 – ident: e_1_3_2_23_2 doi: 10.1111/j.0031-9317.2004.0222.x – ident: e_1_3_2_100_2 doi: 10.1006/abbi.1998.0900 – ident: e_1_3_2_19_2 doi: 10.1126/science.7992056 – ident: e_1_3_2_51_2 doi: 10.1104/pp.72.2.488 – ident: e_1_3_2_75_2 doi: 10.1016/S0005-2728(01)00190-6 – ident: e_1_3_2_109_2 doi: 10.1016/j.bbabio.2009.07.009 – ident: e_1_3_2_87_2 doi: 10.1128/EC.00203-09 – ident: e_1_3_2_101_2 doi: 10.1104/pp.79.1.11 – ident: e_1_3_2_68_2 doi: 10.1016/0005-2728(74)90100-5 – volume: 7 start-page: 2139 year: 1995 ident: e_1_3_2_20_2 article-title: Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation publication-title: Plant Cell – volume-title: Insights into algal fermentation metabolism ident: e_1_3_2_64_2 – ident: e_1_3_2_39_2 doi: 10.1016/j.plipres.2009.10.003 – ident: e_1_3_2_71_2 doi: 10.1016/0005-2728(69)90067-X – reference: 5370012 - Biochim Biophys Acta. 1969;189(3):366-83 – reference: 24310351 - Plant Mol Biol. 1984 May;3(3):177-90 – reference: 20935180 - Plant Physiol. 2010 Dec;154(4):1737-52 – reference: 14134734 - Nature. 1964 Feb 15;201:725-6 – reference: 2225144 - Curr Genet. 1990 Aug;18(2):155-60 – reference: 22037181 - Eukaryot Cell. 2011 Dec;10(12):1592-606 – reference: 19940928 - Nature. 2009 Nov 26;462(7272):518-21 – reference: 21511915 - J Exp Bot. 2011 Apr;62(7):2381-92 – reference: 16593210 - Proc Natl Acad Sci U S A. 1982 Jul;79(14):4352-6 – reference: 16762315 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):362-8 – reference: 10748104 - J Biol Chem. 2000 Jun 9;275(23):17256-62 – reference: 15032873 - Physiol Plant. 2004 Jan;120(1):21-26 – reference: 239745 - Biochim Biophys Acta. 1975 Aug 11;396(2):260-75 – reference: 20081115 - Plant Cell. 2010 Jan;22(1):221-33 – reference: 4787191 - Dev Biol. 1973 Mar;31(1):31-7 – reference: 21533645 - Curr Genet. 2011 Jun;57(3):151-68 – reference: 16306140 - Plant Physiol. 2005 Dec;139(4):1995-2005 – reference: 16668193 - Plant Physiol. 1991 Jun;96(2):355-62 – reference: 4386796 - Science. 1968 Nov 15;162(3855):768-71 – reference: 21575636 - FEBS Lett. 2011 Jun 23;585(12):1985-91 – reference: 2719977 - Biochim Biophys Acta. 1989 May 31;991(2):347-52 – reference: 17932292 - Science. 2007 Oct 12;318(5848):245-50 – reference: 21255402 - BMC Biotechnol. 2011;11:7 – reference: 16030251 - Mol Biol Cell. 2005 Oct;16(10):4509-18 – reference: 22209109 - Curr Opin Biotechnol. 2012 Jun;23(3):352-63 – reference: 14283135 - Nature. 1965 Jan 2;205:56-7 – reference: 16656335 - Plant Physiol. 1966 May;41(5):885-90 – reference: 22403401 - J Biol Chem. 2012 May 4;287(19):15811-25 – reference: 16040710 - Science. 2005 Jul 22;309(5734):630-3 – reference: 19074271 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20546-51 – reference: 7589569 - FEBS Lett. 1995 Nov 6;374(3):351-5 – reference: 16664354 - Plant Physiol. 1985 Sep;79(1):11-7 – reference: 21526967 - Annu Rev Plant Biol. 2011;62:53-77 – reference: 4392141 - J Lipid Res. 1970 Mar;11(2):131-43 – reference: 21498682 - Plant Cell. 2011 Apr;23(4):1273-92 – reference: 22143777 - Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20820-5 – reference: 6767730 - J Cell Biol. 1980 Apr;85(1):136-45 – reference: 11522255 - Biochim Biophys Acta. 2001 Aug 17;1506(2):133-42 – reference: 16666488 - Plant Physiol. 1988 Dec;88(4):973-5 – reference: 4423963 - Biochim Biophys Acta. 1974 Oct 18;368(1):97-112 – reference: 22226037 - Phytochemistry. 2012 Mar;75:50-9 – reference: 16663029 - Plant Physiol. 1983 Jun;72(2):488-91 – reference: 1826218 - Biochim Biophys Acta. 1991 Mar 4;1073(2):410-5 – reference: 18476868 - Plant J. 2008 May;54(4):621-39 – reference: 16666878 - Plant Physiol. 1989 Jul;90(3):788-91 – reference: 12119384 - Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10209-14 – reference: 22020754 - Planta. 2012 Apr;235(4):729-45 – reference: 15701786 - Eukaryot Cell. 2005 Feb;4(2):242-52 – reference: 9808758 - Arch Biochem Biophys. 1998 Nov 15;359(2):170-8 – reference: 4764234 - Arch Mikrobiol. 1973 Oct 19;93(2):91-100 – reference: 21764992 - Plant Cell. 2011 Jul;23(7):2619-30 – reference: 8718624 - Plant Cell. 1995 Dec;7(12):2139-49 – reference: 19880756 - Eukaryot Cell. 2009 Dec;8(12):1856-68 – reference: 20506159 - Biotechnol Bioeng. 2010 Oct 1;107(2):258-68 – reference: 19897671 - Plant Cell. 2009 Nov;21(11):3473-92 – reference: 2065364 - Curr Genet. 1991 Feb;19(2):65-71 – reference: 20172043 - Metab Eng. 2010 Jul;12(4):387-91 – reference: 22692199 - J Biol Chem. 2012 Jul 27;287(31):26445-52 – reference: 22902601 - Biochim Biophys Acta. 2013 Feb;1827(2):210-23 – reference: 17624461 - J Biotechnol. 2007 Aug 1;131(1):27-33 – reference: 19558416 - Physiol Plant. 2009 Dec;137(4):371-82 – reference: 15862090 - Annu Rev Plant Biol. 2005;56:73-98 – reference: 19915074 - Eukaryot Cell. 2010 Jan;9(1):97-106 – reference: 20532629 - Photosynth Res. 2010 Nov;106(1-2):47-56 – reference: 7992056 - Science. 1994 Dec 9;266(5191):1717-9 – reference: 20587772 - Plant Cell. 2010 Jun;22(6):2058-84 – reference: 8053679 - Arch Biochem Biophys. 1994 Aug 15;313(1):173-8 – reference: 11755683 - Prog Lipid Res. 2002 Mar;41(2):182-96 – reference: 15863446 - J Exp Bot. 2005 Jun;56(416):1469-79 – reference: 21749710 - BMC Bioinformatics. 2011;12:282 – reference: 17793272 - Science. 1958 May 2;127(3305):1026-34 – reference: 2894027 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1344-8 – reference: 16844835 - Plant Physiol. 2006 Sep;142(1):305-17 – reference: 20562225 - Eukaryot Cell. 2010 Aug;9(8):1251-61 – reference: 20545877 - Plant Cell Environ. 2010 Nov;33(11):1779-88 – reference: 20408572 - J Proteome Res. 2010 Jun 4;9(6):2825-38 – reference: 20439704 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63 – reference: 15012287 - Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214 – reference: 16668781 - Plant Physiol. 1992 Apr;98(4):1233-8 – reference: 11208806 - J Bacteriol. 2001 Feb;183(3):1069-77 – reference: 1740146 - Eur J Biochem. 1992 Feb 15;204(1):327-36 – reference: 10792819 - Plant J. 2000 Apr;22(1):39-50 – reference: 20364124 - Nature. 2010 Apr 22;464(7292):1210-3 – reference: 15459796 - Curr Genet. 2004 Nov;46(5):304-15 – reference: 23290914 - Mol Cell. 2013 Feb 7;49(3):511-23 – reference: 22787274 - Mol Cell Proteomics. 2012 Oct;11(10):973-88 – reference: 15998802 - J Cell Biol. 2005 Jul 4;170(1):103-13 – reference: 16664985 - Plant Physiol. 1986 Sep;82(1):160-6 – reference: 19349646 - Mol Biol Evol. 2009 Jul;26(7):1533-48 – reference: 19879895 - Prog Lipid Res. 2010 Apr;49(2):128-58 – reference: 5775694 - Biochim Biophys Acta. 1969 Feb 25;172(2):242-51 – reference: 7873543 - Biochemistry. 1995 Feb 28;34(8):2621-7 – reference: 11947226 - FEBS Lett. 1969 Sep;5(1):11-14 – reference: 24241735 - Planta. 1986 Jan;167(1):81-6 – reference: 11945379 - FEBS Lett. 1970 Oct 5;10(3):143-148 – reference: 12624266 - Science. 2003 Mar 7;299(5612):1572-5 – reference: 10759515 - Plant Physiol. 2000 Apr;122(4):1193-9 – reference: 22542934 - J Biotechnol. 2012 Nov 30;162(1):13-20 – reference: 21928291 - Proteomics. 2011 Nov;11(21):4266-73 – reference: 7640528 - Plant Cell. 1995 Jul;7(7):957-70 – reference: 19651104 - Biochim Biophys Acta. 2010 Jan;1797(1):44-51 |
SSID | ssj0015973 |
Score | 2.525544 |
SecondaryResourceType | review_article |
Snippet | Classifications
Services
EC
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit... The metabolism of microalgae is so flexible that it is not an easy task to give a comprehensive description of the interplay between the various metabolic... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 776 |
SubjectTerms | Adenosine Triphosphate - metabolism Carbon - metabolism Chlamydomonas reinhardtii Chlamydomonas reinhardtii - metabolism Chloroplasts - metabolism Electron Transport Gluconeogenesis Glycolysis Lipid Metabolism Lipids - biosynthesis Minireview Mitochondria - metabolism NADP - metabolism Oxidative Phosphorylation Photosynthesis Plant Oils - metabolism Starch - metabolism |
Title | Central Carbon Metabolism and Electron Transport in Chlamydomonas reinhardtii: Metabolic Constraints for Carbon Partitioning between Oil and Starch |
URI | http://ec.asm.org/content/12/6/776.abstract https://www.ncbi.nlm.nih.gov/pubmed/23543671 https://www.proquest.com/docview/1365051835 https://www.proquest.com/docview/1443377705 https://pubmed.ncbi.nlm.nih.gov/PMC3675994 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZWRUhcEG8WKDJST0gpm5edcEOrRRUSj0MrrbhEju2oUZcEtdnDcuI_8IeZ8SPrLStUuERW4sRJ5stkxp75hpCjZtYUTSpZxJOagYNSqkjIOI9YyiSTPGeFxEThj5_YyVn2YZkvJ5OfQdTSeqiP5Y-9eSX_I1XYB3LFLNl_kOx4UdgBbZAvbEHCsL2RjN3ULEZt1D0uugwg0pUve7FwFW62BOYmxe8cMLBRPdykwCWDtsO8q6HFULnxCtIU8jTlIwZD2OCH-IJ34edwfYzX59byDYDh6ifGxrn-C3G56ZEUFlcIwnAdl-m11F27Rd0KtLKNuXGgdfMRpjaEn4_wKjSPwKq0WlWH-xzptde7SYCvUIlyzoL_MbcVFP9U9QmmLyzmx0YvRe5qO4Ta1350Y_ihcXySolrMDTVqUWGZ6lsJOBozP9_j1qHA3Uot4659JpfhCSe_CUbetWk8z_Q-n-V66G1gy5zeI3edE0LfWUTdJxPdPSC3bVnSDbS-9qb1kPxyCKNW_HSLMAoCpx5hdEQYbTu6gzAaIOzteL6kAb4o4MsPEOKLOnxRwJcZzuLrETl7vzidn0SujEckwRodwH_TIhWyUJnSLCtiUYpaJk0uc2hnqmiKOo5l3JS4pKzAIWjA5mYa-yih4zR9TA66vtNPCW1KXCfkuSyVyBqFxEg5vMo6UZlUMkmm5LUXRCUdxz0-y6raI_IpORo7f7fULvu7HXqJVuLqW6XXF_jFwJGKVQDVKXnlxVyBasZjotP9-qrCCFL454GP85c-WZamnPMZ9HlioTHeTJLmWcp4PCV8BzRjB6SG3z3SteeGIh5Oy8sye3azR3xO7my_5BfkYLhc60OwtYf6pfkcfgN5VtpY |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Central+Carbon+Metabolism+and+Electron+Transport+in+Chlamydomonas+reinhardtii%3A+Metabolic+Constraints+for+Carbon+Partitioning+between+Oil+and+Starch&rft.jtitle=Eukaryotic+cell&rft.au=Johnson%2C+Xenie&rft.au=Alric%2C+Jean&rft.date=2013-06-01&rft.issn=1535-9778&rft.eissn=1535-9786&rft.volume=12&rft.issue=6&rft.spage=776&rft.epage=793&rft_id=info:doi/10.1128%2FEC.00318-12&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_EC_00318_12 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |