Detection of differentially abundant cell subpopulations in scRNA-seq data
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differenti...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 22; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches. |
---|---|
AbstractList | Comparative analysis of samples from two biological states, such as two stages of embryonic development, is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to detect cell subpopulations whose abundance differs between the two states. To that end, we develop DA-seq, a multiscale strategy to compare two cellular distributions. In contrast to existing unsupervised clustering-based analysis, DA-seq can delineate cell subpopulations with the most significant discrepancy between two states and potentially reveal important changes in cellular processes that are undetectable using conventional methods.
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its
k
nearest neighboring cells across a range of
k
values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches. Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches. Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its nearest neighboring cells across a range of values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches. Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches. |
Author | Cheng, Xiuyuan Sefik, Esen Flavell, Richard A. Jackson, Ruaidhrí Kluger, Yuval Zhao, Jun Li, Henry Jaffe, Ariel Lindenbaum, Ofir |
Author_xml | – sequence: 1 givenname: Jun surname: Zhao fullname: Zhao, Jun – sequence: 2 givenname: Ariel surname: Jaffe fullname: Jaffe, Ariel – sequence: 3 givenname: Henry surname: Li fullname: Li, Henry – sequence: 4 givenname: Ofir surname: Lindenbaum fullname: Lindenbaum, Ofir – sequence: 5 givenname: Esen surname: Sefik fullname: Sefik, Esen – sequence: 6 givenname: Ruaidhrí surname: Jackson fullname: Jackson, Ruaidhrí – sequence: 7 givenname: Xiuyuan surname: Cheng fullname: Cheng, Xiuyuan – sequence: 8 givenname: Richard A. surname: Flavell fullname: Flavell, Richard A. – sequence: 9 givenname: Yuval surname: Kluger fullname: Kluger, Yuval |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34001664$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1P3DAQxa0KVBbac09FkbhwCYy_4viChKC0INRKVXu2vI7TepW1g-0g8d_XYelCOfQ00vj3xu_N7KMdH7xF6AOGEwyCno5epxOCAYikGLdv0AKDxHXDJOygRWmLumWE7aH9lFYAIHkLb9EeZQC4adgC3VzabE12wVehrzrX9zZan50ehodKLyffaZ8rY4ehStNyDOM06JlOlfNVMt-_ntfJ3lWdzvod2u31kOz7p3qAfl59-nHxpb799vn64vy2NhxkrgWWIBsLmhPTCUFtzylY3jHQYATXUoCWpXRUaAnEEtaaFlvRANBl0xh6gM42c8dpubadKXajHtQY3VrHBxW0U_--ePdb_Qr3qsVCYibLgOOnATHcTTZltXZpjqi9DVNShJO2JTNZ0KNX6CpM0Zd4hWLAOZQ4hTp86Whr5e-aC3C6AUwMKUXbbxEMaj6kmg-png9ZFPyVwrj8uPkSyQ3_0X3c6FYph7j9hghgICWnfwBm0KtG |
CitedBy_id | crossref_primary_10_1158_2326_6066_CIR_22_0563 crossref_primary_10_3389_fimmu_2023_1145300 crossref_primary_10_1073_pnas_2203828120 crossref_primary_10_1002_eji_202350660 crossref_primary_10_1093_bib_bbad159 crossref_primary_10_1158_2326_6066_CIR_24_0416 crossref_primary_10_1038_s41586_022_04802_1 crossref_primary_10_1093_imaiai_iaac023 crossref_primary_10_1016_j_cell_2022_10_021 crossref_primary_10_1182_bloodadvances_2022007811 crossref_primary_10_1016_j_ccell_2023_12_005 crossref_primary_10_1016_j_biopha_2022_113604 crossref_primary_10_1016_j_oraloncology_2023_106654 crossref_primary_10_1073_pnas_2306965120 crossref_primary_10_1038_s41467_024_46589_x crossref_primary_10_1084_jem_20210909 crossref_primary_10_1038_s41388_023_02590_0 crossref_primary_10_1038_s41592_023_02040_5 crossref_primary_10_1038_s41467_024_44823_0 crossref_primary_10_1038_s44319_024_00186_7 crossref_primary_10_1038_s41467_022_34867_5 crossref_primary_10_1038_s41467_023_39923_2 crossref_primary_10_1126_sciadv_ado8366 crossref_primary_10_23736_S2724_6329_23_04791_5 crossref_primary_10_3389_fgene_2022_870836 crossref_primary_10_3389_fonc_2023_1278863 crossref_primary_10_1186_s12879_024_10000_3 crossref_primary_10_1038_s41467_024_49790_0 crossref_primary_10_1038_s41467_024_55415_3 crossref_primary_10_1007_s43670_022_00038_2 crossref_primary_10_1038_s41467_024_51649_3 crossref_primary_10_1016_j_cels_2023_05_003 crossref_primary_10_1016_j_celrep_2023_113661 crossref_primary_10_1186_s12859_023_05569_6 crossref_primary_10_1038_s41587_021_01033_z crossref_primary_10_1038_s41467_023_39017_z crossref_primary_10_26508_lsa_202302126 crossref_primary_10_1038_s41467_023_44206_x crossref_primary_10_3389_fncel_2024_1334244 crossref_primary_10_1016_j_ccell_2022_09_015 crossref_primary_10_1016_j_csbj_2025_03_018 crossref_primary_10_1161_CIRCRESAHA_124_323817 crossref_primary_10_1038_s41467_024_54543_0 crossref_primary_10_3389_fnins_2024_1443438 crossref_primary_10_1186_s43074_024_00146_3 crossref_primary_10_1172_JCI152383 crossref_primary_10_1186_s13059_023_03143_0 crossref_primary_10_1016_j_xcrm_2023_101038 crossref_primary_10_1038_s41467_023_38333_8 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_1038_s41467_023_42841_y crossref_primary_10_1016_j_tplants_2024_06_008 crossref_primary_10_1093_nar_gkad307 crossref_primary_10_1038_s41467_024_46685_y crossref_primary_10_1038_s42256_023_00656_y crossref_primary_10_1038_s42003_023_04834_x crossref_primary_10_3389_abp_2025_13922 crossref_primary_10_1038_s41588_023_01523_7 crossref_primary_10_3390_cells12030346 crossref_primary_10_1016_j_csbj_2022_08_062 crossref_primary_10_3150_23_BEJ1685 crossref_primary_10_1016_j_xpro_2022_101266 crossref_primary_10_1038_s42256_024_00804_y crossref_primary_10_1161_ATVBAHA_122_317953 crossref_primary_10_1172_jci_insight_160267 crossref_primary_10_1186_s13059_023_02980_3 crossref_primary_10_3390_life12122010 |
Cites_doi | 10.1038/s41467-018-07931-2 10.1093/mnras/stx1807 10.1088/0004-637X/691/1/32 10.1073/pnas.0704421104 10.1017/jpr.2020.21 10.1038/s41591-020-0901-9 10.1016/j.devcel.2018.08.010 10.1101/397588 10.1214/19-EJS1648 10.1038/s41587-020-0605-1 10.1016/j.cell.2018.08.067 10.1038/s41586-021-03188-w 10.1093/bioinformatics/btz949 10.1084/jem.193.6.741 10.1038/s41590-019-0496-9 10.1164/rccm.201712-2410OC 10.1038/ni931 10.1016/j.cell.2016.07.054 10.1016/j.cell.2019.05.031 10.1145/361002.361007 10.1214/19-AOS1907 10.1038/nbt.4096 10.1186/s13059-020-1926-6 10.3390/ijms19041057 10.1038/s41587-020-0602-4 10.1101/gr.648603 10.1038/nmeth.4295 10.1158/0008-5472.CAN-07-1543 10.1093/bioinformatics/btx196 10.1038/s41598-017-07381-8 10.1038/s41593-019-0491-3 10.1182/blood-2006-04-015164 10.1093/bioinformatics/btz024 10.1038/s41598-019-39726-w 10.1038/s41592-018-0308-4 10.1016/j.clim.2016.01.008 10.1038/ni938 10.1182/blood-2012-06-436212 10.1002/ijc.28927 10.1111/j.2517-6161.1995.tb02031.x 10.1016/j.cell.2015.05.002 10.1016/S0014-5793(00)01240-0 10.1109/TIT.2012.2227680 10.1158/0008-5472.CAN-06-3014 10.1016/j.cell.2018.10.038 10.1101/655365 10.1186/s12859-019-3211-9 10.4049/jimmunol.1401644 10.1038/nbt.4091 10.1016/j.devcel.2018.11.032 10.1038/ncomms14049 10.1038/s41592-018-0033-z 10.1038/s41587-020-00803-5 10.3389/fimmu.2019.01078 10.1111/j.2517-6161.1996.tb02080.x 10.1126/science.abb8034 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 1, 2021 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 1, 2021 – notice: 2021 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2100293118 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12 |
ExternalDocumentID | PMC8179149 34001664 10_1073_pnas_2100293118 27040995 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: UM1 DA051410 – fundername: NCI NIH HHS grantid: P50 CA121974 – fundername: NIGMS NIH HHS grantid: R01 GM135928 – fundername: NIGMS NIH HHS grantid: R01 GM131642 – fundername: NIH HHS grantid: 2P50CA121974 – fundername: NHGRI NIH HHS grantid: R01 HG008383 – fundername: NIDDK NIH HHS grantid: R01 DK121948 – fundername: HHS | National Institutes of Health (NIH) grantid: R01HG008383 – fundername: HHS | National Institutes of Health (NIH) grantid: UM1 DA051410 – fundername: HHS | National Institutes of Health (NIH) grantid: R01GM135928 – fundername: HHS | National Institutes of Health (NIH) grantid: R01DK121948 – fundername: HHS | National Institutes of Health (NIH) grantid: R01GM131642 – fundername: HHS | National Institutes of Health (NIH) grantid: 1044 2P50CA121974 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM .GJ 3O- 692 6TJ 79B AAYJJ AAYXX ACHIC ACKIV ADQXQ ADULT ADXHL AFHIN AFQQW AQVQM AS~ CITATION EJD HGD HQ3 HTVGU MVM NEJ NHB P-O VOH WHG ZCG NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-719096e0a52cd773ef530e5d40a0c75a970a95a9d37a902e248c81e76003b66c3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:31:21 EDT 2025 Fri Jul 11 10:33:10 EDT 2025 Sat Aug 23 12:24:48 EDT 2025 Thu Apr 03 07:08:56 EDT 2025 Tue Jul 01 01:02:56 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Thu May 29 08:53:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | RNA-seq local differential abundance single cell |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-719096e0a52cd773ef530e5d40a0c75a970a95a9d37a902e248c81e76003b66c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Contributed by Richard A. Flavell, April 6, 2021 (sent for review January 18, 2021; reviewed by Constantin F. Aliferis and Meromit Singer) Reviewers: C.F.A., University of Minnesota; and M.S., Dana-Farber Cancer Institute. 1J.Z. and A.J. contributed equally to this work. Author contributions: J.Z., A.J., X.C., R.A.F., and Y.K. designed research; J.Z. and A.J. performed research; H.L. and O.L. contributed new reagents/analytic tools; J.Z. and H.L. analyzed data; and J.Z., A.J., E.S., R.J., X.C., R.A.F., and Y.K. wrote the paper. |
ORCID | 0000-0002-3035-071X 0000-0002-6671-0000 0000-0001-7637-7128 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8179149 |
PMID | 34001664 |
PQID | 2540550719 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179149 proquest_miscellaneous_2528821493 proquest_journals_2540550719 pubmed_primary_34001664 crossref_primary_10_1073_pnas_2100293118 crossref_citationtrail_10_1073_pnas_2100293118 jstor_primary_27040995 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 Mishne G. (e_1_3_4_42_2) 2017; 4 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 Yamada Y. (e_1_3_4_14_2) 2020 Hajebi K. (e_1_3_4_60_2) 2011 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 Bielecki P. (e_1_3_4_12_2) 2021; 592 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 Rottenberg M. E. (e_1_3_4_35_2) 2014; 5 Benjamini Y. (e_1_3_4_53_2) 1995; 57 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Cazáis F. (e_1_3_4_51_2) 2015 Tibshirani R. (e_1_3_4_54_2) 1996; 58 |
References_xml | – ident: e_1_3_4_45_2 doi: 10.1038/s41467-018-07931-2 – ident: e_1_3_4_49_2 doi: 10.1093/mnras/stx1807 – ident: e_1_3_4_58_2 doi: 10.1088/0004-637X/691/1/32 – ident: e_1_3_4_32_2 doi: 10.1073/pnas.0704421104 – ident: e_1_3_4_61_2 doi: 10.1017/jpr.2020.21 – ident: e_1_3_4_6_2 doi: 10.1038/s41591-020-0901-9 – ident: e_1_3_4_27_2 doi: 10.1016/j.devcel.2018.08.010 – ident: e_1_3_4_47_2 doi: 10.1101/397588 – start-page: 1 volume-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) year: 2015 ident: e_1_3_4_51_2 – ident: e_1_3_4_50_2 doi: 10.1214/19-EJS1648 – ident: e_1_3_4_10_2 doi: 10.1038/s41587-020-0605-1 – start-page: 10648 volume-title: Proceedings of the 37th International Conference on Machine Learning year: 2020 ident: e_1_3_4_14_2 – ident: e_1_3_4_8_2 doi: 10.1016/j.cell.2018.08.067 – volume: 592 start-page: 128 year: 2021 ident: e_1_3_4_12_2 article-title: Skin-resident innate lymphoid cells converge on a pathogenic effector state publication-title: Nature doi: 10.1038/s41586-021-03188-w – ident: e_1_3_4_40_2 doi: 10.1093/bioinformatics/btz949 – ident: e_1_3_4_21_2 doi: 10.1084/jem.193.6.741 – ident: e_1_3_4_31_2 doi: 10.1038/s41590-019-0496-9 – ident: e_1_3_4_39_2 doi: 10.1164/rccm.201712-2410OC – ident: e_1_3_4_33_2 doi: 10.1038/ni931 – ident: e_1_3_4_56_2 doi: 10.1016/j.cell.2016.07.054 – start-page: 1312 volume-title: Twenty-Second International Joint Conference on Artificial Intelligence year: 2011 ident: e_1_3_4_60_2 – ident: e_1_3_4_15_2 doi: 10.1016/j.cell.2019.05.031 – ident: e_1_3_4_59_2 doi: 10.1145/361002.361007 – ident: e_1_3_4_57_2 doi: 10.1214/19-AOS1907 – ident: e_1_3_4_18_2 doi: 10.1038/nbt.4096 – ident: e_1_3_4_4_2 doi: 10.1186/s13059-020-1926-6 – ident: e_1_3_4_26_2 doi: 10.3390/ijms19041057 – ident: e_1_3_4_52_2 – ident: e_1_3_4_5_2 doi: 10.1038/s41587-020-0602-4 – ident: e_1_3_4_41_2 doi: 10.1101/gr.648603 – ident: e_1_3_4_13_2 doi: 10.1038/nmeth.4295 – ident: e_1_3_4_24_2 doi: 10.1158/0008-5472.CAN-07-1543 – ident: e_1_3_4_43_2 doi: 10.1093/bioinformatics/btx196 – ident: e_1_3_4_37_2 doi: 10.1038/s41598-017-07381-8 – ident: e_1_3_4_17_2 doi: 10.1038/s41593-019-0491-3 – ident: e_1_3_4_19_2 doi: 10.1182/blood-2006-04-015164 – ident: e_1_3_4_9_2 doi: 10.1093/bioinformatics/btz024 – ident: e_1_3_4_30_2 doi: 10.1038/s41598-019-39726-w – ident: e_1_3_4_62_2 doi: 10.1038/s41592-018-0308-4 – ident: e_1_3_4_28_2 doi: 10.1016/j.clim.2016.01.008 – ident: e_1_3_4_34_2 doi: 10.1038/ni938 – ident: e_1_3_4_38_2 doi: 10.1182/blood-2012-06-436212 – ident: e_1_3_4_25_2 doi: 10.1002/ijc.28927 – volume: 57 start-page: 289 year: 1995 ident: e_1_3_4_53_2 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_4_1_2 doi: 10.1016/j.cell.2015.05.002 – ident: e_1_3_4_29_2 doi: 10.1016/S0014-5793(00)01240-0 – ident: e_1_3_4_55_2 doi: 10.1109/TIT.2012.2227680 – ident: e_1_3_4_22_2 doi: 10.1158/0008-5472.CAN-06-3014 – ident: e_1_3_4_7_2 doi: 10.1016/j.cell.2018.10.038 – ident: e_1_3_4_48_2 doi: 10.1101/655365 – ident: e_1_3_4_11_2 doi: 10.1186/s12859-019-3211-9 – ident: e_1_3_4_20_2 doi: 10.4049/jimmunol.1401644 – volume: 4 start-page: 451 year: 2017 ident: e_1_3_4_42_2 article-title: Data-driven tree transforms and metrics publication-title: IEEE Trans. Signal Inform. Process. Netw. – ident: e_1_3_4_44_2 doi: 10.1038/nbt.4091 – ident: e_1_3_4_16_2 doi: 10.1016/j.devcel.2018.11.032 – ident: e_1_3_4_2_2 doi: 10.1038/ncomms14049 – volume: 5 start-page: 58 year: 2014 ident: e_1_3_4_35_2 article-title: Socs3, a major regulator of infection and inflammation publication-title: Front. Immunol. – ident: e_1_3_4_46_2 doi: 10.1038/s41592-018-0033-z – ident: e_1_3_4_3_2 doi: 10.1038/s41587-020-00803-5 – ident: e_1_3_4_23_2 doi: 10.3389/fimmu.2019.01078 – volume: 58 start-page: 267 year: 1996 ident: e_1_3_4_54_2 article-title: Regression shrinkage and selection via the LASSO publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_4_36_2 doi: 10.1126/science.abb8034 |
SSID | ssj0009580 |
Score | 2.5941408 |
Snippet | Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus... Comparative analysis of samples from two biological states, such as two stages of embryonic development, is a pressing problem in single-cell RNA sequencing... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Aging Biological Sciences Clustering Computational neuroscience COVID-19 Embryogenesis Embryonic growth stage Gene sequencing Immune checkpoint Multiscale analysis Phenotypes Subpopulations Transcriptomics |
Title | Detection of differentially abundant cell subpopulations in scRNA-seq data |
URI | https://www.jstor.org/stable/27040995 https://www.ncbi.nlm.nih.gov/pubmed/34001664 https://www.proquest.com/docview/2540550719 https://www.proquest.com/docview/2528821493 https://pubmed.ncbi.nlm.nih.gov/PMC8179149 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDBQkHoailNR27Pixgk3TVLoJtVLFS-Q4jlapSseSPsBfzzmJnWYUafCSVo7zQ_7O5zvn7j6EPhRRwVlGcMhilYU0K2gos5iGeUJkIqliuTb7kF9n7HxBL5bxsudsbbJL6mykfu3NK_kfVKENcDVZsv-ArLspNMB_wBeOgDAc74XxF11rZU0-S3UCU3a9_hnIzOR4lHVgtuaDapvdOKquJgS2Ut9mk7DSP4IuPc3ZqFduTatsBMHMbhlO-gSUTitUQRhczXo64-_Xsv2Ys3VidyHhzRolBH65i-iYtnzZJkmibzJ8vJlsuZcvi9Xt7qYE3gme6vQomCEhoy0T6EjvabPKt9e-W5ui_IdWBzVkqIhLWY2wKRkriL1sUD97dpmeLabTdH66nD9EjzA4DrhR1btlmJO2PkX3KrbYEyef7tx-YKe0oar7nJC7sbQ7xsn8KXrSeRX-pBWRQ_RAl8_QoUXIP-mKi398ji6czPibwh_KjG9lxjcy4w9lxl-VvpMZ38jMC7Q4O51_Pg87Po1QgVlYhxyMP8F0JGOscs6JLmIS6TinkYwUj6XgkRTwkxMuRYQ1polKxtp8uiUZY4ocoYNyU-pXyJeER-McFgSWE8qkFiQHU5ZlIoFJXhTYQyM7eqnqis0bzpN12gQ9cJKa4U774fbQibvgpq2z8veuRw0crh_msBIJEXvo2OKTdrMUrjMuiXF6hIfeu9OgQ81IylJvtqYPBkdzTAXx0MsWTndzQo1XxKiH-ABo18HUZx-eKVfXTZ32xJT-peL1PZ77Bj3up9ExOqhvt_otWLt19q4R4N_Fhaop |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+differentially+abundant+cell+subpopulations+in+scRNA-seq+data&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhao%2C+Jun&rft.au=Jaffe%2C+Ariel&rft.au=Li%2C+Henry&rft.au=Lindenbaum%2C+Ofir&rft.date=2021-06-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=22&rft_id=info:doi/10.1073%2Fpnas.2100293118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |