Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density

Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great chall...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 8; pp. 1 - 8
Main Authors Zhou, Xiao, Huang, Gui-Xiang, Chen, Cai, Chen, Wenxing, Liang, Kuang, Qu, Yunteng, Yang, Jia, Wang, Ying, Li, Fengting, Yu, Han-Qing, Wu, Yuen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N₄ sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electrondepleted Cu-N₄/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N₄ single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N₄/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N₄ sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
AbstractList The Fenton-like process based on peroxymonosulfate (PMS) has been widely investigated and recognized as a promising alternative in recent years for the degradation of persistent organic pollutants. However, the sluggish kinetics of PMS activation results in prohibitive costs and substantial chemical inputs, impeding its practical applications in water purification. This work demonstrates that tuning the electronic structure of single-atom sites at the atomic level is a powerful approach to achieve superior PMS activation kinetics. The Cu-based catalyst with the optimized electronic structure exhibits superior performance over most of the state-of-the-art heterogeneous Fenton-like catalysts, while homogeneous Cu(II) shows very poor activity. This work provides insights into the electronic structure regulation of metal centers and structure–activity relationship at the atomic level. Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N 4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N 4 /C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N 4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N 4 /C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N 4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N /C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N /C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N₄ sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electrondepleted Cu-N₄/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N₄ single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N₄/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N₄ sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.
Author Chen, Cai
Li, Fengting
Yang, Jia
Yu, Han-Qing
Huang, Gui-Xiang
Wu, Yuen
Wang, Ying
Zhou, Xiao
Liang, Kuang
Chen, Wenxing
Qu, Yunteng
Author_xml – sequence: 1
  givenname: Xiao
  surname: Zhou
  fullname: Zhou, Xiao
– sequence: 3
  givenname: Gui-Xiang
  surname: Huang
  fullname: Huang, Gui-Xiang
– sequence: 4
  givenname: Cai
  surname: Chen
  fullname: Chen, Cai
– sequence: 5
  givenname: Wenxing
  surname: Chen
  fullname: Chen, Wenxing
– sequence: 6
  givenname: Kuang
  surname: Liang
  fullname: Liang, Kuang
– sequence: 7
  givenname: Yunteng
  surname: Qu
  fullname: Qu, Yunteng
– sequence: 8
  givenname: Jia
  surname: Yang
  fullname: Yang, Jia
– sequence: 9
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
– sequence: 10
  givenname: Fengting
  surname: Li
  fullname: Li, Fengting
– sequence: 11
  givenname: Han-Qing
  surname: Yu
  fullname: Yu, Han-Qing
– sequence: 12
  givenname: Yuen
  surname: Wu
  fullname: Wu, Yuen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35165185$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9rFDEcxYNU7LZ69qQMePEy7Tc_J7kIsrRaKPRSb0LIZjI260yyJpnC_vfNuu2qBS8JJJ_3eN_3PUFHIQaH0FsMZxg6er4JJp8RjBVTu_MFWmBQuBVMwRFaAJCulYywY3SS8xoAFJfwCh1TjgXHki_Q96veheIHb03xMTRxaC7rQwzt6H-6xtji712znJvsi8vNatvcueJSNCVOzRT7eTzo3OhsSTF421TPym9fo5eDGbN783ifom-XF7fLr-31zZer5efr1nJQpe2EACZ7IcEZIJJiag1lwBmzDoCtiKICq8Go3tKeWNqBA0toJ82gmOmBnqJPe9_NvJpcb-sAyYx6k_xk0lZH4_W_P8Hf6R_xXkvZkQ7vDD4-GqT4a3a56Mln68bRBBfnrIkgCrjoqKzoh2foOs4p1PEqVVNjVTuu1Pu_Ex2iPBVfAb4HbIo5Jzdo68vvKmtAP2oMerdgvVuw_rPgqjt_pnuy_r_i3V6xziWmA17nxlJwRh8ATeayag
CitedBy_id crossref_primary_10_1016_j_cej_2024_151307
crossref_primary_10_1021_acscatal_4c03327
crossref_primary_10_1002_advs_202205681
crossref_primary_10_1016_j_cej_2024_158065
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1038_s41467_024_52074_2
crossref_primary_10_1073_pnas_2305705120
crossref_primary_10_1016_j_jenvman_2024_120846
crossref_primary_10_1002_anie_202407870
crossref_primary_10_1002_advs_202304088
crossref_primary_10_1002_anie_202213296
crossref_primary_10_1016_j_watres_2025_123399
crossref_primary_10_1039_D3NJ01895D
crossref_primary_10_1002_smll_202205583
crossref_primary_10_1002_ange_202210415
crossref_primary_10_1073_pnas_2319119121
crossref_primary_10_1016_j_ces_2024_119945
crossref_primary_10_1016_j_watres_2024_122699
crossref_primary_10_1021_acsestengg_3c00421
crossref_primary_10_1021_acs_est_2c00369
crossref_primary_10_1002_adtp_202200033
crossref_primary_10_1016_j_cej_2024_151678
crossref_primary_10_1002_anie_202219178
crossref_primary_10_1021_acs_est_3c04712
crossref_primary_10_1039_D3SC02872K
crossref_primary_10_1002_anie_202402176
crossref_primary_10_1073_pnas_2210211120
crossref_primary_10_1038_s41467_022_33149_4
crossref_primary_10_1016_j_jclepro_2024_143392
crossref_primary_10_1016_j_seppur_2024_130452
crossref_primary_10_1002_adma_202311416
crossref_primary_10_1002_adfm_202203001
crossref_primary_10_1021_acsbiomaterials_4c01530
crossref_primary_10_1002_anie_202218510
crossref_primary_10_1016_j_scitotenv_2023_166121
crossref_primary_10_1039_D4EN00481G
crossref_primary_10_3389_fchem_2022_1039874
crossref_primary_10_1073_pnas_2300281120
crossref_primary_10_1002_adma_202404278
crossref_primary_10_1016_j_cej_2024_154482
crossref_primary_10_1073_pnas_2220608120
crossref_primary_10_1016_j_cej_2022_135760
crossref_primary_10_1016_j_cej_2024_158046
crossref_primary_10_1002_ange_202300356
crossref_primary_10_1016_j_seppur_2024_129698
crossref_primary_10_1016_j_seppur_2024_130200
crossref_primary_10_1021_acs_est_4c08704
crossref_primary_10_1038_s41467_025_56246_6
crossref_primary_10_1021_acsnano_3c03610
crossref_primary_10_1016_j_talanta_2023_124991
crossref_primary_10_1021_acscatal_4c01377
crossref_primary_10_1016_j_seppur_2023_124768
crossref_primary_10_1002_adfm_202403964
crossref_primary_10_1016_j_apmt_2023_102053
crossref_primary_10_1073_pnas_2305706120
crossref_primary_10_1002_adma_202201796
crossref_primary_10_1002_aenm_202404621
crossref_primary_10_1021_acsanm_2c04724
crossref_primary_10_1039_D2TC01835G
crossref_primary_10_1007_s11356_024_32751_x
crossref_primary_10_1038_s41467_023_38677_1
crossref_primary_10_1021_acscatal_2c05409
crossref_primary_10_1360_SSC_2024_0183
crossref_primary_10_1002_anie_202300356
crossref_primary_10_1002_advs_202307151
crossref_primary_10_1021_acs_est_4c03869
crossref_primary_10_1021_acsestengg_3c00295
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1002_adma_202209654
crossref_primary_10_1073_pnas_2300085120
crossref_primary_10_3390_molecules29163719
crossref_primary_10_1002_adfm_202423092
crossref_primary_10_1002_adma_202403965
crossref_primary_10_1016_j_apsusc_2022_153755
crossref_primary_10_1016_j_cej_2024_150786
crossref_primary_10_1002_ange_202407870
crossref_primary_10_1021_acsnano_4c09637
crossref_primary_10_1002_anie_202313034
crossref_primary_10_1002_ange_202402176
crossref_primary_10_1038_s41467_024_55622_y
crossref_primary_10_1002_cctc_202201633
crossref_primary_10_1016_j_cej_2022_137856
crossref_primary_10_1016_j_seppur_2024_129783
crossref_primary_10_1016_j_cej_2024_148587
crossref_primary_10_1021_acs_est_2c03673
crossref_primary_10_1016_j_apsusc_2023_158479
crossref_primary_10_1039_D4SC02621G
crossref_primary_10_1016_j_cej_2023_143147
crossref_primary_10_1016_j_cej_2024_154682
crossref_primary_10_1038_s41467_024_51525_0
crossref_primary_10_1002_smll_202306621
crossref_primary_10_1021_acscatal_3c03928
crossref_primary_10_1021_prechem_2c00006
crossref_primary_10_1038_s41467_025_57643_7
crossref_primary_10_1016_j_cej_2023_142962
crossref_primary_10_1021_acs_inorgchem_4c01144
crossref_primary_10_1007_s11705_023_2327_7
crossref_primary_10_1016_j_jhazmat_2024_134750
crossref_primary_10_1021_acs_est_4c12215
crossref_primary_10_1021_acsanm_4c00775
crossref_primary_10_1007_s12274_022_5104_x
crossref_primary_10_1021_acsestengg_2c00287
crossref_primary_10_1038_s41467_023_39228_4
crossref_primary_10_1016_j_cej_2024_156042
crossref_primary_10_1016_j_cej_2025_159831
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1021_acsestwater_4c00383
crossref_primary_10_1039_D2CY01181F
crossref_primary_10_1073_pnas_2205562119
crossref_primary_10_1016_j_jhazmat_2023_130987
crossref_primary_10_1002_adfm_202407243
crossref_primary_10_1016_j_seppur_2024_128304
crossref_primary_10_1016_j_cej_2022_141220
crossref_primary_10_1039_D2CC05989D
crossref_primary_10_1016_j_seppur_2023_123827
crossref_primary_10_1016_j_watres_2024_122851
crossref_primary_10_1021_acsanm_4c04089
crossref_primary_10_1039_D3TA07737C
crossref_primary_10_1073_pnas_2309102121
crossref_primary_10_1016_j_apcatb_2023_123084
crossref_primary_10_1016_j_jwpe_2025_107538
crossref_primary_10_1016_j_watres_2023_120614
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1002_adfm_202304468
crossref_primary_10_1016_j_cej_2024_154537
crossref_primary_10_1016_j_jhazmat_2023_130999
crossref_primary_10_1021_acs_est_2c09336
crossref_primary_10_1016_j_cej_2022_140382
crossref_primary_10_1021_acsestengg_4c00331
crossref_primary_10_1021_acsestengg_2c00187
crossref_primary_10_1039_D2TA06216J
crossref_primary_10_1021_acs_jpcc_2c04915
crossref_primary_10_1039_D2NR02989H
crossref_primary_10_1002_ange_202219178
crossref_primary_10_1002_ange_202313034
crossref_primary_10_1021_acs_est_2c01968
crossref_primary_10_1021_acs_est_2c03904
crossref_primary_10_1002_adma_202209552
crossref_primary_10_1002_adma_202401162
crossref_primary_10_1016_j_envpol_2023_122892
crossref_primary_10_1073_pnas_2322283121
crossref_primary_10_1021_acsami_2c15232
crossref_primary_10_1002_adfm_202415558
crossref_primary_10_1021_acs_est_3c10898
crossref_primary_10_1002_ange_202218510
crossref_primary_10_1073_pnas_2221228120
crossref_primary_10_1002_smll_202207142
crossref_primary_10_1021_acs_est_3c00163
crossref_primary_10_1002_adma_202413141
crossref_primary_10_1016_j_apcatb_2022_122245
crossref_primary_10_1038_s41467_024_54225_x
crossref_primary_10_1002_smll_202403804
crossref_primary_10_1016_j_cej_2023_142922
crossref_primary_10_1016_j_apsusc_2023_157908
crossref_primary_10_1002_ange_202213296
crossref_primary_10_1002_adma_202305162
crossref_primary_10_1002_smll_202308957
crossref_primary_10_1021_acsestengg_2c00364
crossref_primary_10_1016_j_cej_2023_144774
crossref_primary_10_1016_j_watres_2024_122545
crossref_primary_10_1016_j_cej_2023_143444
crossref_primary_10_1002_smll_202409240
crossref_primary_10_1002_adhm_202300291
crossref_primary_10_1021_acs_est_3c06887
crossref_primary_10_1038_s41467_024_46653_6
crossref_primary_10_1016_j_cej_2024_154983
crossref_primary_10_1021_acs_est_3c04343
crossref_primary_10_1016_j_cej_2024_156928
crossref_primary_10_1073_pnas_2201607119
crossref_primary_10_1002_anie_202207268
crossref_primary_10_1039_D4CS00217B
crossref_primary_10_1039_D3TA08073K
crossref_primary_10_1073_pnas_2219923120
crossref_primary_10_1021_acsanm_3c03638
crossref_primary_10_1002_inf2_12421
crossref_primary_10_1021_acsami_2c12036
crossref_primary_10_1021_acs_est_2c08836
crossref_primary_10_1007_s40843_024_2979_6
crossref_primary_10_1021_acs_est_3c02025
crossref_primary_10_1016_j_jece_2023_110573
crossref_primary_10_1002_ange_202207268
crossref_primary_10_1039_D3EN00024A
crossref_primary_10_1016_j_seppur_2024_128842
crossref_primary_10_1016_j_apcatb_2023_123130
crossref_primary_10_1021_acs_est_4c06608
crossref_primary_10_1002_adma_202302485
crossref_primary_10_1039_D2EN01156E
crossref_primary_10_1021_acscatal_3c03303
crossref_primary_10_1016_j_cej_2023_144862
crossref_primary_10_1021_acsanm_2c05295
crossref_primary_10_1021_acsanm_4c01593
crossref_primary_10_1021_acsestengg_4c00237
crossref_primary_10_1073_pnas_2307989120
crossref_primary_10_1073_pnas_2408770121
crossref_primary_10_1002_smll_202406319
crossref_primary_10_1002_adma_202417834
crossref_primary_10_1007_s12274_024_6874_0
crossref_primary_10_1016_j_jece_2023_111674
crossref_primary_10_1016_j_ccr_2024_215871
crossref_primary_10_1021_acs_jpcc_4c01551
crossref_primary_10_1039_D2QM01294D
crossref_primary_10_1021_acsanm_3c04507
crossref_primary_10_1016_j_seppur_2023_126231
crossref_primary_10_1021_acsnano_3c07724
crossref_primary_10_1016_j_seppur_2024_127504
crossref_primary_10_1002_anie_202210415
crossref_primary_10_1016_j_jelechem_2023_117506
crossref_primary_10_1016_j_cej_2023_147693
Cites_doi 10.1021/es501218f
10.1016/j.cej.2017.07.132
10.1038/s41560-017-0078-8
10.1021/ja202320q
10.1016/0039-6028(85)90273-0
10.1002/anie.201706602
10.1039/C5CP04529K
10.1021/acs.est.9b03648
10.1039/D0CS01032D
10.1021/nn501434a
10.1021/es8031727
10.1021/jacs.0c02229
10.1021/acs.est.5b03595
10.1038/s41565-018-0234-8
10.1021/acs.est.9b04696
10.1021/jacs.7b05130
10.1021/jacs.8b13543
10.1016/j.cej.2017.11.059
10.1039/C9EE00555B
10.1021/acs.est.0c00284
10.1021/acs.accounts.9b00133
10.1002/smtd.202000988
10.1021/jp0464425
10.1016/j.apcatb.2017.11.051
10.1039/C8EE01169A
10.1038/s41467-021-20923-z
10.1021/jp052166y
10.1021/ja310566z
10.1002/anie.202014472
10.1002/celc.201402307
10.1021/cs5017613
10.1073/pnas.1819382116
10.1021/es304721g
10.1021/acs.est.0c00575
10.1016/j.cej.2016.07.007
10.1021/acs.est.9b07082
10.1073/pnas.2108573118
10.1002/anie.202004841
10.1021/acs.est.9b05856
10.1073/pnas.2101817118
10.1021/jacs.8b05992
10.1038/s41467-020-16848-8
10.1002/anie.202010828
10.1021/es035121o
10.1039/C6CY01479H
10.1021/acs.chemrev.7b00776
10.1016/j.joule.2018.11.008
10.1016/j.apcatb.2015.07.024
10.1016/j.cej.2018.07.105
10.1016/j.jcis.2020.08.049
10.1021/acs.est.8b00959
10.1016/j.chemosphere.2016.02.055
10.1039/cs9811000205
10.1021/acscatal.6b00205
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Feb 22, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Feb 22, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2119492119
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8
ExternalDocumentID PMC8872710
35165185
10_1073_pnas_2119492119
27118654
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-766048d680ea028313ca340544ce004b293619fa9dc3d2c370e0c2378af94ad03
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:20:31 EDT 2025
Fri Jul 11 04:59:26 EDT 2025
Mon Jun 30 08:24:09 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Tue Jul 01 01:03:10 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Thu May 29 08:48:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords single-atom catalysts
Fenton-like process
reaction kinetics
heteroatom-doped engineering
electronic structure
Language English
License Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-766048d680ea028313ca340544ce004b293619fa9dc3d2c370e0c2378af94ad03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1X.Z. and M-K.K. contributed equally to this work.
Edited by Alexis Bell, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA; received October 25, 2021; accepted December 15, 2021
Author contributions: Y. Wang, H.-Q.Y., and Y. Wu designed research; X.Z. and M.-K.K. performed research; G.-X.H., C.C., K.L., and J.Y. contributed new reagents/analytic tools; X.Z., M.-K.K., W.C., Y.Q., and F.L. analyzed data; and X.Z., Y. Wang, H.-Q.Y., and Y. Wu wrote the paper.
ORCID 0000-0002-9847-4655
0000-0001-5247-6244
0000-0001-5376-8169
0000-0001-9524-2843
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8872710
PMID 35165185
PQID 2634019958
PQPubID 42026
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872710
proquest_miscellaneous_2629056738
proquest_journals_2634019958
pubmed_primary_35165185
crossref_citationtrail_10_1073_pnas_2119492119
crossref_primary_10_1073_pnas_2119492119
jstor_primary_27118654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-22
PublicationDateYYYYMMDD 2022-02-22
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_1_2
e_1_3_5_40_2
e_1_3_5_42_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_45_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_19_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_44_2
  doi: 10.1021/es501218f
– ident: e_1_3_5_12_2
  doi: 10.1016/j.cej.2017.07.132
– ident: e_1_3_5_36_2
  doi: 10.1038/s41560-017-0078-8
– ident: e_1_3_5_53_2
  doi: 10.1021/ja202320q
– ident: e_1_3_5_19_2
  doi: 10.1016/0039-6028(85)90273-0
– ident: e_1_3_5_30_2
  doi: 10.1002/anie.201706602
– ident: e_1_3_5_39_2
  doi: 10.1039/C5CP04529K
– ident: e_1_3_5_51_2
  doi: 10.1021/acs.est.9b03648
– ident: e_1_3_5_22_2
  doi: 10.1039/D0CS01032D
– ident: e_1_3_5_33_2
  doi: 10.1021/nn501434a
– ident: e_1_3_5_46_2
  doi: 10.1021/es8031727
– ident: e_1_3_5_28_2
  doi: 10.1021/jacs.0c02229
– ident: e_1_3_5_43_2
  doi: 10.1021/acs.est.5b03595
– ident: e_1_3_5_1_2
  doi: 10.1038/s41565-018-0234-8
– ident: e_1_3_5_6_2
  doi: 10.1021/acs.est.9b04696
– ident: e_1_3_5_41_2
  doi: 10.1021/jacs.7b05130
– ident: e_1_3_5_31_2
  doi: 10.1021/jacs.8b13543
– ident: e_1_3_5_9_2
  doi: 10.1016/j.cej.2017.11.059
– ident: e_1_3_5_32_2
  doi: 10.1039/C9EE00555B
– ident: e_1_3_5_7_2
  doi: 10.1021/acs.est.0c00284
– ident: e_1_3_5_2_2
  doi: 10.1021/acs.accounts.9b00133
– ident: e_1_3_5_27_2
  doi: 10.1002/smtd.202000988
– ident: e_1_3_5_40_2
  doi: 10.1021/jp0464425
– ident: e_1_3_5_50_2
  doi: 10.1016/j.apcatb.2017.11.051
– ident: e_1_3_5_37_2
  doi: 10.1039/C8EE01169A
– ident: e_1_3_5_26_2
  doi: 10.1038/s41467-021-20923-z
– ident: e_1_3_5_13_2
  doi: 10.1021/jp052166y
– ident: e_1_3_5_34_2
  doi: 10.1021/ja310566z
– ident: e_1_3_5_25_2
  doi: 10.1002/anie.202014472
– ident: e_1_3_5_35_2
  doi: 10.1002/celc.201402307
– ident: e_1_3_5_18_2
  doi: 10.1021/cs5017613
– ident: e_1_3_5_4_2
  doi: 10.1073/pnas.1819382116
– ident: e_1_3_5_14_2
  doi: 10.1021/es304721g
– ident: e_1_3_5_45_2
  doi: 10.1021/acs.est.0c00575
– ident: e_1_3_5_52_2
  doi: 10.1016/j.cej.2016.07.007
– ident: e_1_3_5_49_2
  doi: 10.1021/acs.est.9b07082
– ident: e_1_3_5_3_2
  doi: 10.1073/pnas.2108573118
– ident: e_1_3_5_29_2
  doi: 10.1002/anie.202004841
– ident: e_1_3_5_48_2
  doi: 10.1021/acs.est.9b05856
– ident: e_1_3_5_21_2
  doi: 10.1073/pnas.2101817118
– ident: e_1_3_5_24_2
  doi: 10.1021/jacs.8b05992
– ident: e_1_3_5_42_2
  doi: 10.1038/s41467-020-16848-8
– ident: e_1_3_5_5_2
  doi: 10.1002/anie.202010828
– ident: e_1_3_5_8_2
  doi: 10.1021/es035121o
– ident: e_1_3_5_15_2
  doi: 10.1039/C6CY01479H
– ident: e_1_3_5_20_2
  doi: 10.1021/acs.chemrev.7b00776
– ident: e_1_3_5_38_2
  doi: 10.1016/j.joule.2018.11.008
– ident: e_1_3_5_10_2
  doi: 10.1016/j.apcatb.2015.07.024
– ident: e_1_3_5_16_2
  doi: 10.1016/j.cej.2018.07.105
– ident: e_1_3_5_23_2
  doi: 10.1016/j.jcis.2020.08.049
– ident: e_1_3_5_17_2
  doi: 10.1021/acs.est.8b00959
– ident: e_1_3_5_11_2
  doi: 10.1016/j.chemosphere.2016.02.055
– ident: e_1_3_5_47_2
  doi: 10.1039/cs9811000205
– ident: e_1_3_5_54_2
  doi: 10.1021/acscatal.6b00205
SSID ssj0009580
Score 2.7131026
Snippet Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but...
The Fenton-like process based on peroxymonosulfate (PMS) has been widely investigated and recognized as a promising alternative in recent years for the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Boron
Carbon sources
Catalysts
Copper
Density
Electronic structure
Electrons
Oxidation
Phosphorus
Physical Sciences
Single atom catalysts
Substrates
Title Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density
URI https://www.jstor.org/stable/27118654
https://www.ncbi.nlm.nih.gov/pubmed/35165185
https://www.proquest.com/docview/2634019958
https://www.proquest.com/docview/2629056738
https://pubmed.ncbi.nlm.nih.gov/PMC8872710
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQNpCReBiqUlLbzcfjVG1UMMoeWqlCSFFiO2vFSBBtJsE_wL_NXex8TWUCXqIqsSM3v_P5zr77HSGvVDBK07HLwS1JPUcETDqJCqWjgiD2hWRapJgo_GHmTRfi3XK87PV-taKWim0ylD935pX8D6pwD3DFLNl_QLZ-KdyA34AvXAFhuP4VxibLNrXbbmj3wfCwJvDV-ouhybjWg0kxwBPiDRqaKwx-ycHP_oolcGzlLuzXqoajMKR92zntvahXuU0VUzCrNhFPmpQUqyc2A2dwMWsKHH9a5QUiuVzHeaPfTcx-dum8L7JGtuzu9dti7UBzu6qW0QdGPU7idXufAlxczPtuvNrbhtVW0AwWTWHSqofa6GQwaRxPmKqitdK2itZIZ7BzMQDthRWMs3gzRB47EbKqV4d2e_YxOlucn0fz0-X8DrnLwN8oI0SnbfbmwOQy2dFVHFE-f3Pj9R3zxkS47vJdbobgtmya-QNy3zoj9MRI1j7p6ewh2a--Fz22nOSvH5HPXVGjeUpbokaNqNFJQUtRo8kP2ogabUQN-zWiRq2oPSaLs9P5ZOrYwhyOBPty6_ieB4pfeYGrY7RPR1zGHCx_IaSG6ZmACQl-eRqHSnLFJPdd7UrG_SBOQxErlx-QvSzP9FNCE1gvkhQ5kxQTgWQJT7mnWMwUaAypwz4ZVt8zkpa1HounXEVl9ITPIwQgagDok-O6wzdD2PLnpgclQHU75oO77Y1FnxxViEV2ukM_D_4iEhoEffKyfgzKGE_Y4kznBbZhIXgUPoc2TwzA9cv5eOSNwTruE78Dfd0Aid67T7L1qiR8B0MAhuY-u31Yh-ReM--OyN72e6Gfg8W8TV6U0vwbC5XEQg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Fenton-like+active+Cu+sites+by+heteroatom+modulation+of+electronic+density&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhou%2C+Xiao&rft.au=Ke%2C+Ming-Kun&rft.au=Huang%2C+Gui-Xiang&rft.au=Chen%2C+Cai&rft.date=2022-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=8&rft_id=info:doi/10.1073%2Fpnas.2119492119&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon