Characterization and quantification of biochar alkalinity

Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 167; pp. 367 - 373
Main Authors Fidel, Rivka B., Laird, David A., Thompson, Michael L., Lawrinenko, Michael
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03–0.34 meq g−1), other organic (0–0.92 meq g−1), carbonate (0.02–1.5 meq g−1), and other inorganic (0–0.26 meq g−1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. [Display omitted] •We present a suite of methods for quantifying biochar alkalinity in four categories.•Total biochar alkalinity and distribution of alkalis varied widely among biochars.•Base cation concentration was a good predictor of total biochar alkalinity.•Inorganic alkalis comprised >55% of lignocellulosic biochar alkalinity.
AbstractList Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKₐ organic structural (0.03–0.34 meq g⁻¹), other organic (0–0.92 meq g⁻¹), carbonate (0.02–1.5 meq g⁻¹), and other inorganic (0–0.26 meq g⁻¹) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis.
Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03–0.34 meq g−1), other organic (0–0.92 meq g−1), carbonate (0.02–1.5 meq g−1), and other inorganic (0–0.26 meq g−1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. [Display omitted] •We present a suite of methods for quantifying biochar alkalinity in four categories.•Total biochar alkalinity and distribution of alkalis varied widely among biochars.•Base cation concentration was a good predictor of total biochar alkalinity.•Inorganic alkalis comprised >55% of lignocellulosic biochar alkalinity.
Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03-0.34 meq g-1), other organic (0-0.92 meq g-1), carbonate (0.02-1.5 meq g-1), and other inorganic (0-0.26 meq g-1) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis.
Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK organic structural (0.03-0.34 meq g ), other organic (0-0.92 meq g ), carbonate (0.02-1.5 meq g ), and other inorganic (0-0.26 meq g ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis.
Author Lawrinenko, Michael
Thompson, Michael L.
Laird, David A.
Fidel, Rivka B.
Author_xml – sequence: 1
  givenname: Rivka B.
  surname: Fidel
  fullname: Fidel, Rivka B.
  email: rfidel@iastate.edu
– sequence: 2
  givenname: David A.
  surname: Laird
  fullname: Laird, David A.
– sequence: 3
  givenname: Michael L.
  surname: Thompson
  fullname: Thompson, Michael L.
– sequence: 4
  givenname: Michael
  surname: Lawrinenko
  fullname: Lawrinenko, Michael
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27743533$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYMotj7-gtSdmxnzmGQmK5HiCwQ3ug6Z5A5NnU5qkgr6601tFXGjqwuX75zLPecA7Q5-AIROCS4JJuJ8XpoZLHxcziBASfOqxLIknOygMWlqWRAqm100xrjiheCMj9BBjHOMM8nlPhrRuq4YZ2yM5HSmgzYJgnvXyflhogc7eVnpIbnOmc3Kd5PWeZPJie6fde8Gl96O0F6n-wjH23mInq6vHqe3xf3Dzd308r4wHMtUCEN1x41sagYdpYYyDK2oWtIKWTVWSw6AOQjRYgkcaG2Zba1mou0EsWDZITrb-C6Df1lBTGrhooG-1wP4VVR0_RYjFZF_oqSpBJP5rMjoyRZdtQuwahncQoc39ZVMBuQGMMHHGKD7RghW6xbUXP1oQa1bUFiq3ELWXvzSGpc-o0xBu_5fDtONA-RkXx0EFY2DwYB1AUxS1rt_uHwAswir6g
CitedBy_id crossref_primary_10_1063_5_0116500
crossref_primary_10_1016_j_jece_2024_114196
crossref_primary_10_3390_su14137622
crossref_primary_10_1007_s11356_018_2918_x
crossref_primary_10_1016_j_watres_2020_115494
crossref_primary_10_1186_s42834_023_00167_w
crossref_primary_10_1007_s42729_024_02117_w
crossref_primary_10_1016_j_eti_2022_102886
crossref_primary_10_1016_j_scitotenv_2016_12_169
crossref_primary_10_1016_j_chemosphere_2021_130095
crossref_primary_10_1007_s10653_025_02376_1
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1111_sum_12782
crossref_primary_10_1039_D4EW00342J
crossref_primary_10_1007_s42729_023_01469_z
crossref_primary_10_1016_j_envres_2022_115110
crossref_primary_10_1016_j_ecoenv_2024_117455
crossref_primary_10_1016_j_jaap_2022_105662
crossref_primary_10_3390_app12084051
crossref_primary_10_1016_j_still_2018_11_007
crossref_primary_10_1007_s42832_022_0169_8
crossref_primary_10_1016_j_fuel_2017_12_054
crossref_primary_10_1016_j_nexus_2024_100335
crossref_primary_10_3389_fmicb_2023_1109272
crossref_primary_10_1016_j_chemosphere_2022_134738
crossref_primary_10_1002_ldr_3726
crossref_primary_10_3390_agriculture14122222
crossref_primary_10_1016_j_chemosphere_2018_07_168
crossref_primary_10_1039_D0EN00486C
crossref_primary_10_1016_S2095_3119_18_62148_3
crossref_primary_10_1016_j_scitotenv_2020_143643
crossref_primary_10_3390_agronomy11081529
crossref_primary_10_1016_j_scitotenv_2022_157036
crossref_primary_10_7717_peerj_18172
crossref_primary_10_1016_j_eja_2018_08_009
crossref_primary_10_1016_j_heliyon_2023_e15896
crossref_primary_10_1016_j_chemosphere_2021_133474
crossref_primary_10_1016_j_scitotenv_2021_152648
crossref_primary_10_1016_j_indcrop_2020_113224
crossref_primary_10_3390_app10217843
crossref_primary_10_1016_j_biortech_2023_129673
crossref_primary_10_1007_s42773_025_00432_8
crossref_primary_10_1080_09542299_2018_1487774
crossref_primary_10_3390_agriculture11020136
crossref_primary_10_3390_agronomy10071055
crossref_primary_10_1016_j_cej_2023_144957
crossref_primary_10_1016_j_chemosphere_2024_141160
crossref_primary_10_5194_soil_11_141_2025
crossref_primary_10_1016_j_biortech_2021_125827
crossref_primary_10_1016_j_agwat_2023_108586
crossref_primary_10_1371_journal_pone_0310221
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_1007_s42729_023_01249_9
crossref_primary_10_1007_s10653_020_00564_9
crossref_primary_10_1016_j_jwpe_2025_107278
crossref_primary_10_1016_j_eti_2021_101961
crossref_primary_10_1038_s41598_020_69798_y
crossref_primary_10_1007_s10668_020_00970_0
crossref_primary_10_1007_s42773_024_00375_6
crossref_primary_10_1016_j_ecoenv_2019_06_005
crossref_primary_10_1007_s42773_019_00019_0
crossref_primary_10_1016_j_foodres_2023_112466
crossref_primary_10_1016_j_pedsph_2022_06_053
crossref_primary_10_1016_j_indcrop_2023_117300
crossref_primary_10_1007_s10661_024_12589_z
crossref_primary_10_1007_s42729_020_00393_w
crossref_primary_10_53472_jenas_1190980
crossref_primary_10_1007_s11368_019_02504_2
crossref_primary_10_1007_s13762_023_04896_8
crossref_primary_10_1002_suco_202300469
crossref_primary_10_1016_j_jscs_2020_11_005
crossref_primary_10_1016_j_jenvman_2024_122701
crossref_primary_10_1016_j_rser_2024_114640
crossref_primary_10_1016_j_watres_2023_120241
crossref_primary_10_1016_j_crope_2024_12_005
crossref_primary_10_1007_s10098_024_03117_1
crossref_primary_10_1016_j_biortech_2021_125130
crossref_primary_10_1016_j_apsoil_2019_103402
crossref_primary_10_1016_j_chemosphere_2024_141865
crossref_primary_10_1016_j_rser_2021_111371
crossref_primary_10_1016_j_eti_2024_103932
crossref_primary_10_1080_27658511_2021_1945282
crossref_primary_10_2134_jeq2016_09_0369
crossref_primary_10_1016_j_epm_2024_10_001
crossref_primary_10_1021_acsestwater_1c00185
crossref_primary_10_1016_j_btre_2020_e00515
crossref_primary_10_1016_j_chemosphere_2023_138859
crossref_primary_10_3390_agronomy15010177
crossref_primary_10_1016_j_conbuildmat_2023_133373
crossref_primary_10_3390_agronomy14071529
crossref_primary_10_1111_gwmr_12561
crossref_primary_10_1007_s42773_022_00142_5
crossref_primary_10_1016_j_jhazmat_2024_133532
crossref_primary_10_1016_j_envpol_2020_114773
crossref_primary_10_1038_s41598_024_75521_y
crossref_primary_10_1002_cjce_24102
crossref_primary_10_3390_agronomy14102346
crossref_primary_10_1007_s11356_018_2329_z
crossref_primary_10_1007_s13762_024_05646_0
crossref_primary_10_1111_sum_12609
crossref_primary_10_3390_toxics12090661
crossref_primary_10_1016_j_scitotenv_2024_171259
crossref_primary_10_3390_su131910851
crossref_primary_10_1016_j_scitotenv_2020_142744
crossref_primary_10_1016_j_jece_2023_110404
crossref_primary_10_1007_s11356_024_35269_4
crossref_primary_10_1016_j_chemosphere_2022_134662
crossref_primary_10_1007_s10499_023_01077_9
crossref_primary_10_1007_s42729_021_00736_1
crossref_primary_10_1016_j_jclepro_2025_145150
crossref_primary_10_1016_j_soilbio_2022_108564
crossref_primary_10_1007_s11356_022_20704_1
crossref_primary_10_1007_s11356_021_13266_1
crossref_primary_10_1016_j_scitotenv_2021_150304
crossref_primary_10_1016_j_dwt_2024_100222
crossref_primary_10_3390_agronomy14112498
crossref_primary_10_3390_en16062523
crossref_primary_10_3390_agronomy12061314
crossref_primary_10_1016_j_earscirev_2024_104867
crossref_primary_10_1007_s42773_020_00078_8
crossref_primary_10_1007_s11104_022_05365_w
crossref_primary_10_1016_j_jes_2021_05_027
crossref_primary_10_1016_j_scienta_2022_111097
crossref_primary_10_1080_00103624_2025_2452168
crossref_primary_10_1002_jeq2_20331
crossref_primary_10_1007_s12665_023_10874_7
crossref_primary_10_2478_ahr_2019_0012
crossref_primary_10_1080_09593330_2024_2362993
crossref_primary_10_1038_s41598_022_27043_8
crossref_primary_10_1007_s41742_024_00680_9
crossref_primary_10_1016_j_chemosphere_2023_139844
crossref_primary_10_3390_su132413726
crossref_primary_10_1016_j_clay_2019_105409
crossref_primary_10_1016_j_jhazmat_2022_130247
crossref_primary_10_1021_acsenvironau_2c00028
crossref_primary_10_1007_s40891_020_00202_5
crossref_primary_10_1002_saj2_20533
crossref_primary_10_1016_j_jece_2023_110061
crossref_primary_10_1016_j_nanoso_2024_101269
crossref_primary_10_1002_jeq2_20447
crossref_primary_10_1016_j_pedsph_2024_07_001
crossref_primary_10_1016_j_soilbio_2022_108789
crossref_primary_10_1016_j_apsoil_2024_105718
crossref_primary_10_1016_j_enconman_2020_112654
crossref_primary_10_3390_pr10122684
crossref_primary_10_1007_s11356_021_15210_9
crossref_primary_10_1016_j_chemosphere_2024_141890
crossref_primary_10_1177_0734242X17704716
crossref_primary_10_1016_j_carbon_2018_01_036
crossref_primary_10_5004_dwt_2021_27226
crossref_primary_10_1016_j_stress_2024_100348
crossref_primary_10_3390_agronomy8100203
crossref_primary_10_1016_j_psep_2020_03_028
crossref_primary_10_1016_j_scitotenv_2023_162464
crossref_primary_10_1088_1755_1315_951_1_012034
crossref_primary_10_2139_ssrn_4134248
crossref_primary_10_1007_s11356_018_2991_1
crossref_primary_10_1016_j_envpol_2020_114446
crossref_primary_10_1007_s42773_023_00247_5
crossref_primary_10_21467_ajgr_7_1_45_63
crossref_primary_10_1016_j_chemosphere_2017_11_151
crossref_primary_10_1007_s12649_020_01241_9
crossref_primary_10_3390_w15234084
crossref_primary_10_1016_j_envpol_2022_120175
crossref_primary_10_1016_j_jece_2023_111489
crossref_primary_10_1016_j_apsoil_2018_02_021
crossref_primary_10_1016_j_crgsc_2021_100055
crossref_primary_10_1016_j_anifeedsci_2022_115242
crossref_primary_10_1007_s42773_022_00179_6
crossref_primary_10_1007_s40003_019_00437_3
crossref_primary_10_1007_s42773_023_00271_5
crossref_primary_10_3390_molecules28135225
crossref_primary_10_1002_jeq2_20505
crossref_primary_10_1007_s12517_022_09608_z
crossref_primary_10_3390_su14073829
crossref_primary_10_1007_s10311_021_01251_6
crossref_primary_10_1016_j_ecoenv_2022_113241
crossref_primary_10_1007_s10311_022_01424_x
crossref_primary_10_1016_j_chemosphere_2018_05_175
crossref_primary_10_1016_j_chemosphere_2024_143179
crossref_primary_10_1021_acsestengg_3c00027
crossref_primary_10_1002_etc_4958
crossref_primary_10_1016_j_eti_2021_101788
crossref_primary_10_1007_s11270_024_07202_5
crossref_primary_10_1016_j_coal_2023_104235
crossref_primary_10_1016_j_plaphy_2024_109053
crossref_primary_10_1016_j_envpol_2017_06_021
crossref_primary_10_1016_j_biteb_2019_03_009
crossref_primary_10_1016_j_jwpe_2025_107097
crossref_primary_10_5696_2156_9614_10_28_201210
crossref_primary_10_1016_j_biortech_2020_123777
crossref_primary_10_3390_agriculture10100471
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1139_cjss_2019_0138
crossref_primary_10_19053_01211129_v26_n46_2017_7324
crossref_primary_10_1007_s44378_024_00014_3
crossref_primary_10_1016_j_indcrop_2020_113060
crossref_primary_10_3390_land12081630
crossref_primary_10_1111_gcbb_12665
crossref_primary_10_1016_j_chemosphere_2017_04_081
crossref_primary_10_1007_s42773_025_00450_6
crossref_primary_10_1016_j_envres_2023_116109
crossref_primary_10_1088_1757_899X_729_1_012076
crossref_primary_10_1016_j_ese_2022_100167
crossref_primary_10_1515_ijcre_2022_0025
crossref_primary_10_1093_jas_skaa380
crossref_primary_10_1021_acssusresmgt_3c00104
crossref_primary_10_1007_s11356_019_07116_4
crossref_primary_10_1016_j_ecoenv_2025_117784
crossref_primary_10_1155_2019_5794869
crossref_primary_10_1007_s11368_024_03800_2
crossref_primary_10_1016_j_biortech_2022_128226
crossref_primary_10_1016_j_scitotenv_2021_148206
crossref_primary_10_1016_j_biortech_2021_125797
crossref_primary_10_3390_min14070732
crossref_primary_10_1111_gcbb_12414
crossref_primary_10_1007_s13399_020_00946_0
crossref_primary_10_1016_j_chemosphere_2024_141558
crossref_primary_10_1016_j_wasman_2018_07_003
crossref_primary_10_1111_sum_12842
crossref_primary_10_1016_j_jclepro_2019_04_330
crossref_primary_10_1016_j_cej_2021_133904
crossref_primary_10_1002_ldr_5296
crossref_primary_10_1007_s11356_023_28431_x
crossref_primary_10_1016_j_geoderma_2025_117219
crossref_primary_10_1007_s42773_020_00065_z
crossref_primary_10_1016_j_seh_2023_100015
crossref_primary_10_1155_2022_2323836
crossref_primary_10_1007_s42773_021_00088_0
crossref_primary_10_1016_j_envpol_2023_121433
crossref_primary_10_1371_journal_pone_0176884
crossref_primary_10_1016_j_envpol_2024_123597
crossref_primary_10_1002_bbb_2693
crossref_primary_10_1016_j_scitotenv_2020_140431
crossref_primary_10_1016_j_scitotenv_2020_143820
crossref_primary_10_1016_j_chemosphere_2021_132082
crossref_primary_10_3390_molecules25143167
crossref_primary_10_3390_chemosensors10050168
crossref_primary_10_1007_s42773_025_00451_5
crossref_primary_10_1007_s11368_022_03152_9
crossref_primary_10_1111_are_14922
crossref_primary_10_1016_j_scitotenv_2024_171944
crossref_primary_10_3390_agronomy11102052
crossref_primary_10_3390_agronomy14030533
crossref_primary_10_3390_agronomy11050828
crossref_primary_10_1002_clen_202000366
crossref_primary_10_1016_j_chemosphere_2020_126745
crossref_primary_10_1007_s11356_023_30797_x
crossref_primary_10_1016_j_enconman_2023_117924
crossref_primary_10_1016_j_geoderma_2024_117088
crossref_primary_10_1016_j_ecoenv_2023_114928
crossref_primary_10_1016_j_scitotenv_2020_144668
crossref_primary_10_1016_j_jaap_2022_105728
crossref_primary_10_2139_ssrn_4111410
crossref_primary_10_1002_aoc_8005
crossref_primary_10_1016_S1872_5813_22_60038_0
crossref_primary_10_3390_molecules29143268
crossref_primary_10_1016_j_resconrec_2022_106720
crossref_primary_10_3390_pr10101924
crossref_primary_10_1007_s11104_024_06678_8
crossref_primary_10_1021_acsomega_0c00216
crossref_primary_10_31025_2611_4135_2023_17277
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_2174_2213346110666230915140448
crossref_primary_10_1016_j_jclepro_2024_141208
crossref_primary_10_1016_j_biortech_2023_129583
crossref_primary_10_1007_s42729_022_01010_8
crossref_primary_10_1016_j_heliyon_2022_e09790
crossref_primary_10_3390_agronomy14122907
crossref_primary_10_1016_j_eti_2024_103546
crossref_primary_10_1016_j_conbuildmat_2023_130487
crossref_primary_10_18343_jipi_27_4_582
crossref_primary_10_1016_j_scitotenv_2020_139063
crossref_primary_10_1016_j_eti_2021_101588
crossref_primary_10_1016_j_mset_2020_10_012
crossref_primary_10_1039_D1EM00247C
crossref_primary_10_7745_KJSSF_2024_57_2_096
crossref_primary_10_1016_j_biortech_2020_122892
crossref_primary_10_1016_j_jclepro_2021_128593
crossref_primary_10_1016_j_chemosphere_2023_140514
crossref_primary_10_1088_1757_899X_452_2_022138
crossref_primary_10_1016_j_scitotenv_2020_137448
crossref_primary_10_1016_j_heliyon_2024_e31264
crossref_primary_10_18343_jipi_29_1_99
crossref_primary_10_1007_s42729_020_00311_0
crossref_primary_10_1016_j_eti_2021_101930
crossref_primary_10_1016_j_scitotenv_2023_169384
crossref_primary_10_3390_su12041356
crossref_primary_10_1007_s10098_024_02962_4
crossref_primary_10_1016_j_chemosphere_2021_129717
crossref_primary_10_1016_j_catena_2022_106616
crossref_primary_10_1016_j_envres_2023_116998
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1007_s42247_025_01047_2
crossref_primary_10_1016_j_jece_2019_103067
crossref_primary_10_1177_0734242X231200744
crossref_primary_10_1016_j_heliyon_2020_e05255
crossref_primary_10_1016_j_jclepro_2017_05_135
crossref_primary_10_1021_acs_est_4c05994
crossref_primary_10_1016_j_jenvman_2021_113762
crossref_primary_10_3390_agronomy12081768
crossref_primary_10_1016_j_apsoil_2023_105150
crossref_primary_10_5004_dwt_2018_21737
crossref_primary_10_1016_j_jenvman_2024_122316
crossref_primary_10_1016_j_jenvman_2024_123524
crossref_primary_10_1007_s11104_019_04256_x
crossref_primary_10_1016_j_apsoil_2019_01_012
crossref_primary_10_1016_j_biortech_2019_122318
crossref_primary_10_1002_ldr_4717
crossref_primary_10_1016_j_jclepro_2024_144373
crossref_primary_10_1111_gcbb_12717
crossref_primary_10_3390_land8120179
crossref_primary_10_1016_j_scitotenv_2019_01_193
crossref_primary_10_1038_s41598_018_35534_w
crossref_primary_10_1039_D2VA00085G
crossref_primary_10_1016_j_apsoil_2021_103960
crossref_primary_10_1016_j_renene_2023_119747
crossref_primary_10_1007_s12649_025_02977_y
crossref_primary_10_1007_s42773_025_00453_3
crossref_primary_10_5194_soil_10_33_2024
crossref_primary_10_1016_j_chemosphere_2021_132443
crossref_primary_10_3390_su16229967
Cites_doi 10.1021/es301107c
10.1021/es500073r
10.2134/jeq2011.0118
10.1007/s12155-011-9133-7
10.1016/j.jaap.2014.08.016
10.2134/jeq2011.0070
10.1111/j.1475-2743.2010.00317.x
10.1111/gcbb.12046
10.1007/s11027-005-9006-5
10.1007/s10973-012-2290-x
10.1016/S1385-8947(00)00258-8
10.1016/j.biortech.2010.11.018
10.1007/s11356-013-2183-y
10.1007/s11368-012-0483-3
10.1016/j.jaap.2011.10.007
10.1071/SR10009
10.2136/sssaj2013.08.0340
10.1046/j.1365-2389.2002.00461.x
10.1016/S1002-0160(11)60130-6
10.1016/j.chemosphere.2011.12.007
10.1016/j.carbon.2013.09.044
10.1039/C5GC00828J
10.1016/j.carbon.2009.11.050
10.1002/ep.10378
10.1021/es9031419
10.1016/j.carbon.2016.02.096
10.1071/SR13177
10.1021/es035034w
10.1021/es101283d
10.1016/0008-6223(94)90031-0
10.2134/jeq2014.08.0341
10.1016/j.geoderma.2010.05.013
10.2134/jeq2013.07.0285
10.1021/es5043468
10.1071/SR10058
10.2134/jeq2011.0146
10.1021/ie201309r
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7TV
C1K
SOI
7S9
L.6
DOI 10.1016/j.chemosphere.2016.09.151
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Pollution Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Pollution Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
EndPage 373
ExternalDocumentID 27743533
10_1016_j_chemosphere_2016_09_151
S0045653516313637
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7ST
7TV
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c509t-6c2af5c9873ef22c230eb64b1b6948da95ee05e66b09e5e27d3dbda36bf61ded3
IEDL.DBID .~1
ISSN 0045-6535
IngestDate Thu Jul 10 18:36:07 EDT 2025
Fri Jul 11 13:09:20 EDT 2025
Mon Jul 21 05:57:32 EDT 2025
Tue Jul 01 00:45:26 EDT 2025
Thu Apr 24 22:54:49 EDT 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CEC
Organic
VM
pH
Carbonate
Alkalinity
XRD
Biochar
FC
XRF
Functional groups
Language English
License Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-6c2af5c9873ef22c230eb64b1b6948da95ee05e66b09e5e27d3dbda36bf61ded3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27743533
PQID 1846399486
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2000131419
proquest_miscellaneous_1846399486
pubmed_primary_27743533
crossref_primary_10_1016_j_chemosphere_2016_09_151
crossref_citationtrail_10_1016_j_chemosphere_2016_09_151
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2016_09_151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
2017-Jan
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemosphere (Oxford)
PublicationTitleAlternate Chemosphere
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References McCormack, Ostle, Bardgett, Hopkins, Vanbergen (bib28) 2013; 5
Lin, Munroe, Joseph, Henderson, Ziolkowski (bib24) 2012; 87
Yuan, Xu, Zhang (bib42) 2011; 102
Keiluweit, Nico, Johnson, Kleber (bib18) 2010; 44
Goertzen, Thériault, Oickle, Tarasuk, Andreas (bib15) 2010; 48
Brewer, Hu, Schmidt-Rohr, Loynachan, Laird, Brown (bib3) 2012; 41
Choi, Johnston, Brown, Shanks, Lee (bib8) 2014; 110
Brewer, Unger, Schmidt-Rohr, Brown (bib5) 2011; 4
Fidel (bib12) 2012
Dai, Wang, Muhammad, Yu, Xiao, Meng, Liu, Xu, Brookes (bib10) 2014; 78
Boehm (bib2) 1994; 32
Pollard (bib29) 2009
Singh, Singh, Cowie (bib34) 2010; 48
Lawrinenko, Laird (bib21) 2015; 17
Xu, Zhao, Yuan, Jiang (bib39) 2012; 12
Liu, Ptacek, Blowes, Berti, Landis (bib26) 2015; 44
Ar, Doğu (bib1) 2001; 83
Mao, Johnson, Lehmann, Olk, Neves, Thompson, Schmidt-Rohr (bib27) 2012; 46
Fidel, Laird, Thompson (bib13) 2013; 42
Lawrinenko, Laird, Johnson, Jing (bib22) 2016; 103
Graber, Tsechansky, Fidel, Thompson, Laird (bib16) 2016
Kloss, Zehetner, Dellantonio, Hamid, Ottner, Liedtke, Schwanninger, Gerzabek, Soja (bib19) 2012; 41
Chun, Sheng, Chiou, Xing (bib9) 2004; 38
Wan, Yuan, Xu, Li (bib37) 2014; 21
Simek, Cooper (bib33) 2002; 53
Tsechansky, Graber (bib36) 2014; 66
Sun, Hockaday, Masiello, Zygourakis (bib35) 2012; 51
Wang, Camps-Arbestain, Hedley, Singh, Calvelo-Pereira, Wang (bib38) 2014; 52
Fidel (bib11) 2015
Pollard, Rover, Brown (bib30) 2012; 93
Silber, Levkovitch, Graber (bib32) 2010; 44
Schimmelpfennig, Glaser (bib31) 2012; 41
Lindsay (bib25) 1979
Cheah, Malone, Feik (bib6) 2014; 48
Lehmann, Gaunt, Rondon (bib23) 2006; 11
Chen, Xiao, Chen, Zhu (bib7) 2015; 49
Yuan, Xu (bib40) 2011; 27
Brewer, Schmidt-Rohr, Satrio, Brown (bib4) 2009; 28
Laird, Fleming, Davis, Horton, Wang, Karlen (bib20) 2010; 158
Yuan, Xu, Wang, Li (bib41) 2011; 21
Galan, Glasser, Andrade (bib14) 2012; 111
Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook, Van Zwieten, Kimber, Cowie, Singh, Lehmann, Foidl, Smernik, Amonette (bib17) 2010; 48
Lindsay (10.1016/j.chemosphere.2016.09.151_bib25) 1979
Pollard (10.1016/j.chemosphere.2016.09.151_bib29) 2009
Tsechansky (10.1016/j.chemosphere.2016.09.151_bib36) 2014; 66
Brewer (10.1016/j.chemosphere.2016.09.151_bib4) 2009; 28
Silber (10.1016/j.chemosphere.2016.09.151_bib32) 2010; 44
Laird (10.1016/j.chemosphere.2016.09.151_bib20) 2010; 158
McCormack (10.1016/j.chemosphere.2016.09.151_bib28) 2013; 5
Yuan (10.1016/j.chemosphere.2016.09.151_bib41) 2011; 21
Goertzen (10.1016/j.chemosphere.2016.09.151_bib15) 2010; 48
Kloss (10.1016/j.chemosphere.2016.09.151_bib19) 2012; 41
Dai (10.1016/j.chemosphere.2016.09.151_bib10) 2014; 78
Pollard (10.1016/j.chemosphere.2016.09.151_bib30) 2012; 93
Fidel (10.1016/j.chemosphere.2016.09.151_bib11) 2015
Galan (10.1016/j.chemosphere.2016.09.151_bib14) 2012; 111
Lawrinenko (10.1016/j.chemosphere.2016.09.151_bib22) 2016; 103
Cheah (10.1016/j.chemosphere.2016.09.151_bib6) 2014; 48
Fidel (10.1016/j.chemosphere.2016.09.151_bib13) 2013; 42
Lin (10.1016/j.chemosphere.2016.09.151_bib24) 2012; 87
Liu (10.1016/j.chemosphere.2016.09.151_bib26) 2015; 44
Lawrinenko (10.1016/j.chemosphere.2016.09.151_bib21) 2015; 17
Lehmann (10.1016/j.chemosphere.2016.09.151_bib23) 2006; 11
Boehm (10.1016/j.chemosphere.2016.09.151_bib2) 1994; 32
Wan (10.1016/j.chemosphere.2016.09.151_bib37) 2014; 21
Brewer (10.1016/j.chemosphere.2016.09.151_bib5) 2011; 4
Mao (10.1016/j.chemosphere.2016.09.151_bib27) 2012; 46
Chun (10.1016/j.chemosphere.2016.09.151_bib9) 2004; 38
Yuan (10.1016/j.chemosphere.2016.09.151_bib42) 2011; 102
Chen (10.1016/j.chemosphere.2016.09.151_bib7) 2015; 49
Xu (10.1016/j.chemosphere.2016.09.151_bib39) 2012; 12
Choi (10.1016/j.chemosphere.2016.09.151_bib8) 2014; 110
Singh (10.1016/j.chemosphere.2016.09.151_bib34) 2010; 48
Joseph (10.1016/j.chemosphere.2016.09.151_bib17) 2010; 48
Brewer (10.1016/j.chemosphere.2016.09.151_bib3) 2012; 41
Keiluweit (10.1016/j.chemosphere.2016.09.151_bib18) 2010; 44
Sun (10.1016/j.chemosphere.2016.09.151_bib35) 2012; 51
Simek (10.1016/j.chemosphere.2016.09.151_bib33) 2002; 53
Wang (10.1016/j.chemosphere.2016.09.151_bib38) 2014; 52
Ar (10.1016/j.chemosphere.2016.09.151_bib1) 2001; 83
Graber (10.1016/j.chemosphere.2016.09.151_bib16) 2016
Schimmelpfennig (10.1016/j.chemosphere.2016.09.151_bib31) 2012; 41
Yuan (10.1016/j.chemosphere.2016.09.151_bib40) 2011; 27
Fidel (10.1016/j.chemosphere.2016.09.151_bib12) 2012
References_xml – volume: 53
  start-page: 345
  year: 2002
  end-page: 354
  ident: bib33
  article-title: The influence of pH on denitrification: progress towards the understanding of this interaction over the last 50 years
  publication-title: Eur. J. Soil Sci.
– volume: 52
  start-page: 495
  year: 2014
  end-page: 504
  ident: bib38
  article-title: Determination of carbonate-C in biochars
  publication-title: Soil Res.
– volume: 110
  start-page: 147
  year: 2014
  end-page: 154
  ident: bib8
  article-title: Detailed characterization of red oak-derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl-Fischer
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 93
  start-page: 129
  year: 2012
  end-page: 138
  ident: bib30
  article-title: Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties
  publication-title: J. Anal. Appl. Pyrolysis
– year: 2015
  ident: bib11
  article-title: Biochar Properties and Impact on Soil CO
– year: 2016
  ident: bib16
  article-title: Determining acidic groups at biochar surfaces via the Boehm titration
  publication-title: Methods of Biochar Analysis
– volume: 44
  start-page: 684
  year: 2015
  end-page: 695
  ident: bib26
  article-title: Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures
  publication-title: J. Environ. Qual.
– year: 1979
  ident: bib25
  article-title: Chemical Equilibria in Soils
– volume: 11
  start-page: 395
  year: 2006
  end-page: 419
  ident: bib23
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– volume: 28
  start-page: 386
  year: 2009
  end-page: 396
  ident: bib4
  article-title: Characterization of biochar from fast pyrolysis and gasification systems
  publication-title: Environ. Prog. Sustain. Energy
– volume: 38
  start-page: 4649
  year: 2004
  end-page: 4655
  ident: bib9
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 1001
  year: 2012
  end-page: 1013
  ident: bib31
  article-title: One step forward toward characterization: some important material properties to distinguish biochars
  publication-title: J. Environ. Qual.
– year: 2009
  ident: bib29
  article-title: Comparison of Bio-oil Produced in a Fractionated Bio-oil Collection System
– volume: 48
  start-page: 8474
  year: 2014
  end-page: 8480
  ident: bib6
  article-title: Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: bib42
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– volume: 78
  start-page: 1606
  year: 2014
  end-page: 1614
  ident: bib10
  article-title: The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH
  publication-title: Soil Sci. Soc. Am. J.
– volume: 21
  start-page: 302
  year: 2011
  end-page: 308
  ident: bib41
  article-title: Amendment of acid soils with crop residues and biochars
  publication-title: Pedosphere
– volume: 12
  start-page: 494
  year: 2012
  end-page: 502
  ident: bib39
  article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars
  publication-title: J. Soils Sediments
– volume: 41
  start-page: 1115
  year: 2012
  ident: bib3
  article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties
  publication-title: J. Environ. Qual.
– volume: 66
  start-page: 730
  year: 2014
  end-page: 733
  ident: bib36
  article-title: Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration
  publication-title: Carbon
– volume: 48
  start-page: 516
  year: 2010
  end-page: 525
  ident: bib34
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Aust. J. Soil Res.
– volume: 21
  start-page: 2486
  year: 2014
  end-page: 2495
  ident: bib37
  article-title: Pyrolysis temperature influences ameliorating effects of biochars on acidic soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 42
  start-page: 1771
  year: 2013
  end-page: 1778
  ident: bib13
  article-title: Evaluation of modified Boehm titration methods for use with biochars
  publication-title: J. Environ. Qual.
– volume: 5
  start-page: 81
  year: 2013
  end-page: 95
  ident: bib28
  article-title: Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes
  publication-title: GCB Bioenergy
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bib20
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 83
  start-page: 131
  year: 2001
  end-page: 137
  ident: bib1
  article-title: Calcination kinetics of high purity limestones
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 759
  year: 1994
  end-page: 769
  ident: bib2
  article-title: Some aspects of the surface chemistry of carbon blacks and other carbons
  publication-title: Carbon N. Y.
– volume: 51
  start-page: 3587
  year: 2012
  end-page: 3597
  ident: bib35
  article-title: Multiple controls on the chemical and physical structure of biochars
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 9318
  year: 2010
  end-page: 9323
  ident: bib32
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environ. Sci. Technol.
– volume: 103
  start-page: 217
  year: 2016
  end-page: 227
  ident: bib22
  article-title: Accelerated aging of biochars: impact on anion exchange capacity
  publication-title: Carbon N. Y.
– year: 2012
  ident: bib12
  article-title: Evaluation and Implementation of Methods for Quantifying Organic and Inorganic Components of Biochar Alkalinity
– volume: 48
  start-page: 1252
  year: 2010
  end-page: 1261
  ident: bib15
  article-title: Standardization of the Boehm titration. Part I. CO
  publication-title: Carbon N. Y.
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: bib17
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
– volume: 87
  start-page: 151
  year: 2012
  end-page: 157
  ident: bib24
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
– volume: 44
  start-page: 1247
  year: 2010
  end-page: 1253
  ident: bib18
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– volume: 4
  start-page: 312
  year: 2011
  end-page: 323
  ident: bib5
  article-title: Criteria to select biochars for field studies based on biochar chemical properties
  publication-title: BioEnergy Res.
– volume: 27
  start-page: 110
  year: 2011
  end-page: 115
  ident: bib40
  article-title: The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol
  publication-title: Soil Use Manag.
– volume: 46
  start-page: 9571
  year: 2012
  end-page: 9576
  ident: bib27
  article-title: Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration
  publication-title: Environ. Sci. Technol.
– volume: 41
  start-page: 990
  year: 2012
  ident: bib19
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
– volume: 17
  start-page: 4628
  year: 2015
  end-page: 4636
  ident: bib21
  article-title: Anion exchange capacity of biochar
  publication-title: Green Chem.
– volume: 49
  start-page: 309
  year: 2015
  end-page: 317
  ident: bib7
  article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
– volume: 111
  start-page: 1197
  year: 2012
  end-page: 1202
  ident: bib14
  article-title: Calcium carbonate decomposition
  publication-title: J. Therm. Anal. Calorim.
– volume: 46
  start-page: 9571
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib27
  article-title: Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301107c
– volume: 48
  start-page: 8474
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib6
  article-title: Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500073r
– volume: 41
  start-page: 1115
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib3
  article-title: Extent of pyrolysis impacts on fast pyrolysis biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0118
– volume: 4
  start-page: 312
  year: 2011
  ident: 10.1016/j.chemosphere.2016.09.151_bib5
  article-title: Criteria to select biochars for field studies based on biochar chemical properties
  publication-title: BioEnergy Res.
  doi: 10.1007/s12155-011-9133-7
– volume: 110
  start-page: 147
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib8
  article-title: Detailed characterization of red oak-derived pyrolysis oil: integrated use of GC, HPLC, IC, GPC and Karl-Fischer
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.08.016
– year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib12
– volume: 41
  start-page: 990
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib19
  article-title: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0070
– volume: 27
  start-page: 110
  year: 2011
  ident: 10.1016/j.chemosphere.2016.09.151_bib40
  article-title: The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2010.00317.x
– volume: 5
  start-page: 81
  year: 2013
  ident: 10.1016/j.chemosphere.2016.09.151_bib28
  article-title: Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12046
– volume: 11
  start-page: 395
  year: 2006
  ident: 10.1016/j.chemosphere.2016.09.151_bib23
  article-title: Bio-char sequestration in terrestrial ecosystems – a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-005-9006-5
– volume: 111
  start-page: 1197
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib14
  article-title: Calcium carbonate decomposition
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-012-2290-x
– volume: 83
  start-page: 131
  year: 2001
  ident: 10.1016/j.chemosphere.2016.09.151_bib1
  article-title: Calcination kinetics of high purity limestones
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(00)00258-8
– year: 2016
  ident: 10.1016/j.chemosphere.2016.09.151_bib16
  article-title: Determining acidic groups at biochar surfaces via the Boehm titration
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.chemosphere.2016.09.151_bib42
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 21
  start-page: 2486
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib37
  article-title: Pyrolysis temperature influences ameliorating effects of biochars on acidic soil
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-2183-y
– volume: 12
  start-page: 494
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib39
  article-title: pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-012-0483-3
– volume: 93
  start-page: 129
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib30
  article-title: Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2011.10.007
– volume: 48
  start-page: 501
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib17
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10009
– volume: 78
  start-page: 1606
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib10
  article-title: The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soils differing in initial pH
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2013.08.0340
– year: 1979
  ident: 10.1016/j.chemosphere.2016.09.151_bib25
– volume: 53
  start-page: 345
  year: 2002
  ident: 10.1016/j.chemosphere.2016.09.151_bib33
  article-title: The influence of pH on denitrification: progress towards the understanding of this interaction over the last 50 years
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2002.00461.x
– volume: 21
  start-page: 302
  year: 2011
  ident: 10.1016/j.chemosphere.2016.09.151_bib41
  article-title: Amendment of acid soils with crop residues and biochars
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(11)60130-6
– year: 2015
  ident: 10.1016/j.chemosphere.2016.09.151_bib11
– volume: 87
  start-page: 151
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib24
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.007
– volume: 66
  start-page: 730
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib36
  article-title: Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.09.044
– volume: 17
  start-page: 4628
  year: 2015
  ident: 10.1016/j.chemosphere.2016.09.151_bib21
  article-title: Anion exchange capacity of biochar
  publication-title: Green Chem.
  doi: 10.1039/C5GC00828J
– volume: 48
  start-page: 1252
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib15
  article-title: Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2009.11.050
– volume: 28
  start-page: 386
  year: 2009
  ident: 10.1016/j.chemosphere.2016.09.151_bib4
  article-title: Characterization of biochar from fast pyrolysis and gasification systems
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.10378
– volume: 44
  start-page: 1247
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib18
  article-title: Dynamic molecular structure of plant biomass-derived black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9031419
– volume: 103
  start-page: 217
  year: 2016
  ident: 10.1016/j.chemosphere.2016.09.151_bib22
  article-title: Accelerated aging of biochars: impact on anion exchange capacity
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2016.02.096
– volume: 52
  start-page: 495
  year: 2014
  ident: 10.1016/j.chemosphere.2016.09.151_bib38
  article-title: Determination of carbonate-C in biochars
  publication-title: Soil Res.
  doi: 10.1071/SR13177
– volume: 38
  start-page: 4649
  year: 2004
  ident: 10.1016/j.chemosphere.2016.09.151_bib9
  article-title: Compositions and sorptive properties of crop residue-derived chars
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035034w
– year: 2009
  ident: 10.1016/j.chemosphere.2016.09.151_bib29
– volume: 44
  start-page: 9318
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib32
  article-title: pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101283d
– volume: 32
  start-page: 759
  year: 1994
  ident: 10.1016/j.chemosphere.2016.09.151_bib2
  article-title: Some aspects of the surface chemistry of carbon blacks and other carbons
  publication-title: Carbon N. Y.
  doi: 10.1016/0008-6223(94)90031-0
– volume: 44
  start-page: 684
  year: 2015
  ident: 10.1016/j.chemosphere.2016.09.151_bib26
  article-title: Aqueous leaching of organic acids and dissolved organic carbon from various biochars prepared at different temperatures
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2014.08.0341
– volume: 158
  start-page: 443
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib20
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– volume: 42
  start-page: 1771
  year: 2013
  ident: 10.1016/j.chemosphere.2016.09.151_bib13
  article-title: Evaluation of modified Boehm titration methods for use with biochars
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2013.07.0285
– volume: 49
  start-page: 309
  year: 2015
  ident: 10.1016/j.chemosphere.2016.09.151_bib7
  article-title: Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5043468
– volume: 48
  start-page: 516
  year: 2010
  ident: 10.1016/j.chemosphere.2016.09.151_bib34
  article-title: Characterisation and evaluation of biochars for their application as a soil amendment
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10058
– volume: 41
  start-page: 1001
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib31
  article-title: One step forward toward characterization: some important material properties to distinguish biochars
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0146
– volume: 51
  start-page: 3587
  year: 2012
  ident: 10.1016/j.chemosphere.2016.09.151_bib35
  article-title: Multiple controls on the chemical and physical structure of biochars
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201309r
SSID ssj0001659
Score 2.6333232
Snippet Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 367
SubjectTerms Alkalinity
alkalis
Biochar
carbon
Carbonate
carbonates
Cations
cellulose
Cellulose - chemistry
Charcoal - chemistry
corn stover
elemental composition
feedstocks
Functional groups
Hydrogen-Ion Concentration
Organic
soil
Soil - chemistry
Soil Pollutants - analysis
wood
Wood - chemistry
Title Characterization and quantification of biochar alkalinity
URI https://dx.doi.org/10.1016/j.chemosphere.2016.09.151
https://www.ncbi.nlm.nih.gov/pubmed/27743533
https://www.proquest.com/docview/1846399486
https://www.proquest.com/docview/2000131419
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSxxBEC7EEJNLSDQxm4eMkOvE6edMQy6yKJuIniJ4a_pRA5vojMbdg5f89nTNY9XDgpBr0wVFVVP11Ux9VQBfmClFcLXLk0frXAZd5F6UKg86OiG8qmMgovDpmZ6dyx8X6mIDpiMXhtoqh9jfx_QuWg8nB4M1D67nc-L4EhoRKiEKJrQgRrmUJb3yr3_v2zyYVj0Eliqn21uwf9_jlexy1d4Sf58mZjJNI0-ZYuty1DoM2uWi49fwagCR2WGv5xvYwGYbXkzH3W3b8PyoG0Z9twNmuprI3BMuM9fE7Gbp-iah_qitMz9viYCVucvfjsiSi7u3cH589HM6y4d1CXlIWX-R68BdrYKpSoE15yEVF-i19MxrI6vojEIsFGrtC4MKeRlF9Mkj2teaRYziHWw2bYPvISt9UaFgiMiMjFXtuA4SqTxL6Iq5YgLVaCAbhlnitNLi0o5NY7_sA9tasq0tjE22nQBfiV73AzWeIvRt9IJ99DpsCvxPEd8fPWeTI-iXiGuwXd7aVN8SRJOVXn-HdziZSWYmsNu7faU5T-hZJMT84f8U_AgvOcGF7tPOJ9hc_Fni5wR2Fn6ve8178Ozw-8ns7B_OrwC_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxRBEK4gRvFiFEXX55B4HZl-znTChWwgqwInSLh1-lGTrMIMyu6Bi7_drnksetiExGunO6lUdVd9NVNfFcAnZkoRXO3yZNE6l0EXuRelyoOOTgiv6hiIKHxyqmfn8uuFutiA6ciFobLKwff3Pr3z1sPK3qDNvev5nDi-hEaESoiCCS3KB_BQpudLYww-_76r82Ba9RhYqpy2P4bduyKvpJir9oYI_NQyk2nqecoUWxek1oHQLhgdPYOnA4rMDnpBn8MGNtuwNR2Ht23Do8OuG_XtCzDTVUvmnnGZuSZmP5eurxLql9o68_OWGFiZu_zhiC25uH0J50eHZ9NZPsxLyEMK-4tcB-5qFUxVCqw5Dym7QK-lZ14bWUVnFGKhUGtfGFTIyyiiTybRvtYsYhQ7sNm0Db6GrPRFhYIhIjMyVrXjOkik_CzBK-aKCVSjgmwYmonTTItLO1aNfbd_6daSbm1hbNLtBPjq6HXfUeM-h_ZHK9h_rodNnv8-x3dHy9lkCPon4hpslzc2JbiE0WSl1-_hHVBmkpkJvOrNvpKcJ_gsEmR-838CfoSt2dnJsT3-cvrtLTzhhB267zzvYHPxa4nvE_JZ-A_dzf4Dm7sCTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+and+quantification+of+biochar+alkalinity&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Fidel%2C+Rivka+B&rft.au=Laird%2C+David+A&rft.au=Thompson%2C+Michael+L&rft.au=Lawrinenko%2C+Michael&rft.date=2017-01-01&rft.issn=0045-6535&rft.volume=167&rft.spage=367&rft.epage=373&rft_id=info:doi/10.1016%2Fj.chemosphere.2016.09.151&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon