Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma

Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myelo...

Full description

Saved in:
Bibliographic Details
Published inCancer letters Vol. 518; pp. 35 - 48
Main Authors Zhao, Qitai, Huang, Lan, Qin, Guohui, Qiao, Yamin, Ren, Feifei, Shen, Chunyi, Wang, Shumin, Liu, Shasha, Lian, Jinyao, Wang, Dan, Yu, Weina, Zhang, Yi
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 10.10.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. •Cancer-associated fibroblasts(CAFs) promoted M-MDSCs generation through activating STAT3 signaling by IL-6 in paracrine and exosomal-miR-21 medicated of autocrine in monocytes.•Monocytic myeloid-derived suppressor cells (M-MDSCs) mediated cisplatin resistance of esophageal squamous cell carcinoma(ESCC).•Co-infiltration of M-MDSCs and CAFs predict a poor survival of ESCC in our clinical cohort and TCGA dataset.
AbstractList Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.
Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. •Cancer-associated fibroblasts(CAFs) promoted M-MDSCs generation through activating STAT3 signaling by IL-6 in paracrine and exosomal-miR-21 medicated of autocrine in monocytes.•Monocytic myeloid-derived suppressor cells (M-MDSCs) mediated cisplatin resistance of esophageal squamous cell carcinoma(ESCC).•Co-infiltration of M-MDSCs and CAFs predict a poor survival of ESCC in our clinical cohort and TCGA dataset.
Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.
Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.
Author Shen, Chunyi
Wang, Shumin
Liu, Shasha
Huang, Lan
Yu, Weina
Zhao, Qitai
Lian, Jinyao
Wang, Dan
Zhang, Yi
Qiao, Yamin
Qin, Guohui
Ren, Feifei
Author_xml – sequence: 1
  givenname: Qitai
  surname: Zhao
  fullname: Zhao, Qitai
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 2
  givenname: Lan
  orcidid: 0000-0001-6556-4067
  surname: Huang
  fullname: Huang, Lan
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 3
  givenname: Guohui
  surname: Qin
  fullname: Qin, Guohui
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 4
  givenname: Yamin
  surname: Qiao
  fullname: Qiao, Yamin
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 5
  givenname: Feifei
  surname: Ren
  fullname: Ren, Feifei
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 6
  givenname: Chunyi
  surname: Shen
  fullname: Shen, Chunyi
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 7
  givenname: Shumin
  surname: Wang
  fullname: Wang, Shumin
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 8
  givenname: Shasha
  surname: Liu
  fullname: Liu, Shasha
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 9
  givenname: Jinyao
  surname: Lian
  fullname: Lian, Jinyao
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 10
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 11
  givenname: Weina
  surname: Yu
  fullname: Yu, Weina
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 12
  givenname: Yi
  orcidid: 0000-0001-9861-4681
  surname: Zhang
  fullname: Zhang, Yi
  email: yizhang@zzu.edu.cn
  organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34139285$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiKaFf4CQJTZsJvU8PA-EKlURj0qRkCCsLc_1nXDDjJ3anoj8TX4RTtNussnKm--ce3zuvUoujDWYJG8zPs94Vt1s5qDMgGGe8zyb82rOefsimWVNnad12_CLZMYLXqZFU4jL5Mr7DedclLV4lVwWZVa0eSNmyb-FMoAuVd5bIBVQs546Z7tB-eAZGT0BstEaC_tAwMY9DpZ0qtHRLsJ-2m4dRrFjgMPA1mjQqUDWsB0pdr9Mqxv8a70d1cBG-pHmWaog0O5x1M_V3apgntZGDWTWLFi2dXa0ARmQ3w7RyLBoTz4cYsY4DL3d_lZrjHb-YVKjnfxxMigHZOKc18nLXg0e3zy918mvL59Xi2_p8vvX-8XdMgXB25BW0JZNhqUuoKzrHLNaQNlo1XWqgbbFslMcNMT6dM4RctFq6IRuRdFDX_VZcZ18OPrGyA8T-iBH8ocoymBMJXNRFmXsm9cRfX-Cbuzk4qcPlGh4I_KyitS7J2rqRtRy62hUbi-ftxWBj0cAnPXeYS-BwmPZwSkaZMbl4TTkRh5PQx5OQ_JKxtOI4vJE_Ox_RnZ7lGGsckfopAfCuAxNDiFIbemcwacTA4i7JlDDH9yfl_8HNdTurA
CitedBy_id crossref_primary_10_1002_med_21950
crossref_primary_10_1016_j_phrs_2024_107521
crossref_primary_10_61186_rbmb_12_2_220
crossref_primary_10_1016_j_semcancer_2023_05_003
crossref_primary_10_1002_cac2_12546
crossref_primary_10_1111_cas_15726
crossref_primary_10_1016_j_bbcan_2025_189302
crossref_primary_10_1152_ajpgi_00277_2024
crossref_primary_10_1186_s12943_021_01428_1
crossref_primary_10_3389_fonc_2022_956270
crossref_primary_10_3390_ijms241512222
crossref_primary_10_3748_wjg_v29_i42_5699
crossref_primary_10_1186_s12967_022_03395_7
crossref_primary_10_3390_ijms252312548
crossref_primary_10_1016_j_trecan_2022_03_001
crossref_primary_10_1080_00365521_2024_2310167
crossref_primary_10_1016_j_phrs_2023_106678
crossref_primary_10_1016_j_xcrm_2024_101576
crossref_primary_10_1186_s12935_023_03166_4
crossref_primary_10_1002_cac2_12392
crossref_primary_10_1016_j_canlet_2021_12_025
crossref_primary_10_1016_j_cytogfr_2025_01_001
crossref_primary_10_1042_BST20221175
crossref_primary_10_1016_j_trecan_2023_01_007
crossref_primary_10_4049_jimmunol_2300541
crossref_primary_10_3892_ol_2024_14388
crossref_primary_10_1016_j_prp_2023_154529
crossref_primary_10_3892_or_2024_8860
crossref_primary_10_3390_biomedicines10030713
crossref_primary_10_1002_mco2_176
crossref_primary_10_1016_j_phrs_2022_106568
crossref_primary_10_1016_j_bbrc_2023_02_083
crossref_primary_10_1186_s12964_024_01510_3
crossref_primary_10_1155_2022_5266627
crossref_primary_10_1186_s12943_024_02104_w
crossref_primary_10_1016_j_critrevonc_2023_103967
crossref_primary_10_1186_s12964_024_01806_4
crossref_primary_10_3390_cells12131673
crossref_primary_10_37349_etat_2022_00103
crossref_primary_10_2174_1871530323666230823094556
crossref_primary_10_3389_fimmu_2022_900155
crossref_primary_10_1186_s10020_023_00665_y
crossref_primary_10_1016_j_envres_2023_117362
crossref_primary_10_3389_fcell_2021_717478
crossref_primary_10_3390_ijms24043617
crossref_primary_10_3389_fphar_2024_1459938
crossref_primary_10_1186_s12935_025_03725_x
crossref_primary_10_3389_fonc_2022_960317
crossref_primary_10_1016_j_phrs_2023_106880
crossref_primary_10_3390_cancers14164020
crossref_primary_10_3389_fimmu_2024_1472772
crossref_primary_10_1186_s12943_023_01839_2
crossref_primary_10_1158_0008_5472_CAN_22_1257
crossref_primary_10_1016_j_biopha_2024_117368
crossref_primary_10_2147_IJN_S447350
crossref_primary_10_20517_cdr_2024_152
crossref_primary_10_1016_j_jare_2024_01_033
crossref_primary_10_3389_fimmu_2022_1009701
crossref_primary_10_1038_s41525_022_00340_x
crossref_primary_10_1038_s41392_023_01728_6
crossref_primary_10_1002_jev2_12484
crossref_primary_10_4103_EJPI_EJPI_D_23_00013
crossref_primary_10_1016_j_intimp_2022_109430
crossref_primary_10_1186_s40164_024_00505_7
crossref_primary_10_31857_S0006302924060117
crossref_primary_10_1360_TB_2023_0588
crossref_primary_10_1016_j_jpha_2024_101181
crossref_primary_10_1186_s13046_024_02949_5
crossref_primary_10_1155_2023_4010797
crossref_primary_10_1186_s12951_025_03217_0
crossref_primary_10_1002_wnan_1989
crossref_primary_10_1016_j_ejphar_2022_175233
crossref_primary_10_1016_j_cytogfr_2023_08_010
crossref_primary_10_1134_S0006350924701161
crossref_primary_10_1186_s12943_024_02106_8
crossref_primary_10_1186_s12943_024_02208_3
crossref_primary_10_1002_mco2_541
crossref_primary_10_3389_fonc_2023_1257266
crossref_primary_10_1186_s12964_025_02138_7
crossref_primary_10_3390_cells12071030
crossref_primary_10_1016_j_phrs_2022_106364
crossref_primary_10_1016_j_prp_2023_154732
crossref_primary_10_3389_fonc_2022_1096717
crossref_primary_10_1016_j_canlet_2022_215860
crossref_primary_10_1186_s12935_022_02784_8
crossref_primary_10_1016_j_cytogfr_2022_04_006
crossref_primary_10_1038_s41419_023_06110_6
crossref_primary_10_1186_s13046_023_02871_2
crossref_primary_10_3892_ijo_2024_5684
crossref_primary_10_1186_s12935_024_03227_2
crossref_primary_10_1177_10732748221078470
crossref_primary_10_1016_j_ijrobp_2023_02_005
crossref_primary_10_1038_s41419_024_06697_4
crossref_primary_10_7717_peerj_13238
crossref_primary_10_1155_sci_8883585
crossref_primary_10_3389_fimmu_2024_1325191
crossref_primary_10_3390_ijms25052985
crossref_primary_10_1007_s12013_024_01496_2
crossref_primary_10_1111_jcmm_17152
crossref_primary_10_1007_s12032_024_02543_x
crossref_primary_10_1016_j_jcmgh_2024_01_008
crossref_primary_10_3389_fimmu_2022_883683
crossref_primary_10_1080_13543784_2024_2360209
crossref_primary_10_3389_fimmu_2022_1025532
crossref_primary_10_3389_fphar_2023_1113378
crossref_primary_10_1016_j_prp_2023_155002
crossref_primary_10_1002_eji_202350778
crossref_primary_10_3389_fimmu_2022_956224
crossref_primary_10_1155_2022_4257359
crossref_primary_10_1016_j_jare_2024_06_014
crossref_primary_10_3389_fimmu_2023_1337333
Cites_doi 10.1038/s41568-019-0238-1
10.3389/fonc.2018.00674
10.1038/nrclinonc.2010.20
10.1038/nrc3599
10.1186/1471-2105-14-7
10.1016/j.cellimm.2018.02.008
10.1038/onc.2016.353
10.1371/journal.pone.0170516
10.1158/2326-6066.CIR-19-0507
10.1002/ctm2.232
10.1038/s41571-018-0036-9
10.1186/s12943-019-1075-2
10.1038/onc.2016.273
10.1158/2326-6066.CIR-17-0415
10.1038/nrm.2017.125
10.1016/j.canlet.2015.10.022
10.1038/s41586-019-1730-1
10.4049/jimmunol.1500209
10.1371/journal.pone.0135867
10.1038/s41423-019-0271-8
10.1172/JCI98060
10.1016/j.canlet.2019.10.020
10.1016/j.cmet.2019.07.011
10.1172/JCI60083
10.1371/journal.pone.0073009
10.1038/nrdp.2017.48
10.1172/JCI80005
10.1016/j.biocel.2012.08.005
10.1038/nrc.2016.73
10.1073/pnas.0914295107
10.4049/jimmunol.0900092
10.1002/advs.201901779
10.1038/s41388-018-0261-9
10.1007/s00262-008-0523-4
10.1073/pnas.0702596104
10.1186/s13045-019-0797-3
10.1182/blood-2009-12-259630
10.1038/onc.2017.387
10.1016/j.arr.2013.05.001
10.1016/j.tig.2018.12.005
10.1038/s41590-017-0022-x
10.1177/0022034520909312
10.1016/j.ccell.2017.10.005
10.1186/s13045-020-00848-8
10.1158/0008-5472.CAN-15-2528
10.1016/j.molcel.2010.07.023
10.1158/0008-5472.CAN-15-2973
10.1038/icb.2017.4
10.1126/science.aau6977
10.1016/j.tips.2018.10.008
10.1042/bj20030407
10.1038/s41423-019-0319-9
10.1038/ncomms14979
10.1186/s12967-016-0788-x
10.1038/onc.2016.229
10.1158/0008-5472.CAN-15-0405
10.1038/ncomms11150
10.1172/JCI87734
10.1038/nrd3870
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright Elsevier Limited Oct 10, 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
– notice: Copyright Elsevier Limited Oct 10, 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
DOI 10.1016/j.canlet.2021.06.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7980
EndPage 48
ExternalDocumentID 34139285
10_1016_j_canlet_2021_06_009
S0304383521002949
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Beijing China
United States--US
China
GeographicLocations_xml – name: China
– name: Beijing China
– name: United States--US
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4CK
4G.
5GY
5RE
5VS
6J9
6PF
7-5
71M
8FE
8FH
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSU
SSZ
T5K
Z5R
~G-
7RV
7X7
8C1
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
DOVZS
EFLBG
HCIFZ
LCYCR
M2M
M2O
M7P
.55
.GJ
3O-
53G
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AGRDE
AGRNS
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HED
HMK
HMO
HVGLF
HZ~
R2-
RIG
SAE
SEW
UDS
VH1
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c509t-6c9481e4d3c4772e175c48dabba8c99e4ba0cdc383d20ec259dcb5d953fcf6f13
IEDL.DBID .~1
ISSN 0304-3835
1872-7980
IngestDate Fri Jul 11 15:41:40 EDT 2025
Wed Aug 13 11:21:55 EDT 2025
Thu Apr 03 07:06:01 EDT 2025
Thu Apr 24 23:05:19 EDT 2025
Tue Jul 01 02:29:44 EDT 2025
Fri Feb 23 02:43:24 EST 2024
Tue Aug 26 16:33:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Cancer-associated fibroblasts
Esophageal squamous cell carcinoma
Signal transducing activator of transcription 3
Cisplatin resistance
Monocytic myeloid-derived suppressor cells
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-6c9481e4d3c4772e175c48dabba8c99e4ba0cdc383d20ec259dcb5d953fcf6f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9861-4681
0000-0001-6556-4067
PMID 34139285
PQID 2558085246
PQPubID 2031080
PageCount 14
ParticipantIDs proquest_miscellaneous_2543447507
proquest_journals_2558085246
pubmed_primary_34139285
crossref_citationtrail_10_1016_j_canlet_2021_06_009
crossref_primary_10_1016_j_canlet_2021_06_009
elsevier_sciencedirect_doi_10_1016_j_canlet_2021_06_009
elsevier_clinicalkey_doi_10_1016_j_canlet_2021_06_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-10
PublicationDateYYYYMMDD 2021-10-10
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-10
  day: 10
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Clare
PublicationTitle Cancer letters
PublicationTitleAlternate Cancer Lett
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Zhou, Wulfkuhle, Zhang, Gu, Yang, Deng, Margolick, Liotta, Petricoin, Zhang (bib55) 2007; 104
Wang, Zhang, Wang, Wang, Huang, Cheng (bib8) 2016; 14
Duan, Zhang, Jia, Lu, Eric Gershwin (bib18) 2019; 16
Kalluri (bib17) 2016; 16
Chen, Zhang, Kuzel, Zhang (bib47) 2015; 2
Mei, Xin, Liu, Zhang, Liang, Su, Yan, Huang, Yang (bib50) 2015; 10
Huber, Vallacchi, Fleming, Hu, Cova, Dugo, Shahaj, Sulsenti, Vergani, Filipazzi, De Laurentiis, Lalli, Di Guardo, Patuzzo, Vergani, Casiraghi, Cossa, Gualeni, Bollati, Arienti, De Braud, Mariani, Villa, Altevogt, Umansky, Rodolfo, Rivoltini (bib16) 2018; 128
Smyth, Lagergren, Fitzgerald, Lordick, Shah, Lagergren, Cunningham (bib1) 2017; 3
Law, Valdes-Mora, Gallego-Ortega (bib39) 2020
Peng, Tanikawa, Li, Zhao, Vatan, Szeliga, Wan, Wei, Wang, Liu, Staroslawska, Szubstarski, Rolinski, Grywalska, Stanislawek, Polkowski, Kurylcio, Kleer, Chang, Wicha, Sabel, Zou, Kryczek (bib60) 2016; 76
Vasquez-Dunddel, Pan, Zeng, Gorbounov, Albesiano, Fu, Blosser, Tam, Bruno, Zhang, Pardoll, Kim (bib58) 2013; 123
Leca, Martinez, Lac, Nigri, Secq, Rubis, Bressy, Serge, Lavaut, Dusetti, Loncle, Roques, Pietrasz, Bousquet, Garcia, Granjeaud, Ouaissi, Bachet, Brun, Iovanna, Zimmermann, Vasseur, Tomasini (bib6) 2016; 126
Grugan, Miller, Yao, Michaylira, Ohashi, Klein-Szanto, Diehl, Herlyn, Han, Nakagawa, Rustgi (bib37) 2010; 107
Richards, Zeleniak, Fishel, Wu, Littlepage, Hill (bib27) 2017; 36
Okines, Sharma, Cunningham (bib2) 2010; 7
van Niel, D'Angelo, Raposo (bib19) 2018; 19
Zhai, Li, Song, Yang, Cui, Li, Niu, Crispe, Su, Tu (bib28) 2017; 12
Holohan, Van Schaeybroeck, Longley, Johnston (bib3) 2013; 13
Noman, Janji, Hu, Wu, Martelli, Bronte, Chouaib (bib49) 2015; 75
Ji, Li, Shen, Dou, Wang, Shi, Hou (bib11) 2019; 16
Kumar, Donthireddy, Marvel, Condamine, Wang, Lavilla-Alonso, Hashimoto, Vonteddu, Behera, Goins, Mulligan, Nam, Hockstein, Denstman, Shakamuri, Speicher, Weeraratna, Chao, Vonderheide, Languino, Ordentlich, Liu, Xu, Lo, Pure, Zhang, Loboda, Sepulveda, Snyder, Gabrilovich (bib42) 2017; 32
Diaz-Montero, Salem, Nishimura, Garrett-Mayer, Cole, Montero (bib61) 2009; 58
Yang, Lin, Shi, Li, Liu, Yin, Dang, Chu, Fan, He (bib41) 2016; 76
Liu, Xie, Xiong, Liu, Qiu, Zhu, Mao, Yu, Wang (bib62) 2020; 469
Ouzounova, Lee, Piranlioglu, El Andaloussi, Kolhe, Demirci, Marasco, Asm, Chadli, Hassan, Thangaraju, Zhou, Arbab, Cowell, Korkaya (bib13) 2017; 8
Zhao, Sun, Hou, Peng, Wang, Luo, Tang, Zeng, Liu (bib32) 2012; 44
Zheng, Ding, Ma, Zhao, Guo, Shen, He, Wei, Liu (bib31) 2018; 8
Xiang, Ramil, Hai, Zhang, Wang, Watkins, Afshar, Georgiev, Sze, Song, Curran, Cheng, Miller, Sun, Loboda, Jia, Moy, Chi, Brandish (bib40) 2020; 8
Sahai, Astsaturov, Cukierman, DeNardo, Egeblad, Evans, Fearon, Greten, Hingorani, Hunter, Hynes, Jain, Janowitz, Jorgensen, Kimmelman, Kolonin, Maki, Powers, Pure, Ramirez, Scherz-Shouval, Sherman, Stewart, Tlsty, Tuveson, Watt, Weaver, Weeraratna, Werb (bib5) 2020; 20
Qu, Wang, Lin (bib24) 2016; 380
Cao, Yang, Chen, Zhang, Jiang, Xue (bib35) 2019; 18
Kalluri, LeBleu (bib38) 2020; 367
Kiss, Van Gassen, Movahedi, Saeys, Laoui (bib14) 2018; 330
Wen, Mu, Lu, Wang, Fang, Jia, Li, Wang, Wen, Guo, Dai, Ren, Cui, Zeng, Gao, Wang, Cheng (bib43) 2020; 99
Chipman, Pasquinelli (bib33) 2019; 35
Tesi (bib9) 2019; 40
Casacuberta-Serra, Pares, Golbano, Coves, Espejo, Barquinero (bib26) 2017; 95
Vasan, Baselga, Hyman (bib36) 2019; 575
Au Yeung, Co, Tsuruga, Yeung, Kwan, Leung, Li, Lu, Kwan, Wong, Schmandt, Lu, Mok (bib7) 2016; 7
McMillin, Negri, Mitsiades (bib4) 2013; 12
Deng, Cheng, Fu, Liu, Chen, Zhang, Yang (bib25) 2017; 36
Tian, Rui, Tang, Ma, Wang, Tian, Zhang, Xu, Lu, Wang (bib48) 2015; 195
Zhang, Nguyen-Jackson, Panopoulos, Li, Murray, Watowich (bib56) 2010; 116
Deng, Rong, Teng, Zhuang, Samykutty, Mu, Zhang, Cao, Yan, Miller, Zhang (bib21) 2017; 36
Veglia, Perego, Gabrilovich (bib12) 2018; 19
Nouraee, Van Roosbroeck, Vasei, Semnani, Samaei, Naghshvar, Omidi, Calin, Mowla (bib52) 2013; 8
Lv, Wang, Huang (bib10) 2019; 12
Marvel, Gabrilovich (bib15) 2015; 125
Xu, Rai, Chen, Suwakulsiri, Greening, Simpson (bib29) 2018; 15
Yi, Xu, Jiao, Luo, Li, Wu (bib20) 2020; 13
Guo, Qiu, Liu, Qian, Wang, Zhang, Gao, Chen, Xue, Li (bib51) 2018; 37
Iliopoulos, Jaeger, Hirsch, Bulyk, Struhl (bib34) 2010; 39
Olivieri, Rippo, Monsurro, Salvioli, Capri, Procopio, Franceschi (bib53) 2013; 12
Qin, Liu, Lian, Zhang, Lei, Yang, Shao, Chen, Zhang, Zhang (bib45) 2020; 10
Heinrich, Behrmann, Haan, Hermanns, Muller-Newen, Schaper (bib54) 2003; 374
Hanzelmann, Castelo, Guinney (bib23) 2013; 14
Qiao, Zhang, Li, Wang, Luo, Ping, Zhou, Liu, Li, Yue, Zhang, Chen, Shen, Lian, Li, Wang, Li, Huang, Wang, Zhang, Yu, Qin, Zhang (bib22) 2018; 37
Corzo, Cotter, Cheng, Cheng, Kusmartsev, Sotomayor, Padhya, McCaffrey, McCaffrey, Gabrilovich (bib57) 2009; 182
Mori, Ludwig, Garcia-Martin, Brandao, Kahn (bib30) 2019; 30
Li, Chen, Qin, Yue, Zhang, Ping, Wang, Zhao, Song, Zhao, Li, Liu, Wang, Zhang, Lian, Cao, Li, Huang, Wang, Yang, Huang, Li, Zhang, Zhang (bib44) 2018; 6
Xie, Zhou, Fang, Li, Su, Tu, Zhang, Zhou (bib46) 2019; 6
Owen, Brockwell, Parker (bib59) 2019
Kalluri (10.1016/j.canlet.2021.06.009_bib38) 2020; 367
Noman (10.1016/j.canlet.2021.06.009_bib49) 2015; 75
Zhao (10.1016/j.canlet.2021.06.009_bib32) 2012; 44
Zhang (10.1016/j.canlet.2021.06.009_bib56) 2010; 116
Veglia (10.1016/j.canlet.2021.06.009_bib12) 2018; 19
Guo (10.1016/j.canlet.2021.06.009_bib51) 2018; 37
Wen (10.1016/j.canlet.2021.06.009_bib43) 2020; 99
Xiang (10.1016/j.canlet.2021.06.009_bib40) 2020; 8
Tesi (10.1016/j.canlet.2021.06.009_bib9) 2019; 40
Qu (10.1016/j.canlet.2021.06.009_bib24) 2016; 380
Au Yeung (10.1016/j.canlet.2021.06.009_bib7) 2016; 7
Yang (10.1016/j.canlet.2021.06.009_bib41) 2016; 76
Leca (10.1016/j.canlet.2021.06.009_bib6) 2016; 126
Wang (10.1016/j.canlet.2021.06.009_bib8) 2016; 14
McMillin (10.1016/j.canlet.2021.06.009_bib4) 2013; 12
Casacuberta-Serra (10.1016/j.canlet.2021.06.009_bib26) 2017; 95
Huber (10.1016/j.canlet.2021.06.009_bib16) 2018; 128
Grugan (10.1016/j.canlet.2021.06.009_bib37) 2010; 107
Mei (10.1016/j.canlet.2021.06.009_bib50) 2015; 10
Deng (10.1016/j.canlet.2021.06.009_bib21) 2017; 36
Peng (10.1016/j.canlet.2021.06.009_bib60) 2016; 76
Ji (10.1016/j.canlet.2021.06.009_bib11) 2019; 16
Xie (10.1016/j.canlet.2021.06.009_bib46) 2019; 6
Owen (10.1016/j.canlet.2021.06.009_bib59) 2019
Sahai (10.1016/j.canlet.2021.06.009_bib5) 2020; 20
Liu (10.1016/j.canlet.2021.06.009_bib62) 2020; 469
Richards (10.1016/j.canlet.2021.06.009_bib27) 2017; 36
Vasan (10.1016/j.canlet.2021.06.009_bib36) 2019; 575
Vasquez-Dunddel (10.1016/j.canlet.2021.06.009_bib58) 2013; 123
Kiss (10.1016/j.canlet.2021.06.009_bib14) 2018; 330
Corzo (10.1016/j.canlet.2021.06.009_bib57) 2009; 182
Smyth (10.1016/j.canlet.2021.06.009_bib1) 2017; 3
Zheng (10.1016/j.canlet.2021.06.009_bib31) 2018; 8
Duan (10.1016/j.canlet.2021.06.009_bib18) 2019; 16
Mori (10.1016/j.canlet.2021.06.009_bib30) 2019; 30
van Niel (10.1016/j.canlet.2021.06.009_bib19) 2018; 19
Li (10.1016/j.canlet.2021.06.009_bib44) 2018; 6
Zhai (10.1016/j.canlet.2021.06.009_bib28) 2017; 12
Lv (10.1016/j.canlet.2021.06.009_bib10) 2019; 12
Marvel (10.1016/j.canlet.2021.06.009_bib15) 2015; 125
Iliopoulos (10.1016/j.canlet.2021.06.009_bib34) 2010; 39
Okines (10.1016/j.canlet.2021.06.009_bib2) 2010; 7
Yi (10.1016/j.canlet.2021.06.009_bib20) 2020; 13
Zhou (10.1016/j.canlet.2021.06.009_bib55) 2007; 104
Cao (10.1016/j.canlet.2021.06.009_bib35) 2019; 18
Kalluri (10.1016/j.canlet.2021.06.009_bib17) 2016; 16
Diaz-Montero (10.1016/j.canlet.2021.06.009_bib61) 2009; 58
Ouzounova (10.1016/j.canlet.2021.06.009_bib13) 2017; 8
Heinrich (10.1016/j.canlet.2021.06.009_bib54) 2003; 374
Qiao (10.1016/j.canlet.2021.06.009_bib22) 2018; 37
Qin (10.1016/j.canlet.2021.06.009_bib45) 2020; 10
Chipman (10.1016/j.canlet.2021.06.009_bib33) 2019; 35
Holohan (10.1016/j.canlet.2021.06.009_bib3) 2013; 13
Deng (10.1016/j.canlet.2021.06.009_bib25) 2017; 36
Hanzelmann (10.1016/j.canlet.2021.06.009_bib23) 2013; 14
Olivieri (10.1016/j.canlet.2021.06.009_bib53) 2013; 12
Law (10.1016/j.canlet.2021.06.009_bib39) 2020
Kumar (10.1016/j.canlet.2021.06.009_bib42) 2017; 32
Tian (10.1016/j.canlet.2021.06.009_bib48) 2015; 195
Chen (10.1016/j.canlet.2021.06.009_bib47) 2015; 2
Nouraee (10.1016/j.canlet.2021.06.009_bib52) 2013; 8
Xu (10.1016/j.canlet.2021.06.009_bib29) 2018; 15
References_xml – volume: 128
  start-page: 5505
  year: 2018
  end-page: 5516
  ident: bib16
  article-title: Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma
  publication-title: J. Clin. Invest.
– volume: 12
  year: 2017
  ident: bib28
  article-title: Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling
  publication-title: PloS One
– volume: 95
  start-page: 538
  year: 2017
  end-page: 548
  ident: bib26
  article-title: Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes
  publication-title: Immunol. Cell Biol.
– volume: 76
  start-page: 3156
  year: 2016
  end-page: 3165
  ident: bib60
  article-title: Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling
  publication-title: Canc. Res.
– volume: 12
  start-page: 217
  year: 2013
  end-page: 228
  ident: bib4
  article-title: The role of tumour-stromal interactions in modifying drug response: challenges and opportunities
  publication-title: Nat. Rev. Drug Discov.
– volume: 367
  year: 2020
  ident: bib38
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
– volume: 14
  start-page: 30
  year: 2016
  ident: bib8
  article-title: The role of cancer-associated fibroblasts in esophageal cancer
  publication-title: J. Transl. Med.
– start-page: 11
  year: 2019
  ident: bib59
  article-title: JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression
  publication-title: Cancers
– volume: 39
  start-page: 493
  year: 2010
  end-page: 506
  ident: bib34
  article-title: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer
  publication-title: Mol. Cell.
– volume: 126
  start-page: 4140
  year: 2016
  end-page: 4156
  ident: bib6
  article-title: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness
  publication-title: J. Clin. Invest.
– volume: 2
  year: 2015
  ident: bib47
  article-title: Regulating tumor myeloid-derived suppressor cells by MicroRNAs
  publication-title: Cancer Cell Microenviron
– volume: 58
  start-page: 49
  year: 2009
  end-page: 59
  ident: bib61
  article-title: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy
  publication-title: Cancer Immunol. Immunother.
– volume: 12
  start-page: 105
  year: 2019
  ident: bib10
  article-title: Myeloid-derived suppressor cells in hematological malignancies: friends or foes
  publication-title: J. Hematol. Oncol.
– volume: 125
  start-page: 3356
  year: 2015
  end-page: 3364
  ident: bib15
  article-title: Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected
  publication-title: J. Clin. Invest.
– volume: 20
  start-page: 174
  year: 2020
  end-page: 186
  ident: bib5
  article-title: A framework for advancing our understanding of cancer-associated fibroblasts
  publication-title: Nat. Rev. Canc.
– volume: 37
  start-page: 4239
  year: 2018
  end-page: 4259
  ident: bib51
  article-title: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways
  publication-title: Oncogene
– volume: 14
  start-page: 7
  year: 2013
  ident: bib23
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinf.
– volume: 15
  start-page: 617
  year: 2018
  end-page: 638
  ident: bib29
  article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 36
  start-page: 1090
  year: 2017
  end-page: 1101
  ident: bib25
  article-title: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells
  publication-title: Oncogene
– volume: 36
  start-page: 639
  year: 2017
  end-page: 651
  ident: bib21
  article-title: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis
  publication-title: Oncogene
– volume: 19
  start-page: 108
  year: 2018
  end-page: 119
  ident: bib12
  article-title: Myeloid-derived suppressor cells coming of age
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 674
  year: 2018
  ident: bib31
  article-title: Identification of serum MicroRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms
  publication-title: Front Oncol
– volume: 75
  start-page: 3771
  year: 2015
  end-page: 3787
  ident: bib49
  article-title: Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210
  publication-title: Canc. Res.
– volume: 116
  start-page: 2462
  year: 2010
  end-page: 2471
  ident: bib56
  article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis
  publication-title: Blood
– volume: 30
  start-page: 656
  year: 2019
  end-page: 673
  ident: bib30
  article-title: Extracellular miRNAs: from biomarkers to mediators of physiology and disease
  publication-title: Cell Metabol.
– volume: 330
  start-page: 188
  year: 2018
  end-page: 201
  ident: bib14
  article-title: Myeloid cell heterogeneity in cancer: not a single cell alike
  publication-title: Cell. Immunol.
– volume: 18
  start-page: 148
  year: 2019
  ident: bib35
  article-title: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth
  publication-title: Mol. Canc.
– volume: 182
  start-page: 5693
  year: 2009
  end-page: 5701
  ident: bib57
  article-title: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells
  publication-title: J. Immunol.
– volume: 575
  start-page: 299
  year: 2019
  end-page: 309
  ident: bib36
  article-title: A view on drug resistance in cancer
  publication-title: Nature
– volume: 10
  start-page: e232
  year: 2020
  ident: bib45
  article-title: PMN-MDSCs-induced accumulation of CD8+CD39+ T cells predicts the efficacy of chemotherapy in esophageal squamous cell carcinoma
  publication-title: Clin. Transl. Med.
– volume: 3
  start-page: 17048
  year: 2017
  ident: bib1
  article-title: Oesophageal cancer
  publication-title: Nat Rev Dis Primers
– volume: 76
  start-page: 4124
  year: 2016
  end-page: 4135
  ident: bib41
  article-title: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling
  publication-title: Canc. Res.
– volume: 8
  year: 2013
  ident: bib52
  article-title: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma
  publication-title: PloS One
– volume: 374
  start-page: 1
  year: 2003
  end-page: 20
  ident: bib54
  article-title: Principles of interleukin (IL)-6-type cytokine signalling and its regulation
  publication-title: Biochem. J.
– volume: 7
  start-page: 231
  year: 2010
  end-page: 238
  ident: bib2
  article-title: Perioperative management of esophageal cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 44
  start-page: 2051
  year: 2012
  end-page: 2059
  ident: bib32
  article-title: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 10
  year: 2015
  ident: bib50
  article-title: MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression
  publication-title: PloS One
– volume: 13
  start-page: 714
  year: 2013
  end-page: 726
  ident: bib3
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat. Rev. Canc.
– volume: 7
  start-page: 11150
  year: 2016
  ident: bib7
  article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1
  publication-title: Nat. Commun.
– start-page: 9
  year: 2020
  ident: bib39
  article-title: Myeloid-derived suppressor cells as a therapeutic target for cancer
  publication-title: Cells
– volume: 32
  start-page: 654
  year: 2017
  end-page: 668 e655
  ident: bib42
  article-title: Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors
  publication-title: Canc. Cell
– volume: 104
  start-page: 16158
  year: 2007
  end-page: 16163
  ident: bib55
  article-title: Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 123
  start-page: 1580
  year: 2013
  end-page: 1589
  ident: bib58
  article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients
  publication-title: J. Clin. Invest.
– volume: 16
  start-page: 582
  year: 2016
  end-page: 598
  ident: bib17
  article-title: The biology and function of fibroblasts in cancer
  publication-title: Nat. Rev. Canc.
– volume: 469
  start-page: 173
  year: 2020
  end-page: 185
  ident: bib62
  article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages
  publication-title: Canc. Lett.
– volume: 36
  start-page: 1770
  year: 2017
  end-page: 1778
  ident: bib27
  article-title: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells
  publication-title: Oncogene
– volume: 16
  start-page: 932
  year: 2019
  end-page: 934
  ident: bib18
  article-title: Exosomal microRNA in autoimmunity
  publication-title: Cell. Mol. Immunol.
– volume: 8
  start-page: 14979
  year: 2017
  ident: bib13
  article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade
  publication-title: Nat. Commun.
– volume: 195
  start-page: 1301
  year: 2015
  end-page: 1311
  ident: bib48
  article-title: MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1
  publication-title: J. Immunol.
– volume: 16
  start-page: 937
  year: 2019
  end-page: 939
  ident: bib11
  article-title: MDSCs: friend or foe in systemic lupus erythematosus
  publication-title: Cell. Mol. Immunol.
– volume: 6
  start-page: 1901779
  year: 2019
  ident: bib46
  article-title: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy
  publication-title: Adv. Sci.
– volume: 40
  start-page: 4
  year: 2019
  end-page: 7
  ident: bib9
  article-title: MDSC; the most important cell you have never heard of
  publication-title: Trends Pharmacol. Sci.
– volume: 99
  start-page: 666
  year: 2020
  end-page: 675
  ident: bib43
  article-title: Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment
  publication-title: J. Dent. Res.
– volume: 13
  start-page: 25
  year: 2020
  ident: bib20
  article-title: The role of cancer-derived microRNAs in cancer immune escape
  publication-title: J. Hematol. Oncol.
– volume: 35
  start-page: 215
  year: 2019
  end-page: 222
  ident: bib33
  article-title: miRNA targeting: growing beyond the seed
  publication-title: Trends Genet.
– volume: 107
  start-page: 11026
  year: 2010
  end-page: 11031
  ident: bib37
  article-title: Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 1246
  year: 2018
  end-page: 1259
  ident: bib44
  article-title: Maelstrom directs myeloid-derived suppressor cells to promote esophageal squamous cell carcinoma progression via activation of the akt1/RelA/IL8 signaling pathway
  publication-title: Cancer Immunol Res
– volume: 12
  start-page: 1056
  year: 2013
  end-page: 1068
  ident: bib53
  article-title: MicroRNAs linking inflamm-aging, cellular senescence and cancer
  publication-title: Ageing Res. Rev.
– volume: 19
  start-page: 213
  year: 2018
  end-page: 228
  ident: bib19
  article-title: Shedding light on the cell biology of extracellular vesicles
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 37
  start-page: 873
  year: 2018
  end-page: 883
  ident: bib22
  article-title: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma
  publication-title: Oncogene
– volume: 380
  start-page: 253
  year: 2016
  end-page: 256
  ident: bib24
  article-title: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment
  publication-title: Canc. Lett.
– volume: 8
  start-page: 436
  year: 2020
  end-page: 450
  ident: bib40
  article-title: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma
  publication-title: Cancer Immunol Res
– volume: 20
  start-page: 174
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib5
  article-title: A framework for advancing our understanding of cancer-associated fibroblasts
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/s41568-019-0238-1
– volume: 8
  start-page: 674
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib31
  article-title: Identification of serum MicroRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00674
– volume: 7
  start-page: 231
  year: 2010
  ident: 10.1016/j.canlet.2021.06.009_bib2
  article-title: Perioperative management of esophageal cancer
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2010.20
– volume: 13
  start-page: 714
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib3
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3599
– volume: 14
  start-page: 7
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib23
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-7
– volume: 330
  start-page: 188
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib14
  article-title: Myeloid cell heterogeneity in cancer: not a single cell alike
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2018.02.008
– volume: 36
  start-page: 1770
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib27
  article-title: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2016.353
– volume: 12
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib28
  article-title: Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling
  publication-title: PloS One
  doi: 10.1371/journal.pone.0170516
– volume: 8
  start-page: 436
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib40
  article-title: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-19-0507
– volume: 10
  start-page: e232
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib45
  article-title: PMN-MDSCs-induced accumulation of CD8+CD39+ T cells predicts the efficacy of chemotherapy in esophageal squamous cell carcinoma
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.232
– volume: 15
  start-page: 617
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib29
  article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-018-0036-9
– volume: 18
  start-page: 148
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib35
  article-title: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth
  publication-title: Mol. Canc.
  doi: 10.1186/s12943-019-1075-2
– volume: 36
  start-page: 1090
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib25
  article-title: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells
  publication-title: Oncogene
  doi: 10.1038/onc.2016.273
– volume: 6
  start-page: 1246
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib44
  article-title: Maelstrom directs myeloid-derived suppressor cells to promote esophageal squamous cell carcinoma progression via activation of the akt1/RelA/IL8 signaling pathway
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-17-0415
– volume: 19
  start-page: 213
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib19
  article-title: Shedding light on the cell biology of extracellular vesicles
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.125
– volume: 380
  start-page: 253
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib24
  article-title: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2015.10.022
– volume: 575
  start-page: 299
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib36
  article-title: A view on drug resistance in cancer
  publication-title: Nature
  doi: 10.1038/s41586-019-1730-1
– volume: 195
  start-page: 1301
  year: 2015
  ident: 10.1016/j.canlet.2021.06.009_bib48
  article-title: MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500209
– volume: 10
  year: 2015
  ident: 10.1016/j.canlet.2021.06.009_bib50
  article-title: MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression
  publication-title: PloS One
  doi: 10.1371/journal.pone.0135867
– volume: 16
  start-page: 937
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib11
  article-title: MDSCs: friend or foe in systemic lupus erythematosus
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-019-0271-8
– volume: 128
  start-page: 5505
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib16
  article-title: Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI98060
– volume: 469
  start-page: 173
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib62
  article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2019.10.020
– volume: 30
  start-page: 656
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib30
  article-title: Extracellular miRNAs: from biomarkers to mediators of physiology and disease
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2019.07.011
– volume: 123
  start-page: 1580
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib58
  article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI60083
– volume: 8
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib52
  article-title: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma
  publication-title: PloS One
  doi: 10.1371/journal.pone.0073009
– volume: 3
  start-page: 17048
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib1
  article-title: Oesophageal cancer
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2017.48
– volume: 125
  start-page: 3356
  year: 2015
  ident: 10.1016/j.canlet.2021.06.009_bib15
  article-title: Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI80005
– volume: 44
  start-page: 2051
  year: 2012
  ident: 10.1016/j.canlet.2021.06.009_bib32
  article-title: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2012.08.005
– volume: 16
  start-page: 582
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib17
  article-title: The biology and function of fibroblasts in cancer
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.73
– volume: 107
  start-page: 11026
  year: 2010
  ident: 10.1016/j.canlet.2021.06.009_bib37
  article-title: Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914295107
– volume: 182
  start-page: 5693
  year: 2009
  ident: 10.1016/j.canlet.2021.06.009_bib57
  article-title: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900092
– volume: 6
  start-page: 1901779
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib46
  article-title: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901779
– volume: 37
  start-page: 4239
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib51
  article-title: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0261-9
– volume: 58
  start-page: 49
  year: 2009
  ident: 10.1016/j.canlet.2021.06.009_bib61
  article-title: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-008-0523-4
– volume: 104
  start-page: 16158
  year: 2007
  ident: 10.1016/j.canlet.2021.06.009_bib55
  article-title: Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0702596104
– volume: 12
  start-page: 105
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib10
  article-title: Myeloid-derived suppressor cells in hematological malignancies: friends or foes
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0797-3
– volume: 116
  start-page: 2462
  year: 2010
  ident: 10.1016/j.canlet.2021.06.009_bib56
  article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis
  publication-title: Blood
  doi: 10.1182/blood-2009-12-259630
– volume: 37
  start-page: 873
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib22
  article-title: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma
  publication-title: Oncogene
  doi: 10.1038/onc.2017.387
– volume: 12
  start-page: 1056
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib53
  article-title: MicroRNAs linking inflamm-aging, cellular senescence and cancer
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2013.05.001
– volume: 35
  start-page: 215
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib33
  article-title: miRNA targeting: growing beyond the seed
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.12.005
– volume: 19
  start-page: 108
  year: 2018
  ident: 10.1016/j.canlet.2021.06.009_bib12
  article-title: Myeloid-derived suppressor cells coming of age
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0022-x
– volume: 99
  start-page: 666
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib43
  article-title: Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034520909312
– volume: 32
  start-page: 654
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib42
  article-title: Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors
  publication-title: Canc. Cell
  doi: 10.1016/j.ccell.2017.10.005
– volume: 13
  start-page: 25
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib20
  article-title: The role of cancer-derived microRNAs in cancer immune escape
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-020-00848-8
– volume: 76
  start-page: 3156
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib60
  article-title: Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-15-2528
– volume: 39
  start-page: 493
  year: 2010
  ident: 10.1016/j.canlet.2021.06.009_bib34
  article-title: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2010.07.023
– volume: 76
  start-page: 4124
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib41
  article-title: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-15-2973
– volume: 95
  start-page: 538
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib26
  article-title: Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2017.4
– volume: 367
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib38
  article-title: The biology, function, and biomedical applications of exosomes
  publication-title: Science
  doi: 10.1126/science.aau6977
– start-page: 9
  year: 2020
  ident: 10.1016/j.canlet.2021.06.009_bib39
  article-title: Myeloid-derived suppressor cells as a therapeutic target for cancer
  publication-title: Cells
– volume: 40
  start-page: 4
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib9
  article-title: MDSC; the most important cell you have never heard of
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2018.10.008
– volume: 374
  start-page: 1
  year: 2003
  ident: 10.1016/j.canlet.2021.06.009_bib54
  article-title: Principles of interleukin (IL)-6-type cytokine signalling and its regulation
  publication-title: Biochem. J.
  doi: 10.1042/bj20030407
– start-page: 11
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib59
  article-title: JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression
  publication-title: Cancers
– volume: 16
  start-page: 932
  year: 2019
  ident: 10.1016/j.canlet.2021.06.009_bib18
  article-title: Exosomal microRNA in autoimmunity
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-019-0319-9
– volume: 8
  start-page: 14979
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib13
  article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14979
– volume: 14
  start-page: 30
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib8
  article-title: The role of cancer-associated fibroblasts in esophageal cancer
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-0788-x
– volume: 36
  start-page: 639
  year: 2017
  ident: 10.1016/j.canlet.2021.06.009_bib21
  article-title: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis
  publication-title: Oncogene
  doi: 10.1038/onc.2016.229
– volume: 75
  start-page: 3771
  year: 2015
  ident: 10.1016/j.canlet.2021.06.009_bib49
  article-title: Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-15-0405
– volume: 7
  start-page: 11150
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib7
  article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11150
– volume: 126
  start-page: 4140
  year: 2016
  ident: 10.1016/j.canlet.2021.06.009_bib6
  article-title: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI87734
– volume: 12
  start-page: 217
  year: 2013
  ident: 10.1016/j.canlet.2021.06.009_bib4
  article-title: The role of tumour-stromal interactions in modifying drug response: challenges and opportunities
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3870
– volume: 2
  year: 2015
  ident: 10.1016/j.canlet.2021.06.009_bib47
  article-title: Regulating tumor myeloid-derived suppressor cells by MicroRNAs
  publication-title: Cancer Cell Microenviron
SSID ssj0005475
Score 2.6415539
Snippet Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Apoptosis
Autocrine signalling
Cancer-associated fibroblasts
Cancer-Associated Fibroblasts - metabolism
Cancer-Associated Fibroblasts - pathology
CD11b antigen
Cell Differentiation - physiology
Cell Line
Cell Line, Tumor
Chemotherapy
Cisplatin
Cisplatin - pharmacology
Cisplatin resistance
Drug resistance
Drug Resistance, Neoplasm - physiology
Esophageal cancer
Esophageal Neoplasms - drug therapy
Esophageal Neoplasms - metabolism
Esophageal Neoplasms - pathology
Esophageal squamous cell carcinoma
Esophageal Squamous Cell Carcinoma - drug therapy
Esophageal Squamous Cell Carcinoma - metabolism
Esophageal Squamous Cell Carcinoma - pathology
Esophagus
Ethics
Exosomes - metabolism
Exosomes - pathology
Extracellular matrix
Fibroblasts
Flow cytometry
Growth factors
Humans
Interleukin 6
Interleukin 6 receptors
Interleukin-6 - metabolism
Lymphocytes
Medical prognosis
Metastases
Metastasis
MicroRNAs
MicroRNAs - metabolism
miRNA
Monocytes
Monocytes - metabolism
Monocytes - pathology
Monocytic myeloid-derived suppressor cells
Myeloid cells
Myeloid Cells - metabolism
Myeloid Cells - pathology
Myeloid-Derived Suppressor Cells - metabolism
Myeloid-Derived Suppressor Cells - pathology
Paracrine signalling
Patients
Proteins
Signal transducing activator of transcription 3
Signal Transduction - physiology
Squamous cell carcinoma
Stat3 protein
STAT3 Transcription Factor - metabolism
Stromal cells
Suppressor cells
Transcription
Tumor cells
Tumors
Title Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0304383521002949
https://dx.doi.org/10.1016/j.canlet.2021.06.009
https://www.ncbi.nlm.nih.gov/pubmed/34139285
https://www.proquest.com/docview/2558085246
https://www.proquest.com/docview/2543447507
Volume 518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWi4S4IN4UlpWRuJrm4TjJsapYdYHdA9uV9mY59gQFbZPQtBV74Ufyi5hxkgok0CKOTf2YeCbjb5Jvxoy9sUqVQWyVAKkwQHHGCQMZ0aayyGVlCsqTx8_O1eJSvr9Krg7YfMyFIVrl4Pt7n-699XBlOqzmtK2q6QV91IsJQFAV0VxSEp-UKVn52--_0DykL7ZLjQW1HtPnPMcLpcfVwSgxCn0VT6Il_nl7-hv89NvQyQN2f8CPfNaL-JAdQP2I3T0bvpA_Zj_mpMa1MMOyg-MlRsRNgSh503GMwFGXHG2vsTc4BF_dwHVTOeHQEnfYuNu2nhrbrDm90-effVlq0h7fVYaffhRqCt-arlmhFKvqk4hCQbkROz_VxXK2jDlxQgylufNNw1vP9wNuq64l3l3NcXgCrSgmisOBzlFAp4bDdV-3ht5E9DNbOuWoxnmesMuTd8v5QgznNgiL8GMjlKUSMCBdbCWCd0CEYmXmTFGYzOY5yMIE1lnUhosCsBiAOVskLk_i0paqDOOn7LBuanjOeIDRY5bmQIGNTMoMLa5UJlUhRCmkaTxh8agubYei5nS2xrUe2WtfdK9kTUrWnsSXT5jY92r7oh63tE9GS9Bjwiq6WI27zi390n2_34z6H3oejQanB6fSaYz-MkTIkVQT9nr_N7oD0oqpARWkqbYB1XAM0gl71hvq_hYJsORRlrz4b7Fesnv0i_buMDhih5v1Fl4hKNsUx_6pO2Z3ZqcfFuc_ASluO08
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRQIuiH8KCxgJjqb5cZzkwGG1sGrZdg9sV9qbcWwHBW2T0LSFXngp3oQnYsZJKpBAi5D22sTjqWc8nom_mSHkhRYi90ItmOUCAhSjDFM2QdhUEpgkj61w4PHpsRid8ndn0dkO-d7nwiCssrP9rU131rr7Zdit5rAuiuEJXuqF6EBgFdGUpx2y8shuvkDc1rwevwEhvwyCw7ezgxHrWgswDSfkkgmNVUosN6Hm4F9aOEQ1T4zKMpXoNLU8U542GsibwLMaYgSjs8ikUZjrXOR-CHSvkKsczAW2TXj17RdcCXfVfZE7huz1-XoOVAbLBeKAsDTwXdlQxEH--Tz8m7_rzr3DW-Rm57DS_XZNbpMdW94h16bdlfxd8uMA9WbBVCdna2gOIXiVgVu-bCiE_KA8FJS90hsgQecbe14VhhlQ_TW83Kxqh8WtFhQvEehHVwcb1YWuC0XHEyaG9mvVVHPgYl68Z4HPMBlj7aY6me3PQoogFIV59XRZ0doBDC3VRVMj0K-kQB69ZGAT2KEWGzeAFQVyzeeVwk8f7cwa2yqVMM89cnop0rxPdsuqtA8J9SBcTeLUYiTFozwBFc-FioVvg9jGcTggYS8uqbsq6tjM41z2cLlPshWyRCFLhxpMB4RtR9VtFZEL3o96TZB9hizYdAnH3AXj4u2433bRP4zc6xVOdlaskRBuJuCSB1wMyPPtY7A_KBVVWhCQxGIKWDTSiwfkQauo27-IHlIaJNGj_2brGbk-mk0ncjI-PnpMbuATdBx8b4_sLhcr-wQ8wmX21O1ASj5c9pb_CR7qeK0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-associated+fibroblasts+induce+monocytic+myeloid-derived+suppressor+cell+generation+via+IL-6%2Fexosomal+miR-21-activated+STAT3+signaling+to+promote+cisplatin+resistance+in+esophageal+squamous+cell+carcinoma&rft.jtitle=Cancer+letters&rft.au=Zhao%2C+Qitai&rft.au=Huang%2C+Lan&rft.au=Qin%2C+Guohui&rft.au=Qiao%2C+Yamin&rft.date=2021-10-10&rft.eissn=1872-7980&rft.volume=518&rft.spage=35&rft_id=info:doi/10.1016%2Fj.canlet.2021.06.009&rft_id=info%3Apmid%2F34139285&rft.externalDocID=34139285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon