Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great chall...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 8; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N₄ sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electrondepleted Cu-N₄/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N₄ single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N₄/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N₄ sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. |
---|---|
AbstractList | The Fenton-like process based on peroxymonosulfate (PMS) has been widely investigated and recognized as a promising alternative in recent years for the degradation of persistent organic pollutants. However, the sluggish kinetics of PMS activation results in prohibitive costs and substantial chemical inputs, impeding its practical applications in water purification. This work demonstrates that tuning the electronic structure of single-atom sites at the atomic level is a powerful approach to achieve superior PMS activation kinetics. The Cu-based catalyst with the optimized electronic structure exhibits superior performance over most of the state-of-the-art heterogeneous Fenton-like catalysts, while homogeneous Cu(II) shows very poor activity. This work provides insights into the electronic structure regulation of metal centers and structure–activity relationship at the atomic level.
Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N
4
sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N
4
/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N
4
single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N
4
/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N
4
sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N /C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N /C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N₄ sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electrondepleted Cu-N₄/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N₄ single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N₄/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N₄ sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts. |
Author | Chen, Cai Li, Fengting Yang, Jia Yu, Han-Qing Huang, Gui-Xiang Wu, Yuen Wang, Ying Zhou, Xiao Liang, Kuang Chen, Wenxing Qu, Yunteng |
Author_xml | – sequence: 1 givenname: Xiao surname: Zhou fullname: Zhou, Xiao – sequence: 3 givenname: Gui-Xiang surname: Huang fullname: Huang, Gui-Xiang – sequence: 4 givenname: Cai surname: Chen fullname: Chen, Cai – sequence: 5 givenname: Wenxing surname: Chen fullname: Chen, Wenxing – sequence: 6 givenname: Kuang surname: Liang fullname: Liang, Kuang – sequence: 7 givenname: Yunteng surname: Qu fullname: Qu, Yunteng – sequence: 8 givenname: Jia surname: Yang fullname: Yang, Jia – sequence: 9 givenname: Ying surname: Wang fullname: Wang, Ying – sequence: 10 givenname: Fengting surname: Li fullname: Li, Fengting – sequence: 11 givenname: Han-Qing surname: Yu fullname: Yu, Han-Qing – sequence: 12 givenname: Yuen surname: Wu fullname: Wu, Yuen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35165185$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9rFDEcxYNU7LZ69qQMePEy7Tc_J7kIsrRaKPRSb0LIZjI260yyJpnC_vfNuu2qBS8JJJ_3eN_3PUFHIQaH0FsMZxg6er4JJp8RjBVTu_MFWmBQuBVMwRFaAJCulYywY3SS8xoAFJfwCh1TjgXHki_Q96veheIHb03xMTRxaC7rQwzt6H-6xtji712znJvsi8vNatvcueJSNCVOzRT7eTzo3OhsSTF421TPym9fo5eDGbN783ifom-XF7fLr-31zZer5efr1nJQpe2EACZ7IcEZIJJiag1lwBmzDoCtiKICq8Go3tKeWNqBA0toJ82gmOmBnqJPe9_NvJpcb-sAyYx6k_xk0lZH4_W_P8Hf6R_xXkvZkQ7vDD4-GqT4a3a56Mln68bRBBfnrIkgCrjoqKzoh2foOs4p1PEqVVNjVTuu1Pu_Ex2iPBVfAb4HbIo5Jzdo68vvKmtAP2oMerdgvVuw_rPgqjt_pnuy_r_i3V6xziWmA17nxlJwRh8ATeayag |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_151307 crossref_primary_10_1021_acscatal_4c03327 crossref_primary_10_1002_advs_202205681 crossref_primary_10_1016_j_cej_2024_158065 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1038_s41467_024_52074_2 crossref_primary_10_1073_pnas_2305705120 crossref_primary_10_1016_j_jenvman_2024_120846 crossref_primary_10_1002_anie_202407870 crossref_primary_10_1002_advs_202304088 crossref_primary_10_1002_anie_202213296 crossref_primary_10_1016_j_watres_2025_123399 crossref_primary_10_1039_D3NJ01895D crossref_primary_10_1002_smll_202205583 crossref_primary_10_1002_ange_202210415 crossref_primary_10_1073_pnas_2319119121 crossref_primary_10_1016_j_ces_2024_119945 crossref_primary_10_1016_j_watres_2024_122699 crossref_primary_10_1021_acsestengg_3c00421 crossref_primary_10_1021_acs_est_2c00369 crossref_primary_10_1002_adtp_202200033 crossref_primary_10_1016_j_cej_2024_151678 crossref_primary_10_1002_anie_202219178 crossref_primary_10_1021_acs_est_3c04712 crossref_primary_10_1039_D3SC02872K crossref_primary_10_1002_anie_202402176 crossref_primary_10_1073_pnas_2210211120 crossref_primary_10_1038_s41467_022_33149_4 crossref_primary_10_1016_j_jclepro_2024_143392 crossref_primary_10_1016_j_seppur_2024_130452 crossref_primary_10_1002_adma_202311416 crossref_primary_10_1002_adfm_202203001 crossref_primary_10_1021_acsbiomaterials_4c01530 crossref_primary_10_1002_anie_202218510 crossref_primary_10_1016_j_scitotenv_2023_166121 crossref_primary_10_1039_D4EN00481G crossref_primary_10_3389_fchem_2022_1039874 crossref_primary_10_1073_pnas_2300281120 crossref_primary_10_1002_adma_202404278 crossref_primary_10_1016_j_cej_2024_154482 crossref_primary_10_1073_pnas_2220608120 crossref_primary_10_1016_j_cej_2022_135760 crossref_primary_10_1016_j_cej_2024_158046 crossref_primary_10_1002_ange_202300356 crossref_primary_10_1016_j_seppur_2024_129698 crossref_primary_10_1016_j_seppur_2024_130200 crossref_primary_10_1021_acs_est_4c08704 crossref_primary_10_1038_s41467_025_56246_6 crossref_primary_10_1021_acsnano_3c03610 crossref_primary_10_1016_j_talanta_2023_124991 crossref_primary_10_1021_acscatal_4c01377 crossref_primary_10_1016_j_seppur_2023_124768 crossref_primary_10_1002_adfm_202403964 crossref_primary_10_1016_j_apmt_2023_102053 crossref_primary_10_1073_pnas_2305706120 crossref_primary_10_1002_adma_202201796 crossref_primary_10_1002_aenm_202404621 crossref_primary_10_1021_acsanm_2c04724 crossref_primary_10_1039_D2TC01835G crossref_primary_10_1007_s11356_024_32751_x crossref_primary_10_1038_s41467_023_38677_1 crossref_primary_10_1021_acscatal_2c05409 crossref_primary_10_1360_SSC_2024_0183 crossref_primary_10_1002_anie_202300356 crossref_primary_10_1002_advs_202307151 crossref_primary_10_1021_acs_est_4c03869 crossref_primary_10_1021_acsestengg_3c00295 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1002_adma_202209654 crossref_primary_10_1073_pnas_2300085120 crossref_primary_10_3390_molecules29163719 crossref_primary_10_1002_adfm_202423092 crossref_primary_10_1002_adma_202403965 crossref_primary_10_1016_j_apsusc_2022_153755 crossref_primary_10_1016_j_cej_2024_150786 crossref_primary_10_1002_ange_202407870 crossref_primary_10_1021_acsnano_4c09637 crossref_primary_10_1002_anie_202313034 crossref_primary_10_1002_ange_202402176 crossref_primary_10_1038_s41467_024_55622_y crossref_primary_10_1002_cctc_202201633 crossref_primary_10_1016_j_cej_2022_137856 crossref_primary_10_1016_j_seppur_2024_129783 crossref_primary_10_1016_j_cej_2024_148587 crossref_primary_10_1021_acs_est_2c03673 crossref_primary_10_1016_j_apsusc_2023_158479 crossref_primary_10_1039_D4SC02621G crossref_primary_10_1016_j_cej_2023_143147 crossref_primary_10_1016_j_cej_2024_154682 crossref_primary_10_1038_s41467_024_51525_0 crossref_primary_10_1002_smll_202306621 crossref_primary_10_1021_acscatal_3c03928 crossref_primary_10_1021_prechem_2c00006 crossref_primary_10_1038_s41467_025_57643_7 crossref_primary_10_1016_j_cej_2023_142962 crossref_primary_10_1021_acs_inorgchem_4c01144 crossref_primary_10_1007_s11705_023_2327_7 crossref_primary_10_1016_j_jhazmat_2024_134750 crossref_primary_10_1021_acs_est_4c12215 crossref_primary_10_1021_acsanm_4c00775 crossref_primary_10_1007_s12274_022_5104_x crossref_primary_10_1021_acsestengg_2c00287 crossref_primary_10_1038_s41467_023_39228_4 crossref_primary_10_1016_j_cej_2024_156042 crossref_primary_10_1016_j_cej_2025_159831 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1021_acsestwater_4c00383 crossref_primary_10_1039_D2CY01181F crossref_primary_10_1073_pnas_2205562119 crossref_primary_10_1016_j_jhazmat_2023_130987 crossref_primary_10_1002_adfm_202407243 crossref_primary_10_1016_j_seppur_2024_128304 crossref_primary_10_1016_j_cej_2022_141220 crossref_primary_10_1039_D2CC05989D crossref_primary_10_1016_j_seppur_2023_123827 crossref_primary_10_1016_j_watres_2024_122851 crossref_primary_10_1021_acsanm_4c04089 crossref_primary_10_1039_D3TA07737C crossref_primary_10_1073_pnas_2309102121 crossref_primary_10_1016_j_apcatb_2023_123084 crossref_primary_10_1016_j_jwpe_2025_107538 crossref_primary_10_1016_j_watres_2023_120614 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1002_adfm_202304468 crossref_primary_10_1016_j_cej_2024_154537 crossref_primary_10_1016_j_jhazmat_2023_130999 crossref_primary_10_1021_acs_est_2c09336 crossref_primary_10_1016_j_cej_2022_140382 crossref_primary_10_1021_acsestengg_4c00331 crossref_primary_10_1021_acsestengg_2c00187 crossref_primary_10_1039_D2TA06216J crossref_primary_10_1021_acs_jpcc_2c04915 crossref_primary_10_1039_D2NR02989H crossref_primary_10_1002_ange_202219178 crossref_primary_10_1002_ange_202313034 crossref_primary_10_1021_acs_est_2c01968 crossref_primary_10_1021_acs_est_2c03904 crossref_primary_10_1002_adma_202209552 crossref_primary_10_1002_adma_202401162 crossref_primary_10_1016_j_envpol_2023_122892 crossref_primary_10_1073_pnas_2322283121 crossref_primary_10_1021_acsami_2c15232 crossref_primary_10_1002_adfm_202415558 crossref_primary_10_1021_acs_est_3c10898 crossref_primary_10_1002_ange_202218510 crossref_primary_10_1073_pnas_2221228120 crossref_primary_10_1002_smll_202207142 crossref_primary_10_1021_acs_est_3c00163 crossref_primary_10_1002_adma_202413141 crossref_primary_10_1016_j_apcatb_2022_122245 crossref_primary_10_1038_s41467_024_54225_x crossref_primary_10_1002_smll_202403804 crossref_primary_10_1016_j_cej_2023_142922 crossref_primary_10_1016_j_apsusc_2023_157908 crossref_primary_10_1002_ange_202213296 crossref_primary_10_1002_adma_202305162 crossref_primary_10_1002_smll_202308957 crossref_primary_10_1021_acsestengg_2c00364 crossref_primary_10_1016_j_cej_2023_144774 crossref_primary_10_1016_j_watres_2024_122545 crossref_primary_10_1016_j_cej_2023_143444 crossref_primary_10_1002_smll_202409240 crossref_primary_10_1002_adhm_202300291 crossref_primary_10_1021_acs_est_3c06887 crossref_primary_10_1038_s41467_024_46653_6 crossref_primary_10_1016_j_cej_2024_154983 crossref_primary_10_1021_acs_est_3c04343 crossref_primary_10_1016_j_cej_2024_156928 crossref_primary_10_1073_pnas_2201607119 crossref_primary_10_1002_anie_202207268 crossref_primary_10_1039_D4CS00217B crossref_primary_10_1039_D3TA08073K crossref_primary_10_1073_pnas_2219923120 crossref_primary_10_1021_acsanm_3c03638 crossref_primary_10_1002_inf2_12421 crossref_primary_10_1021_acsami_2c12036 crossref_primary_10_1021_acs_est_2c08836 crossref_primary_10_1007_s40843_024_2979_6 crossref_primary_10_1021_acs_est_3c02025 crossref_primary_10_1016_j_jece_2023_110573 crossref_primary_10_1002_ange_202207268 crossref_primary_10_1039_D3EN00024A crossref_primary_10_1016_j_seppur_2024_128842 crossref_primary_10_1016_j_apcatb_2023_123130 crossref_primary_10_1021_acs_est_4c06608 crossref_primary_10_1002_adma_202302485 crossref_primary_10_1039_D2EN01156E crossref_primary_10_1021_acscatal_3c03303 crossref_primary_10_1016_j_cej_2023_144862 crossref_primary_10_1021_acsanm_2c05295 crossref_primary_10_1021_acsanm_4c01593 crossref_primary_10_1021_acsestengg_4c00237 crossref_primary_10_1073_pnas_2307989120 crossref_primary_10_1073_pnas_2408770121 crossref_primary_10_1002_smll_202406319 crossref_primary_10_1002_adma_202417834 crossref_primary_10_1007_s12274_024_6874_0 crossref_primary_10_1016_j_jece_2023_111674 crossref_primary_10_1016_j_ccr_2024_215871 crossref_primary_10_1021_acs_jpcc_4c01551 crossref_primary_10_1039_D2QM01294D crossref_primary_10_1021_acsanm_3c04507 crossref_primary_10_1016_j_seppur_2023_126231 crossref_primary_10_1021_acsnano_3c07724 crossref_primary_10_1016_j_seppur_2024_127504 crossref_primary_10_1002_anie_202210415 crossref_primary_10_1016_j_jelechem_2023_117506 crossref_primary_10_1016_j_cej_2023_147693 |
Cites_doi | 10.1021/es501218f 10.1016/j.cej.2017.07.132 10.1038/s41560-017-0078-8 10.1021/ja202320q 10.1016/0039-6028(85)90273-0 10.1002/anie.201706602 10.1039/C5CP04529K 10.1021/acs.est.9b03648 10.1039/D0CS01032D 10.1021/nn501434a 10.1021/es8031727 10.1021/jacs.0c02229 10.1021/acs.est.5b03595 10.1038/s41565-018-0234-8 10.1021/acs.est.9b04696 10.1021/jacs.7b05130 10.1021/jacs.8b13543 10.1016/j.cej.2017.11.059 10.1039/C9EE00555B 10.1021/acs.est.0c00284 10.1021/acs.accounts.9b00133 10.1002/smtd.202000988 10.1021/jp0464425 10.1016/j.apcatb.2017.11.051 10.1039/C8EE01169A 10.1038/s41467-021-20923-z 10.1021/jp052166y 10.1021/ja310566z 10.1002/anie.202014472 10.1002/celc.201402307 10.1021/cs5017613 10.1073/pnas.1819382116 10.1021/es304721g 10.1021/acs.est.0c00575 10.1016/j.cej.2016.07.007 10.1021/acs.est.9b07082 10.1073/pnas.2108573118 10.1002/anie.202004841 10.1021/acs.est.9b05856 10.1073/pnas.2101817118 10.1021/jacs.8b05992 10.1038/s41467-020-16848-8 10.1002/anie.202010828 10.1021/es035121o 10.1039/C6CY01479H 10.1021/acs.chemrev.7b00776 10.1016/j.joule.2018.11.008 10.1016/j.apcatb.2015.07.024 10.1016/j.cej.2018.07.105 10.1016/j.jcis.2020.08.049 10.1021/acs.est.8b00959 10.1016/j.chemosphere.2016.02.055 10.1039/cs9811000205 10.1021/acscatal.6b00205 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s). Published by PNAS. Copyright National Academy of Sciences Feb 22, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Feb 22, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2119492119 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8 |
ExternalDocumentID | PMC8872710 35165185 10_1073_pnas_2119492119 27118654 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-766048d680ea028313ca340544ce004b293619fa9dc3d2c370e0c2378af94ad03 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:20:31 EDT 2025 Fri Jul 11 04:59:26 EDT 2025 Mon Jun 30 08:24:09 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Tue Jul 01 01:03:10 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Thu May 29 08:48:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | single-atom catalysts Fenton-like process reaction kinetics heteroatom-doped engineering electronic structure |
Language | English |
License | Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-766048d680ea028313ca340544ce004b293619fa9dc3d2c370e0c2378af94ad03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1X.Z. and M-K.K. contributed equally to this work. Edited by Alexis Bell, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA; received October 25, 2021; accepted December 15, 2021 Author contributions: Y. Wang, H.-Q.Y., and Y. Wu designed research; X.Z. and M.-K.K. performed research; G.-X.H., C.C., K.L., and J.Y. contributed new reagents/analytic tools; X.Z., M.-K.K., W.C., Y.Q., and F.L. analyzed data; and X.Z., Y. Wang, H.-Q.Y., and Y. Wu wrote the paper. |
ORCID | 0000-0002-9847-4655 0000-0001-5247-6244 0000-0001-5376-8169 0000-0001-9524-2843 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8872710 |
PMID | 35165185 |
PQID | 2634019958 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8872710 proquest_miscellaneous_2629056738 proquest_journals_2634019958 pubmed_primary_35165185 crossref_citationtrail_10_1073_pnas_2119492119 crossref_primary_10_1073_pnas_2119492119 jstor_primary_27118654 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-22 |
PublicationDateYYYYMMDD | 2022-02-22 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_48_2 e_1_3_5_29_2 e_1_3_5_1_2 e_1_3_5_40_2 e_1_3_5_42_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_52_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_45_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_41_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_19_2 e_1_3_5_51_2 e_1_3_5_53_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_44_2 doi: 10.1021/es501218f – ident: e_1_3_5_12_2 doi: 10.1016/j.cej.2017.07.132 – ident: e_1_3_5_36_2 doi: 10.1038/s41560-017-0078-8 – ident: e_1_3_5_53_2 doi: 10.1021/ja202320q – ident: e_1_3_5_19_2 doi: 10.1016/0039-6028(85)90273-0 – ident: e_1_3_5_30_2 doi: 10.1002/anie.201706602 – ident: e_1_3_5_39_2 doi: 10.1039/C5CP04529K – ident: e_1_3_5_51_2 doi: 10.1021/acs.est.9b03648 – ident: e_1_3_5_22_2 doi: 10.1039/D0CS01032D – ident: e_1_3_5_33_2 doi: 10.1021/nn501434a – ident: e_1_3_5_46_2 doi: 10.1021/es8031727 – ident: e_1_3_5_28_2 doi: 10.1021/jacs.0c02229 – ident: e_1_3_5_43_2 doi: 10.1021/acs.est.5b03595 – ident: e_1_3_5_1_2 doi: 10.1038/s41565-018-0234-8 – ident: e_1_3_5_6_2 doi: 10.1021/acs.est.9b04696 – ident: e_1_3_5_41_2 doi: 10.1021/jacs.7b05130 – ident: e_1_3_5_31_2 doi: 10.1021/jacs.8b13543 – ident: e_1_3_5_9_2 doi: 10.1016/j.cej.2017.11.059 – ident: e_1_3_5_32_2 doi: 10.1039/C9EE00555B – ident: e_1_3_5_7_2 doi: 10.1021/acs.est.0c00284 – ident: e_1_3_5_2_2 doi: 10.1021/acs.accounts.9b00133 – ident: e_1_3_5_27_2 doi: 10.1002/smtd.202000988 – ident: e_1_3_5_40_2 doi: 10.1021/jp0464425 – ident: e_1_3_5_50_2 doi: 10.1016/j.apcatb.2017.11.051 – ident: e_1_3_5_37_2 doi: 10.1039/C8EE01169A – ident: e_1_3_5_26_2 doi: 10.1038/s41467-021-20923-z – ident: e_1_3_5_13_2 doi: 10.1021/jp052166y – ident: e_1_3_5_34_2 doi: 10.1021/ja310566z – ident: e_1_3_5_25_2 doi: 10.1002/anie.202014472 – ident: e_1_3_5_35_2 doi: 10.1002/celc.201402307 – ident: e_1_3_5_18_2 doi: 10.1021/cs5017613 – ident: e_1_3_5_4_2 doi: 10.1073/pnas.1819382116 – ident: e_1_3_5_14_2 doi: 10.1021/es304721g – ident: e_1_3_5_45_2 doi: 10.1021/acs.est.0c00575 – ident: e_1_3_5_52_2 doi: 10.1016/j.cej.2016.07.007 – ident: e_1_3_5_49_2 doi: 10.1021/acs.est.9b07082 – ident: e_1_3_5_3_2 doi: 10.1073/pnas.2108573118 – ident: e_1_3_5_29_2 doi: 10.1002/anie.202004841 – ident: e_1_3_5_48_2 doi: 10.1021/acs.est.9b05856 – ident: e_1_3_5_21_2 doi: 10.1073/pnas.2101817118 – ident: e_1_3_5_24_2 doi: 10.1021/jacs.8b05992 – ident: e_1_3_5_42_2 doi: 10.1038/s41467-020-16848-8 – ident: e_1_3_5_5_2 doi: 10.1002/anie.202010828 – ident: e_1_3_5_8_2 doi: 10.1021/es035121o – ident: e_1_3_5_15_2 doi: 10.1039/C6CY01479H – ident: e_1_3_5_20_2 doi: 10.1021/acs.chemrev.7b00776 – ident: e_1_3_5_38_2 doi: 10.1016/j.joule.2018.11.008 – ident: e_1_3_5_10_2 doi: 10.1016/j.apcatb.2015.07.024 – ident: e_1_3_5_16_2 doi: 10.1016/j.cej.2018.07.105 – ident: e_1_3_5_23_2 doi: 10.1016/j.jcis.2020.08.049 – ident: e_1_3_5_17_2 doi: 10.1021/acs.est.8b00959 – ident: e_1_3_5_11_2 doi: 10.1016/j.chemosphere.2016.02.055 – ident: e_1_3_5_47_2 doi: 10.1039/cs9811000205 – ident: e_1_3_5_54_2 doi: 10.1021/acscatal.6b00205 |
SSID | ssj0009580 |
Score | 2.7131026 |
Snippet | Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but... The Fenton-like process based on peroxymonosulfate (PMS) has been widely investigated and recognized as a promising alternative in recent years for the... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Boron Carbon sources Catalysts Copper Density Electronic structure Electrons Oxidation Phosphorus Physical Sciences Single atom catalysts Substrates |
Title | Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density |
URI | https://www.jstor.org/stable/27118654 https://www.ncbi.nlm.nih.gov/pubmed/35165185 https://www.proquest.com/docview/2634019958 https://www.proquest.com/docview/2629056738 https://pubmed.ncbi.nlm.nih.gov/PMC8872710 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQNpCReBiqUlLbzcfjVG1UMMoeWqlCSFFiO2vFSBBtJsE_wL_NXex8TWUCXqIqsSM3v_P5zr77HSGvVDBK07HLwS1JPUcETDqJCqWjgiD2hWRapJgo_GHmTRfi3XK87PV-taKWim0ylD935pX8D6pwD3DFLNl_QLZ-KdyA34AvXAFhuP4VxibLNrXbbmj3wfCwJvDV-ouhybjWg0kxwBPiDRqaKwx-ycHP_oolcGzlLuzXqoajMKR92zntvahXuU0VUzCrNhFPmpQUqyc2A2dwMWsKHH9a5QUiuVzHeaPfTcx-dum8L7JGtuzu9dti7UBzu6qW0QdGPU7idXufAlxczPtuvNrbhtVW0AwWTWHSqofa6GQwaRxPmKqitdK2itZIZ7BzMQDthRWMs3gzRB47EbKqV4d2e_YxOlucn0fz0-X8DrnLwN8oI0SnbfbmwOQy2dFVHFE-f3Pj9R3zxkS47vJdbobgtmya-QNy3zoj9MRI1j7p6ewh2a--Fz22nOSvH5HPXVGjeUpbokaNqNFJQUtRo8kP2ogabUQN-zWiRq2oPSaLs9P5ZOrYwhyOBPty6_ieB4pfeYGrY7RPR1zGHCx_IaSG6ZmACQl-eRqHSnLFJPdd7UrG_SBOQxErlx-QvSzP9FNCE1gvkhQ5kxQTgWQJT7mnWMwUaAypwz4ZVt8zkpa1HounXEVl9ITPIwQgagDok-O6wzdD2PLnpgclQHU75oO77Y1FnxxViEV2ukM_D_4iEhoEffKyfgzKGE_Y4kznBbZhIXgUPoc2TwzA9cv5eOSNwTruE78Dfd0Aid67T7L1qiR8B0MAhuY-u31Yh-ReM--OyN72e6Gfg8W8TV6U0vwbC5XEQg |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Fenton-like+active+Cu+sites+by+heteroatom+modulation+of+electronic+density&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhou%2C+Xiao&rft.au=Ke%2C+Ming-Kun&rft.au=Huang%2C+Gui-Xiang&rft.au=Chen%2C+Cai&rft.date=2022-02-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=8&rft_id=info:doi/10.1073%2Fpnas.2119492119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |