Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma
Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myelo...
Saved in:
Published in | Cancer letters Vol. 518; pp. 35 - 48 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
10.10.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.
•Cancer-associated fibroblasts(CAFs) promoted M-MDSCs generation through activating STAT3 signaling by IL-6 in paracrine and exosomal-miR-21 medicated of autocrine in monocytes.•Monocytic myeloid-derived suppressor cells (M-MDSCs) mediated cisplatin resistance of esophageal squamous cell carcinoma(ESCC).•Co-infiltration of M-MDSCs and CAFs predict a poor survival of ESCC in our clinical cohort and TCGA dataset. |
---|---|
AbstractList | Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling.Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. •Cancer-associated fibroblasts(CAFs) promoted M-MDSCs generation through activating STAT3 signaling by IL-6 in paracrine and exosomal-miR-21 medicated of autocrine in monocytes.•Monocytic myeloid-derived suppressor cells (M-MDSCs) mediated cisplatin resistance of esophageal squamous cell carcinoma(ESCC).•Co-infiltration of M-MDSCs and CAFs predict a poor survival of ESCC in our clinical cohort and TCGA dataset. Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC. Furthermore, CAFs promoted differentiation of monocytes into M-MDSCs phenotypically and functionally in vitro. Mechanically, both interleukin (IL)-6 and exosome-packed microRNA-21 (miR-21) secreted by CAFs synergistically promoted the generation of M-MDSCs via activating the signal transducing activator of transcription 3 (STAT3) by IL-6 in an autocrine manner. Combined blocking of IL-6 receptor and inhibition of miR-21 significantly reversed CAF-mediated M-MDSC generation. Notably, the effects of CAFs on M-MDSC induction were abolished by inhibiting STAT3 signaling. Functionally, CAF-induced M-MDSCs promoted drug resistance of tumor cells upon cisplatin treatment. Clinically, ESCC patients with high infiltration of CAFs and CD11b+ myeloid cells had unfavorable predicted overall survival both in our cohort and in TCGA data. Taken together, our study reveals a paracrine and autocrine of IL-6 caused by CAFs co-activate STAT3 signaling, promoting the generation of M-MDSCs, and highlights the important role of CAFs in cooperation with M-MDSCs in promoting drug resistance, thus providing potential opportunities for reversing drug resistance through inhibition of STAT3 signaling. |
Author | Shen, Chunyi Wang, Shumin Liu, Shasha Huang, Lan Yu, Weina Zhao, Qitai Lian, Jinyao Wang, Dan Zhang, Yi Qiao, Yamin Qin, Guohui Ren, Feifei |
Author_xml | – sequence: 1 givenname: Qitai surname: Zhao fullname: Zhao, Qitai organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 2 givenname: Lan orcidid: 0000-0001-6556-4067 surname: Huang fullname: Huang, Lan organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 3 givenname: Guohui surname: Qin fullname: Qin, Guohui organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 4 givenname: Yamin surname: Qiao fullname: Qiao, Yamin organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 5 givenname: Feifei surname: Ren fullname: Ren, Feifei organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 6 givenname: Chunyi surname: Shen fullname: Shen, Chunyi organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 7 givenname: Shumin surname: Wang fullname: Wang, Shumin organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 8 givenname: Shasha surname: Liu fullname: Liu, Shasha organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 9 givenname: Jinyao surname: Lian fullname: Lian, Jinyao organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 10 givenname: Dan surname: Wang fullname: Wang, Dan organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 11 givenname: Weina surname: Yu fullname: Yu, Weina organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 12 givenname: Yi orcidid: 0000-0001-9861-4681 surname: Zhang fullname: Zhang, Yi email: yizhang@zzu.edu.cn organization: Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34139285$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhUeoiKaFf4CQJTZsJvU8PA-EKlURj0qRkCCsLc_1nXDDjJ3anoj8TX4RTtNussnKm--ce3zuvUoujDWYJG8zPs94Vt1s5qDMgGGe8zyb82rOefsimWVNnad12_CLZMYLXqZFU4jL5Mr7DedclLV4lVwWZVa0eSNmyb-FMoAuVd5bIBVQs546Z7tB-eAZGT0BstEaC_tAwMY9DpZ0qtHRLsJ-2m4dRrFjgMPA1mjQqUDWsB0pdr9Mqxv8a70d1cBG-pHmWaog0O5x1M_V3apgntZGDWTWLFi2dXa0ARmQ3w7RyLBoTz4cYsY4DL3d_lZrjHb-YVKjnfxxMigHZOKc18nLXg0e3zy918mvL59Xi2_p8vvX-8XdMgXB25BW0JZNhqUuoKzrHLNaQNlo1XWqgbbFslMcNMT6dM4RctFq6IRuRdFDX_VZcZ18OPrGyA8T-iBH8ocoymBMJXNRFmXsm9cRfX-Cbuzk4qcPlGh4I_KyitS7J2rqRtRy62hUbi-ftxWBj0cAnPXeYS-BwmPZwSkaZMbl4TTkRh5PQx5OQ_JKxtOI4vJE_Ox_RnZ7lGGsckfopAfCuAxNDiFIbemcwacTA4i7JlDDH9yfl_8HNdTurA |
CitedBy_id | crossref_primary_10_1002_med_21950 crossref_primary_10_1016_j_phrs_2024_107521 crossref_primary_10_61186_rbmb_12_2_220 crossref_primary_10_1016_j_semcancer_2023_05_003 crossref_primary_10_1002_cac2_12546 crossref_primary_10_1111_cas_15726 crossref_primary_10_1016_j_bbcan_2025_189302 crossref_primary_10_1152_ajpgi_00277_2024 crossref_primary_10_1186_s12943_021_01428_1 crossref_primary_10_3389_fonc_2022_956270 crossref_primary_10_3390_ijms241512222 crossref_primary_10_3748_wjg_v29_i42_5699 crossref_primary_10_1186_s12967_022_03395_7 crossref_primary_10_3390_ijms252312548 crossref_primary_10_1016_j_trecan_2022_03_001 crossref_primary_10_1080_00365521_2024_2310167 crossref_primary_10_1016_j_phrs_2023_106678 crossref_primary_10_1016_j_xcrm_2024_101576 crossref_primary_10_1186_s12935_023_03166_4 crossref_primary_10_1002_cac2_12392 crossref_primary_10_1016_j_canlet_2021_12_025 crossref_primary_10_1016_j_cytogfr_2025_01_001 crossref_primary_10_1042_BST20221175 crossref_primary_10_1016_j_trecan_2023_01_007 crossref_primary_10_4049_jimmunol_2300541 crossref_primary_10_3892_ol_2024_14388 crossref_primary_10_1016_j_prp_2023_154529 crossref_primary_10_3892_or_2024_8860 crossref_primary_10_3390_biomedicines10030713 crossref_primary_10_1002_mco2_176 crossref_primary_10_1016_j_phrs_2022_106568 crossref_primary_10_1016_j_bbrc_2023_02_083 crossref_primary_10_1186_s12964_024_01510_3 crossref_primary_10_1155_2022_5266627 crossref_primary_10_1186_s12943_024_02104_w crossref_primary_10_1016_j_critrevonc_2023_103967 crossref_primary_10_1186_s12964_024_01806_4 crossref_primary_10_3390_cells12131673 crossref_primary_10_37349_etat_2022_00103 crossref_primary_10_2174_1871530323666230823094556 crossref_primary_10_3389_fimmu_2022_900155 crossref_primary_10_1186_s10020_023_00665_y crossref_primary_10_1016_j_envres_2023_117362 crossref_primary_10_3389_fcell_2021_717478 crossref_primary_10_3390_ijms24043617 crossref_primary_10_3389_fphar_2024_1459938 crossref_primary_10_1186_s12935_025_03725_x crossref_primary_10_3389_fonc_2022_960317 crossref_primary_10_1016_j_phrs_2023_106880 crossref_primary_10_3390_cancers14164020 crossref_primary_10_3389_fimmu_2024_1472772 crossref_primary_10_1186_s12943_023_01839_2 crossref_primary_10_1158_0008_5472_CAN_22_1257 crossref_primary_10_1016_j_biopha_2024_117368 crossref_primary_10_2147_IJN_S447350 crossref_primary_10_20517_cdr_2024_152 crossref_primary_10_1016_j_jare_2024_01_033 crossref_primary_10_3389_fimmu_2022_1009701 crossref_primary_10_1038_s41525_022_00340_x crossref_primary_10_1038_s41392_023_01728_6 crossref_primary_10_1002_jev2_12484 crossref_primary_10_4103_EJPI_EJPI_D_23_00013 crossref_primary_10_1016_j_intimp_2022_109430 crossref_primary_10_1186_s40164_024_00505_7 crossref_primary_10_31857_S0006302924060117 crossref_primary_10_1360_TB_2023_0588 crossref_primary_10_1016_j_jpha_2024_101181 crossref_primary_10_1186_s13046_024_02949_5 crossref_primary_10_1155_2023_4010797 crossref_primary_10_1186_s12951_025_03217_0 crossref_primary_10_1002_wnan_1989 crossref_primary_10_1016_j_ejphar_2022_175233 crossref_primary_10_1016_j_cytogfr_2023_08_010 crossref_primary_10_1134_S0006350924701161 crossref_primary_10_1186_s12943_024_02106_8 crossref_primary_10_1186_s12943_024_02208_3 crossref_primary_10_1002_mco2_541 crossref_primary_10_3389_fonc_2023_1257266 crossref_primary_10_1186_s12964_025_02138_7 crossref_primary_10_3390_cells12071030 crossref_primary_10_1016_j_phrs_2022_106364 crossref_primary_10_1016_j_prp_2023_154732 crossref_primary_10_3389_fonc_2022_1096717 crossref_primary_10_1016_j_canlet_2022_215860 crossref_primary_10_1186_s12935_022_02784_8 crossref_primary_10_1016_j_cytogfr_2022_04_006 crossref_primary_10_1038_s41419_023_06110_6 crossref_primary_10_1186_s13046_023_02871_2 crossref_primary_10_3892_ijo_2024_5684 crossref_primary_10_1186_s12935_024_03227_2 crossref_primary_10_1177_10732748221078470 crossref_primary_10_1016_j_ijrobp_2023_02_005 crossref_primary_10_1038_s41419_024_06697_4 crossref_primary_10_7717_peerj_13238 crossref_primary_10_1155_sci_8883585 crossref_primary_10_3389_fimmu_2024_1325191 crossref_primary_10_3390_ijms25052985 crossref_primary_10_1007_s12013_024_01496_2 crossref_primary_10_1111_jcmm_17152 crossref_primary_10_1007_s12032_024_02543_x crossref_primary_10_1016_j_jcmgh_2024_01_008 crossref_primary_10_3389_fimmu_2022_883683 crossref_primary_10_1080_13543784_2024_2360209 crossref_primary_10_3389_fimmu_2022_1025532 crossref_primary_10_3389_fphar_2023_1113378 crossref_primary_10_1016_j_prp_2023_155002 crossref_primary_10_1002_eji_202350778 crossref_primary_10_3389_fimmu_2022_956224 crossref_primary_10_1155_2022_4257359 crossref_primary_10_1016_j_jare_2024_06_014 crossref_primary_10_3389_fimmu_2023_1337333 |
Cites_doi | 10.1038/s41568-019-0238-1 10.3389/fonc.2018.00674 10.1038/nrclinonc.2010.20 10.1038/nrc3599 10.1186/1471-2105-14-7 10.1016/j.cellimm.2018.02.008 10.1038/onc.2016.353 10.1371/journal.pone.0170516 10.1158/2326-6066.CIR-19-0507 10.1002/ctm2.232 10.1038/s41571-018-0036-9 10.1186/s12943-019-1075-2 10.1038/onc.2016.273 10.1158/2326-6066.CIR-17-0415 10.1038/nrm.2017.125 10.1016/j.canlet.2015.10.022 10.1038/s41586-019-1730-1 10.4049/jimmunol.1500209 10.1371/journal.pone.0135867 10.1038/s41423-019-0271-8 10.1172/JCI98060 10.1016/j.canlet.2019.10.020 10.1016/j.cmet.2019.07.011 10.1172/JCI60083 10.1371/journal.pone.0073009 10.1038/nrdp.2017.48 10.1172/JCI80005 10.1016/j.biocel.2012.08.005 10.1038/nrc.2016.73 10.1073/pnas.0914295107 10.4049/jimmunol.0900092 10.1002/advs.201901779 10.1038/s41388-018-0261-9 10.1007/s00262-008-0523-4 10.1073/pnas.0702596104 10.1186/s13045-019-0797-3 10.1182/blood-2009-12-259630 10.1038/onc.2017.387 10.1016/j.arr.2013.05.001 10.1016/j.tig.2018.12.005 10.1038/s41590-017-0022-x 10.1177/0022034520909312 10.1016/j.ccell.2017.10.005 10.1186/s13045-020-00848-8 10.1158/0008-5472.CAN-15-2528 10.1016/j.molcel.2010.07.023 10.1158/0008-5472.CAN-15-2973 10.1038/icb.2017.4 10.1126/science.aau6977 10.1016/j.tips.2018.10.008 10.1042/bj20030407 10.1038/s41423-019-0319-9 10.1038/ncomms14979 10.1186/s12967-016-0788-x 10.1038/onc.2016.229 10.1158/0008-5472.CAN-15-0405 10.1038/ncomms11150 10.1172/JCI87734 10.1038/nrd3870 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. Copyright Elsevier Limited Oct 10, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. – notice: Copyright Elsevier Limited Oct 10, 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7X8 |
DOI | 10.1016/j.canlet.2021.06.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7980 |
EndPage | 48 |
ExternalDocumentID | 34139285 10_1016_j_canlet_2021_06_009 S0304383521002949 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China United States--US China |
GeographicLocations_xml | – name: China – name: Beijing China – name: United States--US |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4CK 4G. 5GY 5RE 5VS 6J9 6PF 7-5 71M 8FE 8FH 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABMAC ABMZM ABUDA ACDAQ ACGFO ACGFS ACIEU ACIUM ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM LK8 M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSU SSZ T5K Z5R ~G- 7RV 7X7 8C1 AACTN AAIAV ABLVK ABYKQ AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR DOVZS EFLBG HCIFZ LCYCR M2M M2O M7P .55 .GJ 3O- 53G AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AGRDE AGRNS AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HED HMK HMO HVGLF HZ~ R2- RIG SAE SEW UDS VH1 WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c509t-6c9481e4d3c4772e175c48dabba8c99e4ba0cdc383d20ec259dcb5d953fcf6f13 |
IEDL.DBID | .~1 |
ISSN | 0304-3835 1872-7980 |
IngestDate | Fri Jul 11 15:41:40 EDT 2025 Wed Aug 13 11:21:55 EDT 2025 Thu Apr 03 07:06:01 EDT 2025 Thu Apr 24 23:05:19 EDT 2025 Tue Jul 01 02:29:44 EDT 2025 Fri Feb 23 02:43:24 EST 2024 Tue Aug 26 16:33:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cancer-associated fibroblasts Esophageal squamous cell carcinoma Signal transducing activator of transcription 3 Cisplatin resistance Monocytic myeloid-derived suppressor cells |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-6c9481e4d3c4772e175c48dabba8c99e4ba0cdc383d20ec259dcb5d953fcf6f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9861-4681 0000-0001-6556-4067 |
PMID | 34139285 |
PQID | 2558085246 |
PQPubID | 2031080 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2543447507 proquest_journals_2558085246 pubmed_primary_34139285 crossref_citationtrail_10_1016_j_canlet_2021_06_009 crossref_primary_10_1016_j_canlet_2021_06_009 elsevier_sciencedirect_doi_10_1016_j_canlet_2021_06_009 elsevier_clinicalkey_doi_10_1016_j_canlet_2021_06_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-10 |
PublicationDateYYYYMMDD | 2021-10-10 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland – name: Clare |
PublicationTitle | Cancer letters |
PublicationTitleAlternate | Cancer Lett |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Limited |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
References | Zhou, Wulfkuhle, Zhang, Gu, Yang, Deng, Margolick, Liotta, Petricoin, Zhang (bib55) 2007; 104 Wang, Zhang, Wang, Wang, Huang, Cheng (bib8) 2016; 14 Duan, Zhang, Jia, Lu, Eric Gershwin (bib18) 2019; 16 Kalluri (bib17) 2016; 16 Chen, Zhang, Kuzel, Zhang (bib47) 2015; 2 Mei, Xin, Liu, Zhang, Liang, Su, Yan, Huang, Yang (bib50) 2015; 10 Huber, Vallacchi, Fleming, Hu, Cova, Dugo, Shahaj, Sulsenti, Vergani, Filipazzi, De Laurentiis, Lalli, Di Guardo, Patuzzo, Vergani, Casiraghi, Cossa, Gualeni, Bollati, Arienti, De Braud, Mariani, Villa, Altevogt, Umansky, Rodolfo, Rivoltini (bib16) 2018; 128 Smyth, Lagergren, Fitzgerald, Lordick, Shah, Lagergren, Cunningham (bib1) 2017; 3 Law, Valdes-Mora, Gallego-Ortega (bib39) 2020 Peng, Tanikawa, Li, Zhao, Vatan, Szeliga, Wan, Wei, Wang, Liu, Staroslawska, Szubstarski, Rolinski, Grywalska, Stanislawek, Polkowski, Kurylcio, Kleer, Chang, Wicha, Sabel, Zou, Kryczek (bib60) 2016; 76 Vasquez-Dunddel, Pan, Zeng, Gorbounov, Albesiano, Fu, Blosser, Tam, Bruno, Zhang, Pardoll, Kim (bib58) 2013; 123 Leca, Martinez, Lac, Nigri, Secq, Rubis, Bressy, Serge, Lavaut, Dusetti, Loncle, Roques, Pietrasz, Bousquet, Garcia, Granjeaud, Ouaissi, Bachet, Brun, Iovanna, Zimmermann, Vasseur, Tomasini (bib6) 2016; 126 Grugan, Miller, Yao, Michaylira, Ohashi, Klein-Szanto, Diehl, Herlyn, Han, Nakagawa, Rustgi (bib37) 2010; 107 Richards, Zeleniak, Fishel, Wu, Littlepage, Hill (bib27) 2017; 36 Okines, Sharma, Cunningham (bib2) 2010; 7 van Niel, D'Angelo, Raposo (bib19) 2018; 19 Zhai, Li, Song, Yang, Cui, Li, Niu, Crispe, Su, Tu (bib28) 2017; 12 Holohan, Van Schaeybroeck, Longley, Johnston (bib3) 2013; 13 Noman, Janji, Hu, Wu, Martelli, Bronte, Chouaib (bib49) 2015; 75 Ji, Li, Shen, Dou, Wang, Shi, Hou (bib11) 2019; 16 Kumar, Donthireddy, Marvel, Condamine, Wang, Lavilla-Alonso, Hashimoto, Vonteddu, Behera, Goins, Mulligan, Nam, Hockstein, Denstman, Shakamuri, Speicher, Weeraratna, Chao, Vonderheide, Languino, Ordentlich, Liu, Xu, Lo, Pure, Zhang, Loboda, Sepulveda, Snyder, Gabrilovich (bib42) 2017; 32 Diaz-Montero, Salem, Nishimura, Garrett-Mayer, Cole, Montero (bib61) 2009; 58 Yang, Lin, Shi, Li, Liu, Yin, Dang, Chu, Fan, He (bib41) 2016; 76 Liu, Xie, Xiong, Liu, Qiu, Zhu, Mao, Yu, Wang (bib62) 2020; 469 Ouzounova, Lee, Piranlioglu, El Andaloussi, Kolhe, Demirci, Marasco, Asm, Chadli, Hassan, Thangaraju, Zhou, Arbab, Cowell, Korkaya (bib13) 2017; 8 Zhao, Sun, Hou, Peng, Wang, Luo, Tang, Zeng, Liu (bib32) 2012; 44 Zheng, Ding, Ma, Zhao, Guo, Shen, He, Wei, Liu (bib31) 2018; 8 Xiang, Ramil, Hai, Zhang, Wang, Watkins, Afshar, Georgiev, Sze, Song, Curran, Cheng, Miller, Sun, Loboda, Jia, Moy, Chi, Brandish (bib40) 2020; 8 Sahai, Astsaturov, Cukierman, DeNardo, Egeblad, Evans, Fearon, Greten, Hingorani, Hunter, Hynes, Jain, Janowitz, Jorgensen, Kimmelman, Kolonin, Maki, Powers, Pure, Ramirez, Scherz-Shouval, Sherman, Stewart, Tlsty, Tuveson, Watt, Weaver, Weeraratna, Werb (bib5) 2020; 20 Qu, Wang, Lin (bib24) 2016; 380 Cao, Yang, Chen, Zhang, Jiang, Xue (bib35) 2019; 18 Kalluri, LeBleu (bib38) 2020; 367 Kiss, Van Gassen, Movahedi, Saeys, Laoui (bib14) 2018; 330 Wen, Mu, Lu, Wang, Fang, Jia, Li, Wang, Wen, Guo, Dai, Ren, Cui, Zeng, Gao, Wang, Cheng (bib43) 2020; 99 Chipman, Pasquinelli (bib33) 2019; 35 Tesi (bib9) 2019; 40 Casacuberta-Serra, Pares, Golbano, Coves, Espejo, Barquinero (bib26) 2017; 95 Vasan, Baselga, Hyman (bib36) 2019; 575 Au Yeung, Co, Tsuruga, Yeung, Kwan, Leung, Li, Lu, Kwan, Wong, Schmandt, Lu, Mok (bib7) 2016; 7 McMillin, Negri, Mitsiades (bib4) 2013; 12 Deng, Cheng, Fu, Liu, Chen, Zhang, Yang (bib25) 2017; 36 Tian, Rui, Tang, Ma, Wang, Tian, Zhang, Xu, Lu, Wang (bib48) 2015; 195 Zhang, Nguyen-Jackson, Panopoulos, Li, Murray, Watowich (bib56) 2010; 116 Deng, Rong, Teng, Zhuang, Samykutty, Mu, Zhang, Cao, Yan, Miller, Zhang (bib21) 2017; 36 Veglia, Perego, Gabrilovich (bib12) 2018; 19 Nouraee, Van Roosbroeck, Vasei, Semnani, Samaei, Naghshvar, Omidi, Calin, Mowla (bib52) 2013; 8 Lv, Wang, Huang (bib10) 2019; 12 Marvel, Gabrilovich (bib15) 2015; 125 Xu, Rai, Chen, Suwakulsiri, Greening, Simpson (bib29) 2018; 15 Yi, Xu, Jiao, Luo, Li, Wu (bib20) 2020; 13 Guo, Qiu, Liu, Qian, Wang, Zhang, Gao, Chen, Xue, Li (bib51) 2018; 37 Iliopoulos, Jaeger, Hirsch, Bulyk, Struhl (bib34) 2010; 39 Olivieri, Rippo, Monsurro, Salvioli, Capri, Procopio, Franceschi (bib53) 2013; 12 Qin, Liu, Lian, Zhang, Lei, Yang, Shao, Chen, Zhang, Zhang (bib45) 2020; 10 Heinrich, Behrmann, Haan, Hermanns, Muller-Newen, Schaper (bib54) 2003; 374 Hanzelmann, Castelo, Guinney (bib23) 2013; 14 Qiao, Zhang, Li, Wang, Luo, Ping, Zhou, Liu, Li, Yue, Zhang, Chen, Shen, Lian, Li, Wang, Li, Huang, Wang, Zhang, Yu, Qin, Zhang (bib22) 2018; 37 Corzo, Cotter, Cheng, Cheng, Kusmartsev, Sotomayor, Padhya, McCaffrey, McCaffrey, Gabrilovich (bib57) 2009; 182 Mori, Ludwig, Garcia-Martin, Brandao, Kahn (bib30) 2019; 30 Li, Chen, Qin, Yue, Zhang, Ping, Wang, Zhao, Song, Zhao, Li, Liu, Wang, Zhang, Lian, Cao, Li, Huang, Wang, Yang, Huang, Li, Zhang, Zhang (bib44) 2018; 6 Xie, Zhou, Fang, Li, Su, Tu, Zhang, Zhou (bib46) 2019; 6 Owen, Brockwell, Parker (bib59) 2019 Kalluri (10.1016/j.canlet.2021.06.009_bib38) 2020; 367 Noman (10.1016/j.canlet.2021.06.009_bib49) 2015; 75 Zhao (10.1016/j.canlet.2021.06.009_bib32) 2012; 44 Zhang (10.1016/j.canlet.2021.06.009_bib56) 2010; 116 Veglia (10.1016/j.canlet.2021.06.009_bib12) 2018; 19 Guo (10.1016/j.canlet.2021.06.009_bib51) 2018; 37 Wen (10.1016/j.canlet.2021.06.009_bib43) 2020; 99 Xiang (10.1016/j.canlet.2021.06.009_bib40) 2020; 8 Tesi (10.1016/j.canlet.2021.06.009_bib9) 2019; 40 Qu (10.1016/j.canlet.2021.06.009_bib24) 2016; 380 Au Yeung (10.1016/j.canlet.2021.06.009_bib7) 2016; 7 Yang (10.1016/j.canlet.2021.06.009_bib41) 2016; 76 Leca (10.1016/j.canlet.2021.06.009_bib6) 2016; 126 Wang (10.1016/j.canlet.2021.06.009_bib8) 2016; 14 McMillin (10.1016/j.canlet.2021.06.009_bib4) 2013; 12 Casacuberta-Serra (10.1016/j.canlet.2021.06.009_bib26) 2017; 95 Huber (10.1016/j.canlet.2021.06.009_bib16) 2018; 128 Grugan (10.1016/j.canlet.2021.06.009_bib37) 2010; 107 Mei (10.1016/j.canlet.2021.06.009_bib50) 2015; 10 Deng (10.1016/j.canlet.2021.06.009_bib21) 2017; 36 Peng (10.1016/j.canlet.2021.06.009_bib60) 2016; 76 Ji (10.1016/j.canlet.2021.06.009_bib11) 2019; 16 Xie (10.1016/j.canlet.2021.06.009_bib46) 2019; 6 Owen (10.1016/j.canlet.2021.06.009_bib59) 2019 Sahai (10.1016/j.canlet.2021.06.009_bib5) 2020; 20 Liu (10.1016/j.canlet.2021.06.009_bib62) 2020; 469 Richards (10.1016/j.canlet.2021.06.009_bib27) 2017; 36 Vasan (10.1016/j.canlet.2021.06.009_bib36) 2019; 575 Vasquez-Dunddel (10.1016/j.canlet.2021.06.009_bib58) 2013; 123 Kiss (10.1016/j.canlet.2021.06.009_bib14) 2018; 330 Corzo (10.1016/j.canlet.2021.06.009_bib57) 2009; 182 Smyth (10.1016/j.canlet.2021.06.009_bib1) 2017; 3 Zheng (10.1016/j.canlet.2021.06.009_bib31) 2018; 8 Duan (10.1016/j.canlet.2021.06.009_bib18) 2019; 16 Mori (10.1016/j.canlet.2021.06.009_bib30) 2019; 30 van Niel (10.1016/j.canlet.2021.06.009_bib19) 2018; 19 Li (10.1016/j.canlet.2021.06.009_bib44) 2018; 6 Zhai (10.1016/j.canlet.2021.06.009_bib28) 2017; 12 Lv (10.1016/j.canlet.2021.06.009_bib10) 2019; 12 Marvel (10.1016/j.canlet.2021.06.009_bib15) 2015; 125 Iliopoulos (10.1016/j.canlet.2021.06.009_bib34) 2010; 39 Okines (10.1016/j.canlet.2021.06.009_bib2) 2010; 7 Yi (10.1016/j.canlet.2021.06.009_bib20) 2020; 13 Zhou (10.1016/j.canlet.2021.06.009_bib55) 2007; 104 Cao (10.1016/j.canlet.2021.06.009_bib35) 2019; 18 Kalluri (10.1016/j.canlet.2021.06.009_bib17) 2016; 16 Diaz-Montero (10.1016/j.canlet.2021.06.009_bib61) 2009; 58 Ouzounova (10.1016/j.canlet.2021.06.009_bib13) 2017; 8 Heinrich (10.1016/j.canlet.2021.06.009_bib54) 2003; 374 Qiao (10.1016/j.canlet.2021.06.009_bib22) 2018; 37 Qin (10.1016/j.canlet.2021.06.009_bib45) 2020; 10 Chipman (10.1016/j.canlet.2021.06.009_bib33) 2019; 35 Holohan (10.1016/j.canlet.2021.06.009_bib3) 2013; 13 Deng (10.1016/j.canlet.2021.06.009_bib25) 2017; 36 Hanzelmann (10.1016/j.canlet.2021.06.009_bib23) 2013; 14 Olivieri (10.1016/j.canlet.2021.06.009_bib53) 2013; 12 Law (10.1016/j.canlet.2021.06.009_bib39) 2020 Kumar (10.1016/j.canlet.2021.06.009_bib42) 2017; 32 Tian (10.1016/j.canlet.2021.06.009_bib48) 2015; 195 Chen (10.1016/j.canlet.2021.06.009_bib47) 2015; 2 Nouraee (10.1016/j.canlet.2021.06.009_bib52) 2013; 8 Xu (10.1016/j.canlet.2021.06.009_bib29) 2018; 15 |
References_xml | – volume: 128 start-page: 5505 year: 2018 end-page: 5516 ident: bib16 article-title: Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma publication-title: J. Clin. Invest. – volume: 12 year: 2017 ident: bib28 article-title: Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling publication-title: PloS One – volume: 95 start-page: 538 year: 2017 end-page: 548 ident: bib26 article-title: Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes publication-title: Immunol. Cell Biol. – volume: 76 start-page: 3156 year: 2016 end-page: 3165 ident: bib60 article-title: Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling publication-title: Canc. Res. – volume: 12 start-page: 217 year: 2013 end-page: 228 ident: bib4 article-title: The role of tumour-stromal interactions in modifying drug response: challenges and opportunities publication-title: Nat. Rev. Drug Discov. – volume: 367 year: 2020 ident: bib38 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 14 start-page: 30 year: 2016 ident: bib8 article-title: The role of cancer-associated fibroblasts in esophageal cancer publication-title: J. Transl. Med. – start-page: 11 year: 2019 ident: bib59 article-title: JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression publication-title: Cancers – volume: 39 start-page: 493 year: 2010 end-page: 506 ident: bib34 article-title: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer publication-title: Mol. Cell. – volume: 126 start-page: 4140 year: 2016 end-page: 4156 ident: bib6 article-title: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness publication-title: J. Clin. Invest. – volume: 2 year: 2015 ident: bib47 article-title: Regulating tumor myeloid-derived suppressor cells by MicroRNAs publication-title: Cancer Cell Microenviron – volume: 58 start-page: 49 year: 2009 end-page: 59 ident: bib61 article-title: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy publication-title: Cancer Immunol. Immunother. – volume: 12 start-page: 105 year: 2019 ident: bib10 article-title: Myeloid-derived suppressor cells in hematological malignancies: friends or foes publication-title: J. Hematol. Oncol. – volume: 125 start-page: 3356 year: 2015 end-page: 3364 ident: bib15 article-title: Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected publication-title: J. Clin. Invest. – volume: 20 start-page: 174 year: 2020 end-page: 186 ident: bib5 article-title: A framework for advancing our understanding of cancer-associated fibroblasts publication-title: Nat. Rev. Canc. – volume: 37 start-page: 4239 year: 2018 end-page: 4259 ident: bib51 article-title: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways publication-title: Oncogene – volume: 14 start-page: 7 year: 2013 ident: bib23 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinf. – volume: 15 start-page: 617 year: 2018 end-page: 638 ident: bib29 article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care publication-title: Nat. Rev. Clin. Oncol. – volume: 36 start-page: 1090 year: 2017 end-page: 1101 ident: bib25 article-title: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells publication-title: Oncogene – volume: 36 start-page: 639 year: 2017 end-page: 651 ident: bib21 article-title: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis publication-title: Oncogene – volume: 19 start-page: 108 year: 2018 end-page: 119 ident: bib12 article-title: Myeloid-derived suppressor cells coming of age publication-title: Nat. Immunol. – volume: 8 start-page: 674 year: 2018 ident: bib31 article-title: Identification of serum MicroRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms publication-title: Front Oncol – volume: 75 start-page: 3771 year: 2015 end-page: 3787 ident: bib49 article-title: Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210 publication-title: Canc. Res. – volume: 116 start-page: 2462 year: 2010 end-page: 2471 ident: bib56 article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis publication-title: Blood – volume: 30 start-page: 656 year: 2019 end-page: 673 ident: bib30 article-title: Extracellular miRNAs: from biomarkers to mediators of physiology and disease publication-title: Cell Metabol. – volume: 330 start-page: 188 year: 2018 end-page: 201 ident: bib14 article-title: Myeloid cell heterogeneity in cancer: not a single cell alike publication-title: Cell. Immunol. – volume: 18 start-page: 148 year: 2019 ident: bib35 article-title: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth publication-title: Mol. Canc. – volume: 182 start-page: 5693 year: 2009 end-page: 5701 ident: bib57 article-title: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells publication-title: J. Immunol. – volume: 575 start-page: 299 year: 2019 end-page: 309 ident: bib36 article-title: A view on drug resistance in cancer publication-title: Nature – volume: 10 start-page: e232 year: 2020 ident: bib45 article-title: PMN-MDSCs-induced accumulation of CD8+CD39+ T cells predicts the efficacy of chemotherapy in esophageal squamous cell carcinoma publication-title: Clin. Transl. Med. – volume: 3 start-page: 17048 year: 2017 ident: bib1 article-title: Oesophageal cancer publication-title: Nat Rev Dis Primers – volume: 76 start-page: 4124 year: 2016 end-page: 4135 ident: bib41 article-title: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling publication-title: Canc. Res. – volume: 8 year: 2013 ident: bib52 article-title: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma publication-title: PloS One – volume: 374 start-page: 1 year: 2003 end-page: 20 ident: bib54 article-title: Principles of interleukin (IL)-6-type cytokine signalling and its regulation publication-title: Biochem. J. – volume: 7 start-page: 231 year: 2010 end-page: 238 ident: bib2 article-title: Perioperative management of esophageal cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 44 start-page: 2051 year: 2012 end-page: 2059 ident: bib32 article-title: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer publication-title: Int. J. Biochem. Cell Biol. – volume: 10 year: 2015 ident: bib50 article-title: MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression publication-title: PloS One – volume: 13 start-page: 714 year: 2013 end-page: 726 ident: bib3 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat. Rev. Canc. – volume: 7 start-page: 11150 year: 2016 ident: bib7 article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1 publication-title: Nat. Commun. – start-page: 9 year: 2020 ident: bib39 article-title: Myeloid-derived suppressor cells as a therapeutic target for cancer publication-title: Cells – volume: 32 start-page: 654 year: 2017 end-page: 668 e655 ident: bib42 article-title: Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors publication-title: Canc. Cell – volume: 104 start-page: 16158 year: 2007 end-page: 16163 ident: bib55 article-title: Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 123 start-page: 1580 year: 2013 end-page: 1589 ident: bib58 article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients publication-title: J. Clin. Invest. – volume: 16 start-page: 582 year: 2016 end-page: 598 ident: bib17 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Canc. – volume: 469 start-page: 173 year: 2020 end-page: 185 ident: bib62 article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages publication-title: Canc. Lett. – volume: 36 start-page: 1770 year: 2017 end-page: 1778 ident: bib27 article-title: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells publication-title: Oncogene – volume: 16 start-page: 932 year: 2019 end-page: 934 ident: bib18 article-title: Exosomal microRNA in autoimmunity publication-title: Cell. Mol. Immunol. – volume: 8 start-page: 14979 year: 2017 ident: bib13 article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade publication-title: Nat. Commun. – volume: 195 start-page: 1301 year: 2015 end-page: 1311 ident: bib48 article-title: MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1 publication-title: J. Immunol. – volume: 16 start-page: 937 year: 2019 end-page: 939 ident: bib11 article-title: MDSCs: friend or foe in systemic lupus erythematosus publication-title: Cell. Mol. Immunol. – volume: 6 start-page: 1901779 year: 2019 ident: bib46 article-title: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy publication-title: Adv. Sci. – volume: 40 start-page: 4 year: 2019 end-page: 7 ident: bib9 article-title: MDSC; the most important cell you have never heard of publication-title: Trends Pharmacol. Sci. – volume: 99 start-page: 666 year: 2020 end-page: 675 ident: bib43 article-title: Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment publication-title: J. Dent. Res. – volume: 13 start-page: 25 year: 2020 ident: bib20 article-title: The role of cancer-derived microRNAs in cancer immune escape publication-title: J. Hematol. Oncol. – volume: 35 start-page: 215 year: 2019 end-page: 222 ident: bib33 article-title: miRNA targeting: growing beyond the seed publication-title: Trends Genet. – volume: 107 start-page: 11026 year: 2010 end-page: 11031 ident: bib37 article-title: Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 1246 year: 2018 end-page: 1259 ident: bib44 article-title: Maelstrom directs myeloid-derived suppressor cells to promote esophageal squamous cell carcinoma progression via activation of the akt1/RelA/IL8 signaling pathway publication-title: Cancer Immunol Res – volume: 12 start-page: 1056 year: 2013 end-page: 1068 ident: bib53 article-title: MicroRNAs linking inflamm-aging, cellular senescence and cancer publication-title: Ageing Res. Rev. – volume: 19 start-page: 213 year: 2018 end-page: 228 ident: bib19 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat. Rev. Mol. Cell Biol. – volume: 37 start-page: 873 year: 2018 end-page: 883 ident: bib22 article-title: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma publication-title: Oncogene – volume: 380 start-page: 253 year: 2016 end-page: 256 ident: bib24 article-title: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment publication-title: Canc. Lett. – volume: 8 start-page: 436 year: 2020 end-page: 450 ident: bib40 article-title: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma publication-title: Cancer Immunol Res – volume: 20 start-page: 174 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib5 article-title: A framework for advancing our understanding of cancer-associated fibroblasts publication-title: Nat. Rev. Canc. doi: 10.1038/s41568-019-0238-1 – volume: 8 start-page: 674 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib31 article-title: Identification of serum MicroRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms publication-title: Front Oncol doi: 10.3389/fonc.2018.00674 – volume: 7 start-page: 231 year: 2010 ident: 10.1016/j.canlet.2021.06.009_bib2 article-title: Perioperative management of esophageal cancer publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2010.20 – volume: 13 start-page: 714 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib3 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat. Rev. Canc. doi: 10.1038/nrc3599 – volume: 14 start-page: 7 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib23 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-7 – volume: 330 start-page: 188 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib14 article-title: Myeloid cell heterogeneity in cancer: not a single cell alike publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2018.02.008 – volume: 36 start-page: 1770 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib27 article-title: Cancer-associated fibroblast exosomes regulate survival and proliferation of pancreatic cancer cells publication-title: Oncogene doi: 10.1038/onc.2016.353 – volume: 12 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib28 article-title: Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling publication-title: PloS One doi: 10.1371/journal.pone.0170516 – volume: 8 start-page: 436 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib40 article-title: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-19-0507 – volume: 10 start-page: e232 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib45 article-title: PMN-MDSCs-induced accumulation of CD8+CD39+ T cells predicts the efficacy of chemotherapy in esophageal squamous cell carcinoma publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.232 – volume: 15 start-page: 617 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib29 article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-018-0036-9 – volume: 18 start-page: 148 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib35 article-title: Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth publication-title: Mol. Canc. doi: 10.1186/s12943-019-1075-2 – volume: 36 start-page: 1090 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib25 article-title: Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells publication-title: Oncogene doi: 10.1038/onc.2016.273 – volume: 6 start-page: 1246 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib44 article-title: Maelstrom directs myeloid-derived suppressor cells to promote esophageal squamous cell carcinoma progression via activation of the akt1/RelA/IL8 signaling pathway publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-17-0415 – volume: 19 start-page: 213 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib19 article-title: Shedding light on the cell biology of extracellular vesicles publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.125 – volume: 380 start-page: 253 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib24 article-title: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment publication-title: Canc. Lett. doi: 10.1016/j.canlet.2015.10.022 – volume: 575 start-page: 299 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib36 article-title: A view on drug resistance in cancer publication-title: Nature doi: 10.1038/s41586-019-1730-1 – volume: 195 start-page: 1301 year: 2015 ident: 10.1016/j.canlet.2021.06.009_bib48 article-title: MicroRNA-9 regulates the differentiation and function of myeloid-derived suppressor cells via targeting Runx1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1500209 – volume: 10 year: 2015 ident: 10.1016/j.canlet.2021.06.009_bib50 article-title: MicroRNA-200c promotes suppressive potential of myeloid-derived suppressor cells by modulating PTEN and FOG2 expression publication-title: PloS One doi: 10.1371/journal.pone.0135867 – volume: 16 start-page: 937 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib11 article-title: MDSCs: friend or foe in systemic lupus erythematosus publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-019-0271-8 – volume: 128 start-page: 5505 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib16 article-title: Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma publication-title: J. Clin. Invest. doi: 10.1172/JCI98060 – volume: 469 start-page: 173 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib62 article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages publication-title: Canc. Lett. doi: 10.1016/j.canlet.2019.10.020 – volume: 30 start-page: 656 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib30 article-title: Extracellular miRNAs: from biomarkers to mediators of physiology and disease publication-title: Cell Metabol. doi: 10.1016/j.cmet.2019.07.011 – volume: 123 start-page: 1580 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib58 article-title: STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients publication-title: J. Clin. Invest. doi: 10.1172/JCI60083 – volume: 8 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib52 article-title: Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma publication-title: PloS One doi: 10.1371/journal.pone.0073009 – volume: 3 start-page: 17048 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib1 article-title: Oesophageal cancer publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2017.48 – volume: 125 start-page: 3356 year: 2015 ident: 10.1016/j.canlet.2021.06.009_bib15 article-title: Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected publication-title: J. Clin. Invest. doi: 10.1172/JCI80005 – volume: 44 start-page: 2051 year: 2012 ident: 10.1016/j.canlet.2021.06.009_bib32 article-title: MiRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.08.005 – volume: 16 start-page: 582 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib17 article-title: The biology and function of fibroblasts in cancer publication-title: Nat. Rev. Canc. doi: 10.1038/nrc.2016.73 – volume: 107 start-page: 11026 year: 2010 ident: 10.1016/j.canlet.2021.06.009_bib37 article-title: Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0914295107 – volume: 182 start-page: 5693 year: 2009 ident: 10.1016/j.canlet.2021.06.009_bib57 article-title: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0900092 – volume: 6 start-page: 1901779 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib46 article-title: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy publication-title: Adv. Sci. doi: 10.1002/advs.201901779 – volume: 37 start-page: 4239 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib51 article-title: Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways publication-title: Oncogene doi: 10.1038/s41388-018-0261-9 – volume: 58 start-page: 49 year: 2009 ident: 10.1016/j.canlet.2021.06.009_bib61 article-title: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-008-0523-4 – volume: 104 start-page: 16158 year: 2007 ident: 10.1016/j.canlet.2021.06.009_bib55 article-title: Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702596104 – volume: 12 start-page: 105 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib10 article-title: Myeloid-derived suppressor cells in hematological malignancies: friends or foes publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0797-3 – volume: 116 start-page: 2462 year: 2010 ident: 10.1016/j.canlet.2021.06.009_bib56 article-title: STAT3 controls myeloid progenitor growth during emergency granulopoiesis publication-title: Blood doi: 10.1182/blood-2009-12-259630 – volume: 37 start-page: 873 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib22 article-title: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma publication-title: Oncogene doi: 10.1038/onc.2017.387 – volume: 12 start-page: 1056 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib53 article-title: MicroRNAs linking inflamm-aging, cellular senescence and cancer publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2013.05.001 – volume: 35 start-page: 215 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib33 article-title: miRNA targeting: growing beyond the seed publication-title: Trends Genet. doi: 10.1016/j.tig.2018.12.005 – volume: 19 start-page: 108 year: 2018 ident: 10.1016/j.canlet.2021.06.009_bib12 article-title: Myeloid-derived suppressor cells coming of age publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0022-x – volume: 99 start-page: 666 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib43 article-title: Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment publication-title: J. Dent. Res. doi: 10.1177/0022034520909312 – volume: 32 start-page: 654 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib42 article-title: Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors publication-title: Canc. Cell doi: 10.1016/j.ccell.2017.10.005 – volume: 13 start-page: 25 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib20 article-title: The role of cancer-derived microRNAs in cancer immune escape publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-020-00848-8 – volume: 76 start-page: 3156 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib60 article-title: Myeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signaling publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-15-2528 – volume: 39 start-page: 493 year: 2010 ident: 10.1016/j.canlet.2021.06.009_bib34 article-title: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer publication-title: Mol. Cell. doi: 10.1016/j.molcel.2010.07.023 – volume: 76 start-page: 4124 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib41 article-title: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-15-2973 – volume: 95 start-page: 538 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib26 article-title: Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2017.4 – volume: 367 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib38 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – start-page: 9 year: 2020 ident: 10.1016/j.canlet.2021.06.009_bib39 article-title: Myeloid-derived suppressor cells as a therapeutic target for cancer publication-title: Cells – volume: 40 start-page: 4 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib9 article-title: MDSC; the most important cell you have never heard of publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2018.10.008 – volume: 374 start-page: 1 year: 2003 ident: 10.1016/j.canlet.2021.06.009_bib54 article-title: Principles of interleukin (IL)-6-type cytokine signalling and its regulation publication-title: Biochem. J. doi: 10.1042/bj20030407 – start-page: 11 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib59 article-title: JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression publication-title: Cancers – volume: 16 start-page: 932 year: 2019 ident: 10.1016/j.canlet.2021.06.009_bib18 article-title: Exosomal microRNA in autoimmunity publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-019-0319-9 – volume: 8 start-page: 14979 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib13 article-title: Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade publication-title: Nat. Commun. doi: 10.1038/ncomms14979 – volume: 14 start-page: 30 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib8 article-title: The role of cancer-associated fibroblasts in esophageal cancer publication-title: J. Transl. Med. doi: 10.1186/s12967-016-0788-x – volume: 36 start-page: 639 year: 2017 ident: 10.1016/j.canlet.2021.06.009_bib21 article-title: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis publication-title: Oncogene doi: 10.1038/onc.2016.229 – volume: 75 start-page: 3771 year: 2015 ident: 10.1016/j.canlet.2021.06.009_bib49 article-title: Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210 publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-15-0405 – volume: 7 start-page: 11150 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib7 article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1 publication-title: Nat. Commun. doi: 10.1038/ncomms11150 – volume: 126 start-page: 4140 year: 2016 ident: 10.1016/j.canlet.2021.06.009_bib6 article-title: Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness publication-title: J. Clin. Invest. doi: 10.1172/JCI87734 – volume: 12 start-page: 217 year: 2013 ident: 10.1016/j.canlet.2021.06.009_bib4 article-title: The role of tumour-stromal interactions in modifying drug response: challenges and opportunities publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3870 – volume: 2 year: 2015 ident: 10.1016/j.canlet.2021.06.009_bib47 article-title: Regulating tumor myeloid-derived suppressor cells by MicroRNAs publication-title: Cancer Cell Microenviron |
SSID | ssj0005475 |
Score | 2.6415539 |
Snippet | Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Apoptosis Autocrine signalling Cancer-associated fibroblasts Cancer-Associated Fibroblasts - metabolism Cancer-Associated Fibroblasts - pathology CD11b antigen Cell Differentiation - physiology Cell Line Cell Line, Tumor Chemotherapy Cisplatin Cisplatin - pharmacology Cisplatin resistance Drug resistance Drug Resistance, Neoplasm - physiology Esophageal cancer Esophageal Neoplasms - drug therapy Esophageal Neoplasms - metabolism Esophageal Neoplasms - pathology Esophageal squamous cell carcinoma Esophageal Squamous Cell Carcinoma - drug therapy Esophageal Squamous Cell Carcinoma - metabolism Esophageal Squamous Cell Carcinoma - pathology Esophagus Ethics Exosomes - metabolism Exosomes - pathology Extracellular matrix Fibroblasts Flow cytometry Growth factors Humans Interleukin 6 Interleukin 6 receptors Interleukin-6 - metabolism Lymphocytes Medical prognosis Metastases Metastasis MicroRNAs MicroRNAs - metabolism miRNA Monocytes Monocytes - metabolism Monocytes - pathology Monocytic myeloid-derived suppressor cells Myeloid cells Myeloid Cells - metabolism Myeloid Cells - pathology Myeloid-Derived Suppressor Cells - metabolism Myeloid-Derived Suppressor Cells - pathology Paracrine signalling Patients Proteins Signal transducing activator of transcription 3 Signal Transduction - physiology Squamous cell carcinoma Stat3 protein STAT3 Transcription Factor - metabolism Stromal cells Suppressor cells Transcription Tumor cells Tumors |
Title | Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0304383521002949 https://dx.doi.org/10.1016/j.canlet.2021.06.009 https://www.ncbi.nlm.nih.gov/pubmed/34139285 https://www.proquest.com/docview/2558085246 https://www.proquest.com/docview/2543447507 |
Volume | 518 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWi4S4IN4UlpWRuJrm4TjJsapYdYHdA9uV9mY59gQFbZPQtBV74Ufyi5hxkgok0CKOTf2YeCbjb5Jvxoy9sUqVQWyVAKkwQHHGCQMZ0aayyGVlCsqTx8_O1eJSvr9Krg7YfMyFIVrl4Pt7n-699XBlOqzmtK2q6QV91IsJQFAV0VxSEp-UKVn52--_0DykL7ZLjQW1HtPnPMcLpcfVwSgxCn0VT6Il_nl7-hv89NvQyQN2f8CPfNaL-JAdQP2I3T0bvpA_Zj_mpMa1MMOyg-MlRsRNgSh503GMwFGXHG2vsTc4BF_dwHVTOeHQEnfYuNu2nhrbrDm90-effVlq0h7fVYaffhRqCt-arlmhFKvqk4hCQbkROz_VxXK2jDlxQgylufNNw1vP9wNuq64l3l3NcXgCrSgmisOBzlFAp4bDdV-3ht5E9DNbOuWoxnmesMuTd8v5QgznNgiL8GMjlKUSMCBdbCWCd0CEYmXmTFGYzOY5yMIE1lnUhosCsBiAOVskLk_i0paqDOOn7LBuanjOeIDRY5bmQIGNTMoMLa5UJlUhRCmkaTxh8agubYei5nS2xrUe2WtfdK9kTUrWnsSXT5jY92r7oh63tE9GS9Bjwiq6WI27zi390n2_34z6H3oejQanB6fSaYz-MkTIkVQT9nr_N7oD0oqpARWkqbYB1XAM0gl71hvq_hYJsORRlrz4b7Fesnv0i_buMDhih5v1Fl4hKNsUx_6pO2Z3ZqcfFuc_ASluO08 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRQIuiH8KCxgJjqb5cZzkwGG1sGrZdg9sV9qbcWwHBW2T0LSFXngp3oQnYsZJKpBAi5D22sTjqWc8nom_mSHkhRYi90ItmOUCAhSjDFM2QdhUEpgkj61w4PHpsRid8ndn0dkO-d7nwiCssrP9rU131rr7Zdit5rAuiuEJXuqF6EBgFdGUpx2y8shuvkDc1rwevwEhvwyCw7ezgxHrWgswDSfkkgmNVUosN6Hm4F9aOEQ1T4zKMpXoNLU8U542GsibwLMaYgSjs8ikUZjrXOR-CHSvkKsczAW2TXj17RdcCXfVfZE7huz1-XoOVAbLBeKAsDTwXdlQxEH--Tz8m7_rzr3DW-Rm57DS_XZNbpMdW94h16bdlfxd8uMA9WbBVCdna2gOIXiVgVu-bCiE_KA8FJS90hsgQecbe14VhhlQ_TW83Kxqh8WtFhQvEehHVwcb1YWuC0XHEyaG9mvVVHPgYl68Z4HPMBlj7aY6me3PQoogFIV59XRZ0doBDC3VRVMj0K-kQB69ZGAT2KEWGzeAFQVyzeeVwk8f7cwa2yqVMM89cnop0rxPdsuqtA8J9SBcTeLUYiTFozwBFc-FioVvg9jGcTggYS8uqbsq6tjM41z2cLlPshWyRCFLhxpMB4RtR9VtFZEL3o96TZB9hizYdAnH3AXj4u2433bRP4zc6xVOdlaskRBuJuCSB1wMyPPtY7A_KBVVWhCQxGIKWDTSiwfkQauo27-IHlIaJNGj_2brGbk-mk0ncjI-PnpMbuATdBx8b4_sLhcr-wQ8wmX21O1ASj5c9pb_CR7qeK0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer-associated+fibroblasts+induce+monocytic+myeloid-derived+suppressor+cell+generation+via+IL-6%2Fexosomal+miR-21-activated+STAT3+signaling+to+promote+cisplatin+resistance+in+esophageal+squamous+cell+carcinoma&rft.jtitle=Cancer+letters&rft.au=Zhao%2C+Qitai&rft.au=Huang%2C+Lan&rft.au=Qin%2C+Guohui&rft.au=Qiao%2C+Yamin&rft.date=2021-10-10&rft.eissn=1872-7980&rft.volume=518&rft.spage=35&rft_id=info:doi/10.1016%2Fj.canlet.2021.06.009&rft_id=info%3Apmid%2F34139285&rft.externalDocID=34139285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon |