Detection of differentially abundant cell subpopulations in scRNA-seq data

Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differenti...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 22; pp. 1 - 12
Main Authors Zhao, Jun, Jaffe, Ariel, Li, Henry, Lindenbaum, Ofir, Sefik, Esen, Jackson, Ruaidhrí, Cheng, Xiuyuan, Flavell, Richard A., Kluger, Yuval
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
AbstractList Comparative analysis of samples from two biological states, such as two stages of embryonic development, is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to detect cell subpopulations whose abundance differs between the two states. To that end, we develop DA-seq, a multiscale strategy to compare two cellular distributions. In contrast to existing unsupervised clustering-based analysis, DA-seq can delineate cell subpopulations with the most significant discrepancy between two states and potentially reveal important changes in cellular processes that are undetectable using conventional methods. Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its nearest neighboring cells across a range of values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Author Cheng, Xiuyuan
Sefik, Esen
Flavell, Richard A.
Jackson, Ruaidhrí
Kluger, Yuval
Zhao, Jun
Li, Henry
Jaffe, Ariel
Lindenbaum, Ofir
Author_xml – sequence: 1
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
– sequence: 2
  givenname: Ariel
  surname: Jaffe
  fullname: Jaffe, Ariel
– sequence: 3
  givenname: Henry
  surname: Li
  fullname: Li, Henry
– sequence: 4
  givenname: Ofir
  surname: Lindenbaum
  fullname: Lindenbaum, Ofir
– sequence: 5
  givenname: Esen
  surname: Sefik
  fullname: Sefik, Esen
– sequence: 6
  givenname: Ruaidhrí
  surname: Jackson
  fullname: Jackson, Ruaidhrí
– sequence: 7
  givenname: Xiuyuan
  surname: Cheng
  fullname: Cheng, Xiuyuan
– sequence: 8
  givenname: Richard A.
  surname: Flavell
  fullname: Flavell, Richard A.
– sequence: 9
  givenname: Yuval
  surname: Kluger
  fullname: Kluger, Yuval
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34001664$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxa0KVBbac09FkbhwCYy_4viChKC0INRKVXu2vI7TepW1g-0g8d_XYelCOfQ00vj3xu_N7KMdH7xF6AOGEwyCno5epxOCAYikGLdv0AKDxHXDJOygRWmLumWE7aH9lFYAIHkLb9EeZQC4adgC3VzabE12wVehrzrX9zZan50ehodKLyffaZ8rY4ehStNyDOM06JlOlfNVMt-_ntfJ3lWdzvod2u31kOz7p3qAfl59-nHxpb799vn64vy2NhxkrgWWIBsLmhPTCUFtzylY3jHQYATXUoCWpXRUaAnEEtaaFlvRANBl0xh6gM42c8dpubadKXajHtQY3VrHBxW0U_--ePdb_Qr3qsVCYibLgOOnATHcTTZltXZpjqi9DVNShJO2JTNZ0KNX6CpM0Zd4hWLAOZQ4hTp86Whr5e-aC3C6AUwMKUXbbxEMaj6kmg-png9ZFPyVwrj8uPkSyQ3_0X3c6FYph7j9hghgICWnfwBm0KtG
CitedBy_id crossref_primary_10_1158_2326_6066_CIR_22_0563
crossref_primary_10_3389_fimmu_2023_1145300
crossref_primary_10_1073_pnas_2203828120
crossref_primary_10_1002_eji_202350660
crossref_primary_10_1093_bib_bbad159
crossref_primary_10_1158_2326_6066_CIR_24_0416
crossref_primary_10_1038_s41586_022_04802_1
crossref_primary_10_1093_imaiai_iaac023
crossref_primary_10_1016_j_cell_2022_10_021
crossref_primary_10_1182_bloodadvances_2022007811
crossref_primary_10_1016_j_ccell_2023_12_005
crossref_primary_10_1016_j_biopha_2022_113604
crossref_primary_10_1016_j_oraloncology_2023_106654
crossref_primary_10_1073_pnas_2306965120
crossref_primary_10_1038_s41467_024_46589_x
crossref_primary_10_1084_jem_20210909
crossref_primary_10_1038_s41388_023_02590_0
crossref_primary_10_1038_s41592_023_02040_5
crossref_primary_10_1038_s41467_024_44823_0
crossref_primary_10_1038_s44319_024_00186_7
crossref_primary_10_1038_s41467_022_34867_5
crossref_primary_10_1038_s41467_023_39923_2
crossref_primary_10_1126_sciadv_ado8366
crossref_primary_10_23736_S2724_6329_23_04791_5
crossref_primary_10_3389_fgene_2022_870836
crossref_primary_10_3389_fonc_2023_1278863
crossref_primary_10_1186_s12879_024_10000_3
crossref_primary_10_1038_s41467_024_49790_0
crossref_primary_10_1038_s41467_024_55415_3
crossref_primary_10_1007_s43670_022_00038_2
crossref_primary_10_1038_s41467_024_51649_3
crossref_primary_10_1016_j_cels_2023_05_003
crossref_primary_10_1016_j_celrep_2023_113661
crossref_primary_10_1186_s12859_023_05569_6
crossref_primary_10_1038_s41587_021_01033_z
crossref_primary_10_1038_s41467_023_39017_z
crossref_primary_10_26508_lsa_202302126
crossref_primary_10_1038_s41467_023_44206_x
crossref_primary_10_3389_fncel_2024_1334244
crossref_primary_10_1016_j_ccell_2022_09_015
crossref_primary_10_1016_j_csbj_2025_03_018
crossref_primary_10_1161_CIRCRESAHA_124_323817
crossref_primary_10_1038_s41467_024_54543_0
crossref_primary_10_3389_fnins_2024_1443438
crossref_primary_10_1186_s43074_024_00146_3
crossref_primary_10_1172_JCI152383
crossref_primary_10_1186_s13059_023_03143_0
crossref_primary_10_1016_j_xcrm_2023_101038
crossref_primary_10_1038_s41467_023_38333_8
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_1038_s41467_023_42841_y
crossref_primary_10_1016_j_tplants_2024_06_008
crossref_primary_10_1093_nar_gkad307
crossref_primary_10_1038_s41467_024_46685_y
crossref_primary_10_1038_s42256_023_00656_y
crossref_primary_10_1038_s42003_023_04834_x
crossref_primary_10_3389_abp_2025_13922
crossref_primary_10_1038_s41588_023_01523_7
crossref_primary_10_3390_cells12030346
crossref_primary_10_1016_j_csbj_2022_08_062
crossref_primary_10_3150_23_BEJ1685
crossref_primary_10_1016_j_xpro_2022_101266
crossref_primary_10_1038_s42256_024_00804_y
crossref_primary_10_1161_ATVBAHA_122_317953
crossref_primary_10_1172_jci_insight_160267
crossref_primary_10_1186_s13059_023_02980_3
crossref_primary_10_3390_life12122010
Cites_doi 10.1038/s41467-018-07931-2
10.1093/mnras/stx1807
10.1088/0004-637X/691/1/32
10.1073/pnas.0704421104
10.1017/jpr.2020.21
10.1038/s41591-020-0901-9
10.1016/j.devcel.2018.08.010
10.1101/397588
10.1214/19-EJS1648
10.1038/s41587-020-0605-1
10.1016/j.cell.2018.08.067
10.1038/s41586-021-03188-w
10.1093/bioinformatics/btz949
10.1084/jem.193.6.741
10.1038/s41590-019-0496-9
10.1164/rccm.201712-2410OC
10.1038/ni931
10.1016/j.cell.2016.07.054
10.1016/j.cell.2019.05.031
10.1145/361002.361007
10.1214/19-AOS1907
10.1038/nbt.4096
10.1186/s13059-020-1926-6
10.3390/ijms19041057
10.1038/s41587-020-0602-4
10.1101/gr.648603
10.1038/nmeth.4295
10.1158/0008-5472.CAN-07-1543
10.1093/bioinformatics/btx196
10.1038/s41598-017-07381-8
10.1038/s41593-019-0491-3
10.1182/blood-2006-04-015164
10.1093/bioinformatics/btz024
10.1038/s41598-019-39726-w
10.1038/s41592-018-0308-4
10.1016/j.clim.2016.01.008
10.1038/ni938
10.1182/blood-2012-06-436212
10.1002/ijc.28927
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.cell.2015.05.002
10.1016/S0014-5793(00)01240-0
10.1109/TIT.2012.2227680
10.1158/0008-5472.CAN-06-3014
10.1016/j.cell.2018.10.038
10.1101/655365
10.1186/s12859-019-3211-9
10.4049/jimmunol.1401644
10.1038/nbt.4091
10.1016/j.devcel.2018.11.032
10.1038/ncomms14049
10.1038/s41592-018-0033-z
10.1038/s41587-020-00803-5
10.3389/fimmu.2019.01078
10.1111/j.2517-6161.1996.tb02080.x
10.1126/science.abb8034
ContentType Journal Article
Copyright Copyright National Academy of Sciences Jun 1, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Jun 1, 2021
– notice: 2021
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2100293118
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12
ExternalDocumentID PMC8179149
34001664
10_1073_pnas_2100293118
27040995
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: UM1 DA051410
– fundername: NCI NIH HHS
  grantid: P50 CA121974
– fundername: NIGMS NIH HHS
  grantid: R01 GM135928
– fundername: NIGMS NIH HHS
  grantid: R01 GM131642
– fundername: NIH HHS
  grantid: 2P50CA121974
– fundername: NHGRI NIH HHS
  grantid: R01 HG008383
– fundername: NIDDK NIH HHS
  grantid: R01 DK121948
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01HG008383
– fundername: HHS | National Institutes of Health (NIH)
  grantid: UM1 DA051410
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01GM135928
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01DK121948
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01GM131642
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 1044 2P50CA121974
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
.GJ
3O-
692
6TJ
79B
AAYJJ
AAYXX
ACHIC
ACKIV
ADQXQ
ADULT
ADXHL
AFHIN
AFQQW
AQVQM
AS~
CITATION
EJD
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-719096e0a52cd773ef530e5d40a0c75a970a95a9d37a902e248c81e76003b66c3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:31:21 EDT 2025
Fri Jul 11 10:33:10 EDT 2025
Sat Aug 23 12:24:48 EDT 2025
Thu Apr 03 07:08:56 EDT 2025
Tue Jul 01 01:02:56 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Thu May 29 08:53:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords RNA-seq
local differential abundance
single cell
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-719096e0a52cd773ef530e5d40a0c75a970a95a9d37a902e248c81e76003b66c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributed by Richard A. Flavell, April 6, 2021 (sent for review January 18, 2021; reviewed by Constantin F. Aliferis and Meromit Singer)
Reviewers: C.F.A., University of Minnesota; and M.S., Dana-Farber Cancer Institute.
1J.Z. and A.J. contributed equally to this work.
Author contributions: J.Z., A.J., X.C., R.A.F., and Y.K. designed research; J.Z. and A.J. performed research; H.L. and O.L. contributed new reagents/analytic tools; J.Z. and H.L. analyzed data; and J.Z., A.J., E.S., R.J., X.C., R.A.F., and Y.K. wrote the paper.
ORCID 0000-0002-3035-071X
0000-0002-6671-0000
0000-0001-7637-7128
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8179149
PMID 34001664
PQID 2540550719
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179149
proquest_miscellaneous_2528821493
proquest_journals_2540550719
pubmed_primary_34001664
crossref_primary_10_1073_pnas_2100293118
crossref_citationtrail_10_1073_pnas_2100293118
jstor_primary_27040995
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
Mishne G. (e_1_3_4_42_2) 2017; 4
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
Yamada Y. (e_1_3_4_14_2) 2020
Hajebi K. (e_1_3_4_60_2) 2011
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
Bielecki P. (e_1_3_4_12_2) 2021; 592
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
Rottenberg M. E. (e_1_3_4_35_2) 2014; 5
Benjamini Y. (e_1_3_4_53_2) 1995; 57
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Cazáis F. (e_1_3_4_51_2) 2015
Tibshirani R. (e_1_3_4_54_2) 1996; 58
References_xml – ident: e_1_3_4_45_2
  doi: 10.1038/s41467-018-07931-2
– ident: e_1_3_4_49_2
  doi: 10.1093/mnras/stx1807
– ident: e_1_3_4_58_2
  doi: 10.1088/0004-637X/691/1/32
– ident: e_1_3_4_32_2
  doi: 10.1073/pnas.0704421104
– ident: e_1_3_4_61_2
  doi: 10.1017/jpr.2020.21
– ident: e_1_3_4_6_2
  doi: 10.1038/s41591-020-0901-9
– ident: e_1_3_4_27_2
  doi: 10.1016/j.devcel.2018.08.010
– ident: e_1_3_4_47_2
  doi: 10.1101/397588
– start-page: 1
  volume-title: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
  year: 2015
  ident: e_1_3_4_51_2
– ident: e_1_3_4_50_2
  doi: 10.1214/19-EJS1648
– ident: e_1_3_4_10_2
  doi: 10.1038/s41587-020-0605-1
– start-page: 10648
  volume-title: Proceedings of the 37th International Conference on Machine Learning
  year: 2020
  ident: e_1_3_4_14_2
– ident: e_1_3_4_8_2
  doi: 10.1016/j.cell.2018.08.067
– volume: 592
  start-page: 128
  year: 2021
  ident: e_1_3_4_12_2
  article-title: Skin-resident innate lymphoid cells converge on a pathogenic effector state
  publication-title: Nature
  doi: 10.1038/s41586-021-03188-w
– ident: e_1_3_4_40_2
  doi: 10.1093/bioinformatics/btz949
– ident: e_1_3_4_21_2
  doi: 10.1084/jem.193.6.741
– ident: e_1_3_4_31_2
  doi: 10.1038/s41590-019-0496-9
– ident: e_1_3_4_39_2
  doi: 10.1164/rccm.201712-2410OC
– ident: e_1_3_4_33_2
  doi: 10.1038/ni931
– ident: e_1_3_4_56_2
  doi: 10.1016/j.cell.2016.07.054
– start-page: 1312
  volume-title: Twenty-Second International Joint Conference on Artificial Intelligence
  year: 2011
  ident: e_1_3_4_60_2
– ident: e_1_3_4_15_2
  doi: 10.1016/j.cell.2019.05.031
– ident: e_1_3_4_59_2
  doi: 10.1145/361002.361007
– ident: e_1_3_4_57_2
  doi: 10.1214/19-AOS1907
– ident: e_1_3_4_18_2
  doi: 10.1038/nbt.4096
– ident: e_1_3_4_4_2
  doi: 10.1186/s13059-020-1926-6
– ident: e_1_3_4_26_2
  doi: 10.3390/ijms19041057
– ident: e_1_3_4_52_2
– ident: e_1_3_4_5_2
  doi: 10.1038/s41587-020-0602-4
– ident: e_1_3_4_41_2
  doi: 10.1101/gr.648603
– ident: e_1_3_4_13_2
  doi: 10.1038/nmeth.4295
– ident: e_1_3_4_24_2
  doi: 10.1158/0008-5472.CAN-07-1543
– ident: e_1_3_4_43_2
  doi: 10.1093/bioinformatics/btx196
– ident: e_1_3_4_37_2
  doi: 10.1038/s41598-017-07381-8
– ident: e_1_3_4_17_2
  doi: 10.1038/s41593-019-0491-3
– ident: e_1_3_4_19_2
  doi: 10.1182/blood-2006-04-015164
– ident: e_1_3_4_9_2
  doi: 10.1093/bioinformatics/btz024
– ident: e_1_3_4_30_2
  doi: 10.1038/s41598-019-39726-w
– ident: e_1_3_4_62_2
  doi: 10.1038/s41592-018-0308-4
– ident: e_1_3_4_28_2
  doi: 10.1016/j.clim.2016.01.008
– ident: e_1_3_4_34_2
  doi: 10.1038/ni938
– ident: e_1_3_4_38_2
  doi: 10.1182/blood-2012-06-436212
– ident: e_1_3_4_25_2
  doi: 10.1002/ijc.28927
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_4_53_2
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_4_1_2
  doi: 10.1016/j.cell.2015.05.002
– ident: e_1_3_4_29_2
  doi: 10.1016/S0014-5793(00)01240-0
– ident: e_1_3_4_55_2
  doi: 10.1109/TIT.2012.2227680
– ident: e_1_3_4_22_2
  doi: 10.1158/0008-5472.CAN-06-3014
– ident: e_1_3_4_7_2
  doi: 10.1016/j.cell.2018.10.038
– ident: e_1_3_4_48_2
  doi: 10.1101/655365
– ident: e_1_3_4_11_2
  doi: 10.1186/s12859-019-3211-9
– ident: e_1_3_4_20_2
  doi: 10.4049/jimmunol.1401644
– volume: 4
  start-page: 451
  year: 2017
  ident: e_1_3_4_42_2
  article-title: Data-driven tree transforms and metrics
  publication-title: IEEE Trans. Signal Inform. Process. Netw.
– ident: e_1_3_4_44_2
  doi: 10.1038/nbt.4091
– ident: e_1_3_4_16_2
  doi: 10.1016/j.devcel.2018.11.032
– ident: e_1_3_4_2_2
  doi: 10.1038/ncomms14049
– volume: 5
  start-page: 58
  year: 2014
  ident: e_1_3_4_35_2
  article-title: Socs3, a major regulator of infection and inflammation
  publication-title: Front. Immunol.
– ident: e_1_3_4_46_2
  doi: 10.1038/s41592-018-0033-z
– ident: e_1_3_4_3_2
  doi: 10.1038/s41587-020-00803-5
– ident: e_1_3_4_23_2
  doi: 10.3389/fimmu.2019.01078
– volume: 58
  start-page: 267
  year: 1996
  ident: e_1_3_4_54_2
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_4_36_2
  doi: 10.1126/science.abb8034
SSID ssj0009580
Score 2.5941408
Snippet Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus...
Comparative analysis of samples from two biological states, such as two stages of embryonic development, is a pressing problem in single-cell RNA sequencing...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Aging
Biological Sciences
Clustering
Computational neuroscience
COVID-19
Embryogenesis
Embryonic growth stage
Gene sequencing
Immune checkpoint
Multiscale analysis
Phenotypes
Subpopulations
Transcriptomics
Title Detection of differentially abundant cell subpopulations in scRNA-seq data
URI https://www.jstor.org/stable/27040995
https://www.ncbi.nlm.nih.gov/pubmed/34001664
https://www.proquest.com/docview/2540550719
https://www.proquest.com/docview/2528821493
https://pubmed.ncbi.nlm.nih.gov/PMC8179149
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCCGDAIDBQkHoailNR27Pixgk3TVLoJtVLFS-Q4jlapSseSPsBfzzmJnWYUafCSVo7zQ_7O5zvn7j6EPhRRwVlGcMhilYU0K2gos5iGeUJkIqliuTb7kF9n7HxBL5bxsudsbbJL6mykfu3NK_kfVKENcDVZsv-ArLspNMB_wBeOgDAc74XxF11rZU0-S3UCU3a9_hnIzOR4lHVgtuaDapvdOKquJgS2Ut9mk7DSP4IuPc3ZqFduTatsBMHMbhlO-gSUTitUQRhczXo64-_Xsv2Ys3VidyHhzRolBH65i-iYtnzZJkmibzJ8vJlsuZcvi9Xt7qYE3gme6vQomCEhoy0T6EjvabPKt9e-W5ui_IdWBzVkqIhLWY2wKRkriL1sUD97dpmeLabTdH66nD9EjzA4DrhR1btlmJO2PkX3KrbYEyef7tx-YKe0oar7nJC7sbQ7xsn8KXrSeRX-pBWRQ_RAl8_QoUXIP-mKi398ji6czPibwh_KjG9lxjcy4w9lxl-VvpMZ38jMC7Q4O51_Pg87Po1QgVlYhxyMP8F0JGOscs6JLmIS6TinkYwUj6XgkRTwkxMuRYQ1polKxtp8uiUZY4ocoYNyU-pXyJeER-McFgSWE8qkFiQHU5ZlIoFJXhTYQyM7eqnqis0bzpN12gQ9cJKa4U774fbQibvgpq2z8veuRw0crh_msBIJEXvo2OKTdrMUrjMuiXF6hIfeu9OgQ81IylJvtqYPBkdzTAXx0MsWTndzQo1XxKiH-ABo18HUZx-eKVfXTZ32xJT-peL1PZ77Bj3up9ExOqhvt_otWLt19q4R4N_Fhaop
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+differentially+abundant+cell+subpopulations+in+scRNA-seq+data&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Zhao%2C+Jun&rft.au=Jaffe%2C+Ariel&rft.au=Li%2C+Henry&rft.au=Lindenbaum%2C+Ofir&rft.date=2021-06-01&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=22&rft_id=info:doi/10.1073%2Fpnas.2100293118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon