Characterization and quantification of biochar alkalinity
Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood...
Saved in:
Published in | Chemosphere (Oxford) Vol. 167; pp. 367 - 373 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03–0.34 meq g−1), other organic (0–0.92 meq g−1), carbonate (0.02–1.5 meq g−1), and other inorganic (0–0.26 meq g−1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis.
[Display omitted]
•We present a suite of methods for quantifying biochar alkalinity in four categories.•Total biochar alkalinity and distribution of alkalis varied widely among biochars.•Base cation concentration was a good predictor of total biochar alkalinity.•Inorganic alkalis comprised >55% of lignocellulosic biochar alkalinity. |
---|---|
AbstractList | Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKₐ organic structural (0.03–0.34 meq g⁻¹), other organic (0–0.92 meq g⁻¹), carbonate (0.02–1.5 meq g⁻¹), and other inorganic (0–0.26 meq g⁻¹) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03–0.34 meq g−1), other organic (0–0.92 meq g−1), carbonate (0.02–1.5 meq g−1), and other inorganic (0–0.26 meq g−1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. [Display omitted] •We present a suite of methods for quantifying biochar alkalinity in four categories.•Total biochar alkalinity and distribution of alkalis varied widely among biochars.•Base cation concentration was a good predictor of total biochar alkalinity.•Inorganic alkalis comprised >55% of lignocellulosic biochar alkalinity. Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03-0.34 meq g-1), other organic (0-0.92 meq g-1), carbonate (0.02-1.5 meq g-1), and other inorganic (0-0.26 meq g-1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK organic structural (0.03-0.34 meq g ), other organic (0-0.92 meq g ), carbonate (0.02-1.5 meq g ), and other inorganic (0-0.26 meq g ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. |
Author | Lawrinenko, Michael Thompson, Michael L. Laird, David A. Fidel, Rivka B. |
Author_xml | – sequence: 1 givenname: Rivka B. surname: Fidel fullname: Fidel, Rivka B. email: rfidel@iastate.edu – sequence: 2 givenname: David A. surname: Laird fullname: Laird, David A. – sequence: 3 givenname: Michael L. surname: Thompson fullname: Thompson, Michael L. – sequence: 4 givenname: Michael surname: Lawrinenko fullname: Lawrinenko, Michael |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27743533$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtLAzEUhYMotj7-gtSdmxnzmGQmK5HiCwQ3ug6Z5A5NnU5qkgr6601tFXGjqwuX75zLPecA7Q5-AIROCS4JJuJ8XpoZLHxcziBASfOqxLIknOygMWlqWRAqm100xrjiheCMj9BBjHOMM8nlPhrRuq4YZ2yM5HSmgzYJgnvXyflhogc7eVnpIbnOmc3Kd5PWeZPJie6fde8Gl96O0F6n-wjH23mInq6vHqe3xf3Dzd308r4wHMtUCEN1x41sagYdpYYyDK2oWtIKWTVWSw6AOQjRYgkcaG2Zba1mou0EsWDZITrb-C6Df1lBTGrhooG-1wP4VVR0_RYjFZF_oqSpBJP5rMjoyRZdtQuwahncQoc39ZVMBuQGMMHHGKD7RghW6xbUXP1oQa1bUFiq3ELWXvzSGpc-o0xBu_5fDtONA-RkXx0EFY2DwYB1AUxS1rt_uHwAswir6g |
CitedBy_id | crossref_primary_10_1063_5_0116500 crossref_primary_10_1016_j_jece_2024_114196 crossref_primary_10_3390_su14137622 crossref_primary_10_1007_s11356_018_2918_x crossref_primary_10_1016_j_watres_2020_115494 crossref_primary_10_1186_s42834_023_00167_w crossref_primary_10_1007_s42729_024_02117_w crossref_primary_10_1016_j_eti_2022_102886 crossref_primary_10_1016_j_scitotenv_2016_12_169 crossref_primary_10_1016_j_chemosphere_2021_130095 crossref_primary_10_1007_s10653_025_02376_1 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1111_sum_12782 crossref_primary_10_1039_D4EW00342J crossref_primary_10_1007_s42729_023_01469_z crossref_primary_10_1016_j_envres_2022_115110 crossref_primary_10_1016_j_ecoenv_2024_117455 crossref_primary_10_1016_j_jaap_2022_105662 crossref_primary_10_3390_app12084051 crossref_primary_10_1016_j_still_2018_11_007 crossref_primary_10_1007_s42832_022_0169_8 crossref_primary_10_1016_j_fuel_2017_12_054 crossref_primary_10_1016_j_nexus_2024_100335 crossref_primary_10_3389_fmicb_2023_1109272 crossref_primary_10_1016_j_chemosphere_2022_134738 crossref_primary_10_1002_ldr_3726 crossref_primary_10_3390_agriculture14122222 crossref_primary_10_1016_j_chemosphere_2018_07_168 crossref_primary_10_1039_D0EN00486C crossref_primary_10_1016_S2095_3119_18_62148_3 crossref_primary_10_1016_j_scitotenv_2020_143643 crossref_primary_10_3390_agronomy11081529 crossref_primary_10_1016_j_scitotenv_2022_157036 crossref_primary_10_7717_peerj_18172 crossref_primary_10_1016_j_eja_2018_08_009 crossref_primary_10_1016_j_heliyon_2023_e15896 crossref_primary_10_1016_j_chemosphere_2021_133474 crossref_primary_10_1016_j_scitotenv_2021_152648 crossref_primary_10_1016_j_indcrop_2020_113224 crossref_primary_10_3390_app10217843 crossref_primary_10_1016_j_biortech_2023_129673 crossref_primary_10_1007_s42773_025_00432_8 crossref_primary_10_1080_09542299_2018_1487774 crossref_primary_10_3390_agriculture11020136 crossref_primary_10_3390_agronomy10071055 crossref_primary_10_1016_j_cej_2023_144957 crossref_primary_10_1016_j_chemosphere_2024_141160 crossref_primary_10_5194_soil_11_141_2025 crossref_primary_10_1016_j_biortech_2021_125827 crossref_primary_10_1016_j_agwat_2023_108586 crossref_primary_10_1371_journal_pone_0310221 crossref_primary_10_1007_s12517_022_09539_9 crossref_primary_10_1007_s42729_023_01249_9 crossref_primary_10_1007_s10653_020_00564_9 crossref_primary_10_1016_j_jwpe_2025_107278 crossref_primary_10_1016_j_eti_2021_101961 crossref_primary_10_1038_s41598_020_69798_y crossref_primary_10_1007_s10668_020_00970_0 crossref_primary_10_1007_s42773_024_00375_6 crossref_primary_10_1016_j_ecoenv_2019_06_005 crossref_primary_10_1007_s42773_019_00019_0 crossref_primary_10_1016_j_foodres_2023_112466 crossref_primary_10_1016_j_pedsph_2022_06_053 crossref_primary_10_1016_j_indcrop_2023_117300 crossref_primary_10_1007_s10661_024_12589_z crossref_primary_10_1007_s42729_020_00393_w crossref_primary_10_53472_jenas_1190980 crossref_primary_10_1007_s11368_019_02504_2 crossref_primary_10_1007_s13762_023_04896_8 crossref_primary_10_1002_suco_202300469 crossref_primary_10_1016_j_jscs_2020_11_005 crossref_primary_10_1016_j_jenvman_2024_122701 crossref_primary_10_1016_j_rser_2024_114640 crossref_primary_10_1016_j_watres_2023_120241 crossref_primary_10_1016_j_crope_2024_12_005 crossref_primary_10_1007_s10098_024_03117_1 crossref_primary_10_1016_j_biortech_2021_125130 crossref_primary_10_1016_j_apsoil_2019_103402 crossref_primary_10_1016_j_chemosphere_2024_141865 crossref_primary_10_1016_j_rser_2021_111371 crossref_primary_10_1016_j_eti_2024_103932 crossref_primary_10_1080_27658511_2021_1945282 crossref_primary_10_2134_jeq2016_09_0369 crossref_primary_10_1016_j_epm_2024_10_001 crossref_primary_10_1021_acsestwater_1c00185 crossref_primary_10_1016_j_btre_2020_e00515 crossref_primary_10_1016_j_chemosphere_2023_138859 crossref_primary_10_3390_agronomy15010177 crossref_primary_10_1016_j_conbuildmat_2023_133373 crossref_primary_10_3390_agronomy14071529 crossref_primary_10_1111_gwmr_12561 crossref_primary_10_1007_s42773_022_00142_5 crossref_primary_10_1016_j_jhazmat_2024_133532 crossref_primary_10_1016_j_envpol_2020_114773 crossref_primary_10_1038_s41598_024_75521_y crossref_primary_10_1002_cjce_24102 crossref_primary_10_3390_agronomy14102346 crossref_primary_10_1007_s11356_018_2329_z crossref_primary_10_1007_s13762_024_05646_0 crossref_primary_10_1111_sum_12609 crossref_primary_10_3390_toxics12090661 crossref_primary_10_1016_j_scitotenv_2024_171259 crossref_primary_10_3390_su131910851 crossref_primary_10_1016_j_scitotenv_2020_142744 crossref_primary_10_1016_j_jece_2023_110404 crossref_primary_10_1007_s11356_024_35269_4 crossref_primary_10_1016_j_chemosphere_2022_134662 crossref_primary_10_1007_s10499_023_01077_9 crossref_primary_10_1007_s42729_021_00736_1 crossref_primary_10_1016_j_jclepro_2025_145150 crossref_primary_10_1016_j_soilbio_2022_108564 crossref_primary_10_1007_s11356_022_20704_1 crossref_primary_10_1007_s11356_021_13266_1 crossref_primary_10_1016_j_scitotenv_2021_150304 crossref_primary_10_1016_j_dwt_2024_100222 crossref_primary_10_3390_agronomy14112498 crossref_primary_10_3390_en16062523 crossref_primary_10_3390_agronomy12061314 crossref_primary_10_1016_j_earscirev_2024_104867 crossref_primary_10_1007_s42773_020_00078_8 crossref_primary_10_1007_s11104_022_05365_w crossref_primary_10_1016_j_jes_2021_05_027 crossref_primary_10_1016_j_scienta_2022_111097 crossref_primary_10_1080_00103624_2025_2452168 crossref_primary_10_1002_jeq2_20331 crossref_primary_10_1007_s12665_023_10874_7 crossref_primary_10_2478_ahr_2019_0012 crossref_primary_10_1080_09593330_2024_2362993 crossref_primary_10_1038_s41598_022_27043_8 crossref_primary_10_1007_s41742_024_00680_9 crossref_primary_10_1016_j_chemosphere_2023_139844 crossref_primary_10_3390_su132413726 crossref_primary_10_1016_j_clay_2019_105409 crossref_primary_10_1016_j_jhazmat_2022_130247 crossref_primary_10_1021_acsenvironau_2c00028 crossref_primary_10_1007_s40891_020_00202_5 crossref_primary_10_1002_saj2_20533 crossref_primary_10_1016_j_jece_2023_110061 crossref_primary_10_1016_j_nanoso_2024_101269 crossref_primary_10_1002_jeq2_20447 crossref_primary_10_1016_j_pedsph_2024_07_001 crossref_primary_10_1016_j_soilbio_2022_108789 crossref_primary_10_1016_j_apsoil_2024_105718 crossref_primary_10_1016_j_enconman_2020_112654 crossref_primary_10_3390_pr10122684 crossref_primary_10_1007_s11356_021_15210_9 crossref_primary_10_1016_j_chemosphere_2024_141890 crossref_primary_10_1177_0734242X17704716 crossref_primary_10_1016_j_carbon_2018_01_036 crossref_primary_10_5004_dwt_2021_27226 crossref_primary_10_1016_j_stress_2024_100348 crossref_primary_10_3390_agronomy8100203 crossref_primary_10_1016_j_psep_2020_03_028 crossref_primary_10_1016_j_scitotenv_2023_162464 crossref_primary_10_1088_1755_1315_951_1_012034 crossref_primary_10_2139_ssrn_4134248 crossref_primary_10_1007_s11356_018_2991_1 crossref_primary_10_1016_j_envpol_2020_114446 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_21467_ajgr_7_1_45_63 crossref_primary_10_1016_j_chemosphere_2017_11_151 crossref_primary_10_1007_s12649_020_01241_9 crossref_primary_10_3390_w15234084 crossref_primary_10_1016_j_envpol_2022_120175 crossref_primary_10_1016_j_jece_2023_111489 crossref_primary_10_1016_j_apsoil_2018_02_021 crossref_primary_10_1016_j_crgsc_2021_100055 crossref_primary_10_1016_j_anifeedsci_2022_115242 crossref_primary_10_1007_s42773_022_00179_6 crossref_primary_10_1007_s40003_019_00437_3 crossref_primary_10_1007_s42773_023_00271_5 crossref_primary_10_3390_molecules28135225 crossref_primary_10_1002_jeq2_20505 crossref_primary_10_1007_s12517_022_09608_z crossref_primary_10_3390_su14073829 crossref_primary_10_1007_s10311_021_01251_6 crossref_primary_10_1016_j_ecoenv_2022_113241 crossref_primary_10_1007_s10311_022_01424_x crossref_primary_10_1016_j_chemosphere_2018_05_175 crossref_primary_10_1016_j_chemosphere_2024_143179 crossref_primary_10_1021_acsestengg_3c00027 crossref_primary_10_1002_etc_4958 crossref_primary_10_1016_j_eti_2021_101788 crossref_primary_10_1007_s11270_024_07202_5 crossref_primary_10_1016_j_coal_2023_104235 crossref_primary_10_1016_j_plaphy_2024_109053 crossref_primary_10_1016_j_envpol_2017_06_021 crossref_primary_10_1016_j_biteb_2019_03_009 crossref_primary_10_1016_j_jwpe_2025_107097 crossref_primary_10_5696_2156_9614_10_28_201210 crossref_primary_10_1016_j_biortech_2020_123777 crossref_primary_10_3390_agriculture10100471 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1139_cjss_2019_0138 crossref_primary_10_19053_01211129_v26_n46_2017_7324 crossref_primary_10_1007_s44378_024_00014_3 crossref_primary_10_1016_j_indcrop_2020_113060 crossref_primary_10_3390_land12081630 crossref_primary_10_1111_gcbb_12665 crossref_primary_10_1016_j_chemosphere_2017_04_081 crossref_primary_10_1007_s42773_025_00450_6 crossref_primary_10_1016_j_envres_2023_116109 crossref_primary_10_1088_1757_899X_729_1_012076 crossref_primary_10_1016_j_ese_2022_100167 crossref_primary_10_1515_ijcre_2022_0025 crossref_primary_10_1093_jas_skaa380 crossref_primary_10_1021_acssusresmgt_3c00104 crossref_primary_10_1007_s11356_019_07116_4 crossref_primary_10_1016_j_ecoenv_2025_117784 crossref_primary_10_1155_2019_5794869 crossref_primary_10_1007_s11368_024_03800_2 crossref_primary_10_1016_j_biortech_2022_128226 crossref_primary_10_1016_j_scitotenv_2021_148206 crossref_primary_10_1016_j_biortech_2021_125797 crossref_primary_10_3390_min14070732 crossref_primary_10_1111_gcbb_12414 crossref_primary_10_1007_s13399_020_00946_0 crossref_primary_10_1016_j_chemosphere_2024_141558 crossref_primary_10_1016_j_wasman_2018_07_003 crossref_primary_10_1111_sum_12842 crossref_primary_10_1016_j_jclepro_2019_04_330 crossref_primary_10_1016_j_cej_2021_133904 crossref_primary_10_1002_ldr_5296 crossref_primary_10_1007_s11356_023_28431_x crossref_primary_10_1016_j_geoderma_2025_117219 crossref_primary_10_1007_s42773_020_00065_z crossref_primary_10_1016_j_seh_2023_100015 crossref_primary_10_1155_2022_2323836 crossref_primary_10_1007_s42773_021_00088_0 crossref_primary_10_1016_j_envpol_2023_121433 crossref_primary_10_1371_journal_pone_0176884 crossref_primary_10_1016_j_envpol_2024_123597 crossref_primary_10_1002_bbb_2693 crossref_primary_10_1016_j_scitotenv_2020_140431 crossref_primary_10_1016_j_scitotenv_2020_143820 crossref_primary_10_1016_j_chemosphere_2021_132082 crossref_primary_10_3390_molecules25143167 crossref_primary_10_3390_chemosensors10050168 crossref_primary_10_1007_s42773_025_00451_5 crossref_primary_10_1007_s11368_022_03152_9 crossref_primary_10_1111_are_14922 crossref_primary_10_1016_j_scitotenv_2024_171944 crossref_primary_10_3390_agronomy11102052 crossref_primary_10_3390_agronomy14030533 crossref_primary_10_3390_agronomy11050828 crossref_primary_10_1002_clen_202000366 crossref_primary_10_1016_j_chemosphere_2020_126745 crossref_primary_10_1007_s11356_023_30797_x crossref_primary_10_1016_j_enconman_2023_117924 crossref_primary_10_1016_j_geoderma_2024_117088 crossref_primary_10_1016_j_ecoenv_2023_114928 crossref_primary_10_1016_j_scitotenv_2020_144668 crossref_primary_10_1016_j_jaap_2022_105728 crossref_primary_10_2139_ssrn_4111410 crossref_primary_10_1002_aoc_8005 crossref_primary_10_1016_S1872_5813_22_60038_0 crossref_primary_10_3390_molecules29143268 crossref_primary_10_1016_j_resconrec_2022_106720 crossref_primary_10_3390_pr10101924 crossref_primary_10_1007_s11104_024_06678_8 crossref_primary_10_1021_acsomega_0c00216 crossref_primary_10_31025_2611_4135_2023_17277 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_2174_2213346110666230915140448 crossref_primary_10_1016_j_jclepro_2024_141208 crossref_primary_10_1016_j_biortech_2023_129583 crossref_primary_10_1007_s42729_022_01010_8 crossref_primary_10_1016_j_heliyon_2022_e09790 crossref_primary_10_3390_agronomy14122907 crossref_primary_10_1016_j_eti_2024_103546 crossref_primary_10_1016_j_conbuildmat_2023_130487 crossref_primary_10_18343_jipi_27_4_582 crossref_primary_10_1016_j_scitotenv_2020_139063 crossref_primary_10_1016_j_eti_2021_101588 crossref_primary_10_1016_j_mset_2020_10_012 crossref_primary_10_1039_D1EM00247C crossref_primary_10_7745_KJSSF_2024_57_2_096 crossref_primary_10_1016_j_biortech_2020_122892 crossref_primary_10_1016_j_jclepro_2021_128593 crossref_primary_10_1016_j_chemosphere_2023_140514 crossref_primary_10_1088_1757_899X_452_2_022138 crossref_primary_10_1016_j_scitotenv_2020_137448 crossref_primary_10_1016_j_heliyon_2024_e31264 crossref_primary_10_18343_jipi_29_1_99 crossref_primary_10_1007_s42729_020_00311_0 crossref_primary_10_1016_j_eti_2021_101930 crossref_primary_10_1016_j_scitotenv_2023_169384 crossref_primary_10_3390_su12041356 crossref_primary_10_1007_s10098_024_02962_4 crossref_primary_10_1016_j_chemosphere_2021_129717 crossref_primary_10_1016_j_catena_2022_106616 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1007_s42247_025_01047_2 crossref_primary_10_1016_j_jece_2019_103067 crossref_primary_10_1177_0734242X231200744 crossref_primary_10_1016_j_heliyon_2020_e05255 crossref_primary_10_1016_j_jclepro_2017_05_135 crossref_primary_10_1021_acs_est_4c05994 crossref_primary_10_1016_j_jenvman_2021_113762 crossref_primary_10_3390_agronomy12081768 crossref_primary_10_1016_j_apsoil_2023_105150 crossref_primary_10_5004_dwt_2018_21737 crossref_primary_10_1016_j_jenvman_2024_122316 crossref_primary_10_1016_j_jenvman_2024_123524 crossref_primary_10_1007_s11104_019_04256_x crossref_primary_10_1016_j_apsoil_2019_01_012 crossref_primary_10_1016_j_biortech_2019_122318 crossref_primary_10_1002_ldr_4717 crossref_primary_10_1016_j_jclepro_2024_144373 crossref_primary_10_1111_gcbb_12717 crossref_primary_10_3390_land8120179 crossref_primary_10_1016_j_scitotenv_2019_01_193 crossref_primary_10_1038_s41598_018_35534_w crossref_primary_10_1039_D2VA00085G crossref_primary_10_1016_j_apsoil_2021_103960 crossref_primary_10_1016_j_renene_2023_119747 crossref_primary_10_1007_s12649_025_02977_y crossref_primary_10_1007_s42773_025_00453_3 crossref_primary_10_5194_soil_10_33_2024 crossref_primary_10_1016_j_chemosphere_2021_132443 crossref_primary_10_3390_su16229967 |
Cites_doi | 10.1021/es301107c 10.1021/es500073r 10.2134/jeq2011.0118 10.1007/s12155-011-9133-7 10.1016/j.jaap.2014.08.016 10.2134/jeq2011.0070 10.1111/j.1475-2743.2010.00317.x 10.1111/gcbb.12046 10.1007/s11027-005-9006-5 10.1007/s10973-012-2290-x 10.1016/S1385-8947(00)00258-8 10.1016/j.biortech.2010.11.018 10.1007/s11356-013-2183-y 10.1007/s11368-012-0483-3 10.1016/j.jaap.2011.10.007 10.1071/SR10009 10.2136/sssaj2013.08.0340 10.1046/j.1365-2389.2002.00461.x 10.1016/S1002-0160(11)60130-6 10.1016/j.chemosphere.2011.12.007 10.1016/j.carbon.2013.09.044 10.1039/C5GC00828J 10.1016/j.carbon.2009.11.050 10.1002/ep.10378 10.1021/es9031419 10.1016/j.carbon.2016.02.096 10.1071/SR13177 10.1021/es035034w 10.1021/es101283d 10.1016/0008-6223(94)90031-0 10.2134/jeq2014.08.0341 10.1016/j.geoderma.2010.05.013 10.2134/jeq2013.07.0285 10.1021/es5043468 10.1071/SR10058 10.2134/jeq2011.0146 10.1021/ie201309r |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7TV C1K SOI 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2016.09.151 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Pollution Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 373 |
ExternalDocumentID | 27743533 10_1016_j_chemosphere_2016_09_151 S0045653516313637 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7ST 7TV C1K SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c509t-6c2af5c9873ef22c230eb64b1b6948da95ee05e66b09e5e27d3dbda36bf61ded3 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 |
IngestDate | Thu Jul 10 18:36:07 EDT 2025 Fri Jul 11 13:09:20 EDT 2025 Mon Jul 21 05:57:32 EDT 2025 Tue Jul 01 00:45:26 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Fri Feb 23 02:48:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CEC Organic VM pH Carbonate Alkalinity XRD Biochar FC XRF Functional groups |
Language | English |
License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-6c2af5c9873ef22c230eb64b1b6948da95ee05e66b09e5e27d3dbda36bf61ded3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27743533 |
PQID | 1846399486 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000131419 proquest_miscellaneous_1846399486 pubmed_primary_27743533 crossref_primary_10_1016_j_chemosphere_2016_09_151 crossref_citationtrail_10_1016_j_chemosphere_2016_09_151 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_09_151 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 2017-Jan 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | McCormack, Ostle, Bardgett, Hopkins, Vanbergen (bib28) 2013; 5 Lin, Munroe, Joseph, Henderson, Ziolkowski (bib24) 2012; 87 Yuan, Xu, Zhang (bib42) 2011; 102 Keiluweit, Nico, Johnson, Kleber (bib18) 2010; 44 Goertzen, Thériault, Oickle, Tarasuk, Andreas (bib15) 2010; 48 Brewer, Hu, Schmidt-Rohr, Loynachan, Laird, Brown (bib3) 2012; 41 Choi, Johnston, Brown, Shanks, Lee (bib8) 2014; 110 Brewer, Unger, Schmidt-Rohr, Brown (bib5) 2011; 4 Fidel (bib12) 2012 Dai, Wang, Muhammad, Yu, Xiao, Meng, Liu, Xu, Brookes (bib10) 2014; 78 Boehm (bib2) 1994; 32 Pollard (bib29) 2009 Singh, Singh, Cowie (bib34) 2010; 48 Lawrinenko, Laird (bib21) 2015; 17 Xu, Zhao, Yuan, Jiang (bib39) 2012; 12 Liu, Ptacek, Blowes, Berti, Landis (bib26) 2015; 44 Ar, Doğu (bib1) 2001; 83 Mao, Johnson, Lehmann, Olk, Neves, Thompson, Schmidt-Rohr (bib27) 2012; 46 Fidel, Laird, Thompson (bib13) 2013; 42 Lawrinenko, Laird, Johnson, Jing (bib22) 2016; 103 Graber, Tsechansky, Fidel, Thompson, Laird (bib16) 2016 Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bib19) 2012; 41 Chun, Sheng, Chiou, Xing (bib9) 2004; 38 Wan, Yuan, Xu, Li (bib37) 2014; 21 Simek, Cooper (bib33) 2002; 53 Tsechansky, Graber (bib36) 2014; 66 Sun, Hockaday, Masiello, Zygourakis (bib35) 2012; 51 Wang, Camps-Arbestain, Hedley, Singh, Calvelo-Pereira, Wang (bib38) 2014; 52 Fidel (bib11) 2015 Pollard, Rover, Brown (bib30) 2012; 93 Silber, Levkovitch, Graber (bib32) 2010; 44 Schimmelpfennig, Glaser (bib31) 2012; 41 Lindsay (bib25) 1979 Cheah, Malone, Feik (bib6) 2014; 48 Lehmann, Gaunt, Rondon (bib23) 2006; 11 Chen, Xiao, Chen, Zhu (bib7) 2015; 49 Yuan, Xu (bib40) 2011; 27 Brewer, Schmidt-Rohr, Satrio, Brown (bib4) 2009; 28 Laird, Fleming, Davis, Horton, Wang, Karlen (bib20) 2010; 158 Yuan, Xu, Wang, Li (bib41) 2011; 21 Galan, Glasser, Andrade (bib14) 2012; 111 Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, Van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bib17) 2010; 48 Lindsay (10.1016/j.chemosphere.2016.09.151_bib25) 1979 Pollard (10.1016/j.chemosphere.2016.09.151_bib29) 2009 Tsechansky (10.1016/j.chemosphere.2016.09.151_bib36) 2014; 66 Brewer (10.1016/j.chemosphere.2016.09.151_bib4) 2009; 28 Silber (10.1016/j.chemosphere.2016.09.151_bib32) 2010; 44 Laird (10.1016/j.chemosphere.2016.09.151_bib20) 2010; 158 McCormack (10.1016/j.chemosphere.2016.09.151_bib28) 2013; 5 Yuan (10.1016/j.chemosphere.2016.09.151_bib41) 2011; 21 Goertzen (10.1016/j.chemosphere.2016.09.151_bib15) 2010; 48 Kloss (10.1016/j.chemosphere.2016.09.151_bib19) 2012; 41 Dai (10.1016/j.chemosphere.2016.09.151_bib10) 2014; 78 Pollard (10.1016/j.chemosphere.2016.09.151_bib30) 2012; 93 Fidel (10.1016/j.chemosphere.2016.09.151_bib11) 2015 Galan (10.1016/j.chemosphere.2016.09.151_bib14) 2012; 111 Lawrinenko (10.1016/j.chemosphere.2016.09.151_bib22) 2016; 103 Cheah (10.1016/j.chemosphere.2016.09.151_bib6) 2014; 48 Fidel (10.1016/j.chemosphere.2016.09.151_bib13) 2013; 42 Lin (10.1016/j.chemosphere.2016.09.151_bib24) 2012; 87 Liu (10.1016/j.chemosphere.2016.09.151_bib26) 2015; 44 Lawrinenko (10.1016/j.chemosphere.2016.09.151_bib21) 2015; 17 Lehmann (10.1016/j.chemosphere.2016.09.151_bib23) 2006; 11 Boehm (10.1016/j.chemosphere.2016.09.151_bib2) 1994; 32 Wan (10.1016/j.chemosphere.2016.09.151_bib37) 2014; 21 Brewer (10.1016/j.chemosphere.2016.09.151_bib5) 2011; 4 Mao (10.1016/j.chemosphere.2016.09.151_bib27) 2012; 46 Chun (10.1016/j.chemosphere.2016.09.151_bib9) 2004; 38 Yuan (10.1016/j.chemosphere.2016.09.151_bib42) 2011; 102 Chen (10.1016/j.chemosphere.2016.09.151_bib7) 2015; 49 Xu (10.1016/j.chemosphere.2016.09.151_bib39) 2012; 12 Choi (10.1016/j.chemosphere.2016.09.151_bib8) 2014; 110 Singh (10.1016/j.chemosphere.2016.09.151_bib34) 2010; 48 Joseph (10.1016/j.chemosphere.2016.09.151_bib17) 2010; 48 Brewer (10.1016/j.chemosphere.2016.09.151_bib3) 2012; 41 Keiluweit (10.1016/j.chemosphere.2016.09.151_bib18) 2010; 44 Sun (10.1016/j.chemosphere.2016.09.151_bib35) 2012; 51 Simek (10.1016/j.chemosphere.2016.09.151_bib33) 2002; 53 Wang (10.1016/j.chemosphere.2016.09.151_bib38) 2014; 52 Ar (10.1016/j.chemosphere.2016.09.151_bib1) 2001; 83 Graber (10.1016/j.chemosphere.2016.09.151_bib16) 2016 Schimmelpfennig (10.1016/j.chemosphere.2016.09.151_bib31) 2012; 41 Yuan (10.1016/j.chemosphere.2016.09.151_bib40) 2011; 27 Fidel (10.1016/j.chemosphere.2016.09.151_bib12) 2012 |
References_xml | – volume: 53 start-page: 345 year: 2002 end-page: 354 ident: bib33 article-title: The influence of pH on denitrification: progress towards the understanding of this interaction over the last 50 years publication-title: Eur. J. Soil Sci. – volume: 52 start-page: 495 year: 2014 end-page: 504 ident: bib38 article-title: Determination of carbonate-C in biochars publication-title: Soil Res. – volume: 110 start-page: 147 year: 2014 end-page: 154 ident: bib8 article-title: Detailed characterization of red oak-derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl-Fischer publication-title: J. Anal. Appl. Pyrolysis – volume: 93 start-page: 129 year: 2012 end-page: 138 ident: bib30 article-title: Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties publication-title: J. Anal. Appl. Pyrolysis – year: 2015 ident: bib11 article-title: Biochar Properties and Impact on Soil CO – year: 2016 ident: bib16 article-title: Determining acidic groups at biochar surfaces via the Boehm titration publication-title: Methods of Biochar Analysis – volume: 44 start-page: 684 year: 2015 end-page: 695 ident: bib26 article-title: Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures publication-title: J. Environ. Qual. – year: 1979 ident: bib25 article-title: Chemical Equilibria in Soils – volume: 11 start-page: 395 year: 2006 end-page: 419 ident: bib23 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 28 start-page: 386 year: 2009 end-page: 396 ident: bib4 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environ. Prog. Sustain. Energy – volume: 38 start-page: 4649 year: 2004 end-page: 4655 ident: bib9 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. – volume: 41 start-page: 1001 year: 2012 end-page: 1013 ident: bib31 article-title: One step forward toward characterization: some important material properties to distinguish biochars publication-title: J. Environ. Qual. – year: 2009 ident: bib29 article-title: Comparison of Bio-oil Produced in a Fractionated Bio-oil Collection System – volume: 48 start-page: 8474 year: 2014 end-page: 8480 ident: bib6 article-title: Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover publication-title: Environ. Sci. Technol. – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: bib42 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – volume: 78 start-page: 1606 year: 2014 end-page: 1614 ident: bib10 article-title: The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH publication-title: Soil Sci. Soc. Am. J. – volume: 21 start-page: 302 year: 2011 end-page: 308 ident: bib41 article-title: Amendment of acid soils with crop residues and biochars publication-title: Pedosphere – volume: 12 start-page: 494 year: 2012 end-page: 502 ident: bib39 article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars publication-title: J. Soils Sediments – volume: 41 start-page: 1115 year: 2012 ident: bib3 article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties publication-title: J. Environ. Qual. – volume: 66 start-page: 730 year: 2014 end-page: 733 ident: bib36 article-title: Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration publication-title: Carbon – volume: 48 start-page: 516 year: 2010 end-page: 525 ident: bib34 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust. J. Soil Res. – volume: 21 start-page: 2486 year: 2014 end-page: 2495 ident: bib37 article-title: Pyrolysis temperature influences ameliorating effects of biochars on acidic soil publication-title: Environ. Sci. Pollut. Res. – volume: 42 start-page: 1771 year: 2013 end-page: 1778 ident: bib13 article-title: Evaluation of modified Boehm titration methods for use with biochars publication-title: J. Environ. Qual. – volume: 5 start-page: 81 year: 2013 end-page: 95 ident: bib28 article-title: Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes publication-title: GCB Bioenergy – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bib20 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 83 start-page: 131 year: 2001 end-page: 137 ident: bib1 article-title: Calcination kinetics of high purity limestones publication-title: Chem. Eng. J. – volume: 32 start-page: 759 year: 1994 end-page: 769 ident: bib2 article-title: Some aspects of the surface chemistry of carbon blacks and other carbons publication-title: Carbon N. Y. – volume: 51 start-page: 3587 year: 2012 end-page: 3597 ident: bib35 article-title: Multiple controls on the chemical and physical structure of biochars publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 9318 year: 2010 end-page: 9323 ident: bib32 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environ. Sci. Technol. – volume: 103 start-page: 217 year: 2016 end-page: 227 ident: bib22 article-title: Accelerated aging of biochars: impact on anion exchange capacity publication-title: Carbon N. Y. – year: 2012 ident: bib12 article-title: Evaluation and Implementation of Methods for Quantifying Organic and Inorganic Components of Biochar Alkalinity – volume: 48 start-page: 1252 year: 2010 end-page: 1261 ident: bib15 article-title: Standardization of the Boehm titration. Part I. CO publication-title: Carbon N. Y. – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: bib17 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. – volume: 87 start-page: 151 year: 2012 end-page: 157 ident: bib24 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere – volume: 44 start-page: 1247 year: 2010 end-page: 1253 ident: bib18 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. – volume: 4 start-page: 312 year: 2011 end-page: 323 ident: bib5 article-title: Criteria to select biochars for field studies based on biochar chemical properties publication-title: BioEnergy Res. – volume: 27 start-page: 110 year: 2011 end-page: 115 ident: bib40 article-title: The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol publication-title: Soil Use Manag. – volume: 46 start-page: 9571 year: 2012 end-page: 9576 ident: bib27 article-title: Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration publication-title: Environ. Sci. Technol. – volume: 41 start-page: 990 year: 2012 ident: bib19 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. – volume: 17 start-page: 4628 year: 2015 end-page: 4636 ident: bib21 article-title: Anion exchange capacity of biochar publication-title: Green Chem. – volume: 49 start-page: 309 year: 2015 end-page: 317 ident: bib7 article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures publication-title: Environ. Sci. Technol. – volume: 111 start-page: 1197 year: 2012 end-page: 1202 ident: bib14 article-title: Calcium carbonate decomposition publication-title: J. Therm. Anal. Calorim. – volume: 46 start-page: 9571 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib27 article-title: Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration publication-title: Environ. Sci. Technol. doi: 10.1021/es301107c – volume: 48 start-page: 8474 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib6 article-title: Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover publication-title: Environ. Sci. Technol. doi: 10.1021/es500073r – volume: 41 start-page: 1115 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib3 article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0118 – volume: 4 start-page: 312 year: 2011 ident: 10.1016/j.chemosphere.2016.09.151_bib5 article-title: Criteria to select biochars for field studies based on biochar chemical properties publication-title: BioEnergy Res. doi: 10.1007/s12155-011-9133-7 – volume: 110 start-page: 147 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib8 article-title: Detailed characterization of red oak-derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl-Fischer publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.08.016 – year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib12 – volume: 41 start-page: 990 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib19 article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0070 – volume: 27 start-page: 110 year: 2011 ident: 10.1016/j.chemosphere.2016.09.151_bib40 article-title: The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2010.00317.x – volume: 5 start-page: 81 year: 2013 ident: 10.1016/j.chemosphere.2016.09.151_bib28 article-title: Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes publication-title: GCB Bioenergy doi: 10.1111/gcbb.12046 – volume: 11 start-page: 395 year: 2006 ident: 10.1016/j.chemosphere.2016.09.151_bib23 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-005-9006-5 – volume: 111 start-page: 1197 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib14 article-title: Calcium carbonate decomposition publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2290-x – volume: 83 start-page: 131 year: 2001 ident: 10.1016/j.chemosphere.2016.09.151_bib1 article-title: Calcination kinetics of high purity limestones publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(00)00258-8 – year: 2016 ident: 10.1016/j.chemosphere.2016.09.151_bib16 article-title: Determining acidic groups at biochar surfaces via the Boehm titration – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.chemosphere.2016.09.151_bib42 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 21 start-page: 2486 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib37 article-title: Pyrolysis temperature influences ameliorating effects of biochars on acidic soil publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-2183-y – volume: 12 start-page: 494 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib39 article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars publication-title: J. Soils Sediments doi: 10.1007/s11368-012-0483-3 – volume: 93 start-page: 129 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib30 article-title: Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.10.007 – volume: 48 start-page: 501 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib17 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. doi: 10.1071/SR10009 – volume: 78 start-page: 1606 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib10 article-title: The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2013.08.0340 – year: 1979 ident: 10.1016/j.chemosphere.2016.09.151_bib25 – volume: 53 start-page: 345 year: 2002 ident: 10.1016/j.chemosphere.2016.09.151_bib33 article-title: The influence of pH on denitrification: progress towards the understanding of this interaction over the last 50 years publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2002.00461.x – volume: 21 start-page: 302 year: 2011 ident: 10.1016/j.chemosphere.2016.09.151_bib41 article-title: Amendment of acid soils with crop residues and biochars publication-title: Pedosphere doi: 10.1016/S1002-0160(11)60130-6 – year: 2015 ident: 10.1016/j.chemosphere.2016.09.151_bib11 – volume: 87 start-page: 151 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib24 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.007 – volume: 66 start-page: 730 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib36 article-title: Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration publication-title: Carbon doi: 10.1016/j.carbon.2013.09.044 – volume: 17 start-page: 4628 year: 2015 ident: 10.1016/j.chemosphere.2016.09.151_bib21 article-title: Anion exchange capacity of biochar publication-title: Green Chem. doi: 10.1039/C5GC00828J – volume: 48 start-page: 1252 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib15 article-title: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2009.11.050 – volume: 28 start-page: 386 year: 2009 ident: 10.1016/j.chemosphere.2016.09.151_bib4 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.10378 – volume: 44 start-page: 1247 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib18 article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es9031419 – volume: 103 start-page: 217 year: 2016 ident: 10.1016/j.chemosphere.2016.09.151_bib22 article-title: Accelerated aging of biochars: impact on anion exchange capacity publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2016.02.096 – volume: 52 start-page: 495 year: 2014 ident: 10.1016/j.chemosphere.2016.09.151_bib38 article-title: Determination of carbonate-C in biochars publication-title: Soil Res. doi: 10.1071/SR13177 – volume: 38 start-page: 4649 year: 2004 ident: 10.1016/j.chemosphere.2016.09.151_bib9 article-title: Compositions and sorptive properties of crop residue-derived chars publication-title: Environ. Sci. Technol. doi: 10.1021/es035034w – year: 2009 ident: 10.1016/j.chemosphere.2016.09.151_bib29 – volume: 44 start-page: 9318 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib32 article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications publication-title: Environ. Sci. Technol. doi: 10.1021/es101283d – volume: 32 start-page: 759 year: 1994 ident: 10.1016/j.chemosphere.2016.09.151_bib2 article-title: Some aspects of the surface chemistry of carbon blacks and other carbons publication-title: Carbon N. Y. doi: 10.1016/0008-6223(94)90031-0 – volume: 44 start-page: 684 year: 2015 ident: 10.1016/j.chemosphere.2016.09.151_bib26 article-title: Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures publication-title: J. Environ. Qual. doi: 10.2134/jeq2014.08.0341 – volume: 158 start-page: 443 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib20 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – volume: 42 start-page: 1771 year: 2013 ident: 10.1016/j.chemosphere.2016.09.151_bib13 article-title: Evaluation of modified Boehm titration methods for use with biochars publication-title: J. Environ. Qual. doi: 10.2134/jeq2013.07.0285 – volume: 49 start-page: 309 year: 2015 ident: 10.1016/j.chemosphere.2016.09.151_bib7 article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es5043468 – volume: 48 start-page: 516 year: 2010 ident: 10.1016/j.chemosphere.2016.09.151_bib34 article-title: Characterisation and evaluation of biochars for their application as a soil amendment publication-title: Aust. J. Soil Res. doi: 10.1071/SR10058 – volume: 41 start-page: 1001 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib31 article-title: One step forward toward characterization: some important material properties to distinguish biochars publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0146 – volume: 51 start-page: 3587 year: 2012 ident: 10.1016/j.chemosphere.2016.09.151_bib35 article-title: Multiple controls on the chemical and physical structure of biochars publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201309r |
SSID | ssj0001659 |
Score | 2.6333232 |
Snippet | Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 367 |
SubjectTerms | Alkalinity alkalis Biochar carbon Carbonate carbonates Cations cellulose Cellulose - chemistry Charcoal - chemistry corn stover elemental composition feedstocks Functional groups Hydrogen-Ion Concentration Organic soil Soil - chemistry Soil Pollutants - analysis wood Wood - chemistry |
Title | Characterization and quantification of biochar alkalinity |
URI | https://dx.doi.org/10.1016/j.chemosphere.2016.09.151 https://www.ncbi.nlm.nih.gov/pubmed/27743533 https://www.proquest.com/docview/1846399486 https://www.proquest.com/docview/2000131419 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC7EEJNLSDQxm4eMkOvE6edMQy6yKJuIniJ4a_pRA5vojMbdg5f89nTNY9XDgpBr0wVFVVP11Ux9VQBfmClFcLXLk0frXAZd5F6UKg86OiG8qmMgovDpmZ6dyx8X6mIDpiMXhtoqh9jfx_QuWg8nB4M1D67nc-L4EhoRKiEKJrQgRrmUJb3yr3_v2zyYVj0Eliqn21uwf9_jlexy1d4Sf58mZjJNI0-ZYuty1DoM2uWi49fwagCR2WGv5xvYwGYbXkzH3W3b8PyoG0Z9twNmuprI3BMuM9fE7Gbp-iah_qitMz9viYCVucvfjsiSi7u3cH589HM6y4d1CXlIWX-R68BdrYKpSoE15yEVF-i19MxrI6vojEIsFGrtC4MKeRlF9Mkj2teaRYziHWw2bYPvISt9UaFgiMiMjFXtuA4SqTxL6Iq5YgLVaCAbhlnitNLi0o5NY7_sA9tasq0tjE22nQBfiV73AzWeIvRt9IJ99DpsCvxPEd8fPWeTI-iXiGuwXd7aVN8SRJOVXn-HdziZSWYmsNu7faU5T-hZJMT84f8U_AgvOcGF7tPOJ9hc_Fni5wR2Fn6ve8178Ozw-8ns7B_OrwC_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4gRvFiFEXX55B4HZl-znTChWwgqwInSLh1-lGTrMIMyu6Bi7_drnksetiExGunO6lUdVd9NVNfFcAnZkoRXO3yZNE6l0EXuRelyoOOTgiv6hiIKHxyqmfn8uuFutiA6ciFobLKwff3Pr3z1sPK3qDNvev5nDi-hEaESoiCCS3KB_BQpudLYww-_76r82Ba9RhYqpy2P4bduyKvpJir9oYI_NQyk2nqecoUWxek1oHQLhgdPYOnA4rMDnpBn8MGNtuwNR2Ht23Do8OuG_XtCzDTVUvmnnGZuSZmP5eurxLql9o68_OWGFiZu_zhiC25uH0J50eHZ9NZPsxLyEMK-4tcB-5qFUxVCqw5Dym7QK-lZ14bWUVnFGKhUGtfGFTIyyiiTybRvtYsYhQ7sNm0Db6GrPRFhYIhIjMyVrXjOkik_CzBK-aKCVSjgmwYmonTTItLO1aNfbd_6daSbm1hbNLtBPjq6HXfUeM-h_ZHK9h_rodNnv8-x3dHy9lkCPon4hpslzc2JbiE0WSl1-_hHVBmkpkJvOrNvpKcJ_gsEmR-838CfoSt2dnJsT3-cvrtLTzhhB267zzvYHPxa4nvE_JZ-A_dzf4Dm7sCTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+quantification+of+biochar+alkalinity&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Fidel%2C+Rivka+B&rft.au=Laird%2C+David+A&rft.au=Thompson%2C+Michael+L&rft.au=Lawrinenko%2C+Michael&rft.date=2017-01-01&rft.issn=0045-6535&rft.volume=167&rft.spage=367&rft.epage=373&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.09.151&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |