Identification and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata L.)
Key message A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cab...
Saved in:
Published in | Theoretical and applied genetics Vol. 134; no. 12; pp. 4055 - 4066 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key message
A single nucleotide mutation of
BoCER2
is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness.
TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus
wdtl28
was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of
B. oleracea
, the ECERIFERUM2- LIKE (CER2-LIKE) gene,
BoCER2
, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The
BoCER2
transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the
BoCER2
coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational
BoCER2
co-segregated with wax deficiency. Moreover, the complementation test suggested that
BoCER2
from wild type can rescue the wax deficiency of TL28-1. These results indicate that
BoCER2
mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. |
---|---|
AbstractList | Key message KEY MESSAGE: A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness.KEY MESSAGEA single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. Key message A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea , the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2 , was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. Key messageA single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness.TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for marker-assisted selection of glossiness. TL28-1 is a novel spontaneous wax-deficient mutant with a glossy phenotype identified from cabbage. In this study, the genetic analysis suggested that the wax-deficient trait of TL28-1 was controlled by a single recessive gene. All wax monomers longer than 28 carbons were significantly decreased in TL28-1. Fine-mapping results showed that the wax-deficient locus wdtl28 was located at an 80-kb interval between BOL01-20 and BOL01-24 markers on chromosome 1. According to the genome annotation of B. oleracea, the ECERIFERUM2- LIKE (CER2-LIKE) gene, BoCER2, was identified as the candidate gene. Phylogenetic analysis showed that BoCER2 and other CER2-LIKEs from vascular plants formed a clade within the BAHD superfamily of acyltransferases. The BoCER2 transcript was detected in various tissues, including stem, leaf, flower, and silique, but not in the cabbage roots. Subcellular localization indicated that BoCER2 protein functions in the endoplasmic reticulum. Further sequence analysis showed that a single nucleotide mutation (G to A) is present in the BoCER2 coding sequence in TL28-1, leading to a stop codon (TGA), hence premature translation termination. Linkage analysis showed that the homozygotic mutational BoCER2 co-segregated with wax deficiency. Moreover, the complementation test suggested that BoCER2 from wild type can rescue the wax deficiency of TL28-1. These results indicate that BoCER2 mutation hinders the elongation of very-long-chain fatty acid precursors in TL28-1, leading to wax deficiency. The allele-specific KASP marker designed in this study could be effective for marker-assisted selection of glossiness. |
Audience | Academic |
Author | Tong, Long Ji, Jialei Cao, Wenxue Zhuang, Mu Zhang, Yangyong Lv, Honghao Fang, Zhiyuan Yang, Limei Wang, Yong |
Author_xml | – sequence: 1 givenname: Jialei surname: Ji fullname: Ji, Jialei organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 2 givenname: Wenxue surname: Cao fullname: Cao, Wenxue organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 3 givenname: Long surname: Tong fullname: Tong, Long organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 4 givenname: Zhiyuan surname: Fang fullname: Fang, Zhiyuan organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 5 givenname: Yangyong surname: Zhang fullname: Zhang, Yangyong organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Mu surname: Zhuang fullname: Zhuang, Mu organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 7 givenname: Yong surname: Wang fullname: Wang, Yong organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 8 givenname: Limei surname: Yang fullname: Yang, Limei email: yanglimei@caas.cn organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences – sequence: 9 givenname: Honghao orcidid: 0000-0003-2635-3042 surname: Lv fullname: Lv, Honghao email: lvhonghao@caas.cn organization: Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34546379$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhSNURKeFF2CBLLFpFxlu7Dg_yzKawohBSANdW45zE1xl7MF2oH0PHhiHaVVNhYq8sHz1nWv73HOSHBlrMEleZzDPAMp3HiCjNAWapcDqvEzZs2SW5YymlOb0KJkB5JDyktPj5MT7awCgHNiL5JjlPC9YWc-S36sWTdCdVjJoa4g0LfkpB93uj7aLFbJcLDery-Xm6jNNyXr1aUl6NEiUNcHZYdCmJ2oMWo2DdOSXvCGNtv7WhO_otSfaECWbRvZIzt476X28i9gBnVQoyXoe73PziOx0kGEqnL9Mnndy8Pjqbj9Nri6X3xYf0_WXD6vFxTpVHOqQFg3vKKsbkF3dylpWZVO2UmILqPIMqg6xUXVRAVcAFRScqyLLWKu6nPMaOnaanO377pz9MaIPYqu9wmGQBu3oBS1YkXNGWfl_NNoMZcYKHtG3j9BrOzoTPxKpmpfV5P4D1csBhTadDdGQqam4KCoKjGZ5Fan5P6i4Wtzq6D92OtYPBOcHgmlGeBN6OXovVl83h-ybu4eOzRZbsXN6K92tuE9HBKo9oJz13mEn1DQjPc1d6kFkIKYgin0QRQyi-BtEwaKUPpLed39SxPYiH2HTo3tw7gnVH6cY6w4 |
CitedBy_id | crossref_primary_10_1016_j_scienta_2023_112136 crossref_primary_10_1186_s12870_024_05172_8 crossref_primary_10_3389_fpls_2024_1507968 crossref_primary_10_3389_fpls_2023_1212528 crossref_primary_10_1007_s11105_024_01521_x crossref_primary_10_3390_genes14061286 crossref_primary_10_1016_j_indcrop_2025_120819 crossref_primary_10_1186_s12870_022_03931_z crossref_primary_10_1016_j_plaphy_2025_109718 crossref_primary_10_3390_ijms231810938 crossref_primary_10_1093_hr_uhae006 crossref_primary_10_1093_hr_uhac219 crossref_primary_10_3389_fpls_2024_1403779 crossref_primary_10_3390_plants12183340 |
Cites_doi | 10.1016/j.plipres.2012.10.002 10.1007/s11032-018-0919-6 10.1186/s12870-017-1162-8 10.1104/pp.003707 10.1007/s00299-015-1772-2 10.1371/journal.pone.0116676 10.1007/s11032-018-0888-9 10.1016/S0146-6380(00)00037-1 10.1007/s00425-011-1481-1 10.1104/pp.113.222737 10.1105/tpc.113.117648 10.1016/S0079-9920(00)80010-6 10.1179/jbr.1995.18.3.399 10.1104/pp.16.01527 10.1105/tpc.110.081943 10.1104/pp.104.058164 10.1093/molbev/mst010 10.1007/s11103-008-9339-z 10.1093/jexbot/52.363.2023 10.1105/tpc.008946 10.1093/molbev/msp077 10.1016/j.pbi.2009.09.009 10.1186/1471-2229-13-215 10.1016/0163-7827(94)90009-4 10.1104/pp.112.201640 10.1006/meth.2001.1262 10.1186/gb-2014-15-6-r77 10.1104/pp.106.086785 10.1104/pp.112.208694 10.1016/0031-9422(82)83159-2 10.1104/pp.114.253195 10.1158/1940-6207.CAPR-09-0213 10.1186/s12870-014-0246-y 10.1016/S0163-7827(02)00045-0 10.1016/j.pbi.2006.03.016 10.1104/pp.107.107300 10.1016/j.plantsci.2013.05.008 10.1016/j.molp.2020.05.009 10.1111/j.1365-313X.2009.03973.x 10.1111/j.1365-313X.2008.03674.x 10.1016/j.tplants.2008.03.003 10.1105/tpc.12.10.2001 10.1111/j.1365-313X.2008.03467.x 10.1046/j.1365-313X.1995.8060907.x 10.1046/j.1365-313X.1995.08050703.x 10.1007/s001220051427 10.1104/pp.109.137497 10.1111/tpj.12060 10.1146/annurev.arplant.59.103006.093219 10.1146/annurev-arplant-043015-111929 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00122-021-03947-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1432-2242 |
EndPage | 4066 |
ExternalDocumentID | A682032148 34546379 10_1007_s00122_021_03947_3 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFD0101804 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z83 Z85 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7SS 7TK 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c509t-6b5f239b0af9da9a87b7daaed0ec4108feebc96805c0080655c6113dcf45590f3 |
IEDL.DBID | U2A |
ISSN | 0040-5752 1432-2242 |
IngestDate | Fri Jul 11 01:38:15 EDT 2025 Thu Jul 10 18:46:31 EDT 2025 Fri Jul 25 19:03:45 EDT 2025 Tue Jun 17 20:25:48 EDT 2025 Tue Jun 10 20:51:59 EDT 2025 Fri Jun 27 04:39:02 EDT 2025 Thu Apr 03 07:01:33 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 04:36:25 EDT 2025 Fri Feb 21 02:47:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-6b5f239b0af9da9a87b7daaed0ec4108feebc96805c0080655c6113dcf45590f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2635-3042 |
PMID | 34546379 |
PQID | 2595783454 |
PQPubID | 54040 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636453237 proquest_miscellaneous_2575071365 proquest_journals_2595783454 gale_infotracmisc_A682032148 gale_infotracacademiconefile_A682032148 gale_incontextgauss_ISR_A682032148 pubmed_primary_34546379 crossref_citationtrail_10_1007_s00122_021_03947_3 crossref_primary_10_1007_s00122_021_03947_3 springer_journals_10_1007_s00122_021_03947_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 2021-12-00 2021-Dec 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Plant Breeding Research |
PublicationTitle | Theoretical and applied genetics |
PublicationTitleAbbrev | Theor Appl Genet |
PublicationTitleAlternate | Theor Appl Genet |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Parkin, Koh, Tang, Robinson, Kagale, Clarke, Town, Nixon, Krishnakumar, Bidwell, Denoeud, Belcram, Links, Just, Clarke, Bender, Huebert, Mason, Pires, Barker, Moore, Walley, Manoli, Batley, Edwards, Nelson, Xiyin Wang, Paterson, King, Bancroft, Chalhoub, Sharpe (CR40) 2014; 15 Haslam, Haslam, Thoraval, Pascal, Delude, Domergue, Fernández, Beaudoin, Napier, Kunst, Joubès (CR20) 2015; 167 Kunst, Samuels (CR29) 2009; 12 Pascal, Bernard, Sorel, Pervent, Vile, Haslam, Napier, Lessire, Domergue, Joubès (CR41) 2013; 73 Haslam, Kunst (CR19) 2013; 210 Bernard, Joubès (CR5) 2013; 52 Riederer, Schreiber (CR45) 2001; 52 Liu, Fang, Zhuang, Zhang, Lv, Liu, Li, Sun, Tang, Liu, Zhang, Yang (CR31) 2017; 8 Haslam, Manas-Fernandez, Zhao, Kunst (CR18) 2012; 160 Franke, Höfer, Briesen, Emsermann, Efremova, Yephremov, Schreiber (CR15) 2009; 57 Fiebig, Mayfield, Miley, Chau, Fischer, Preuss (CR14) 2000; 12 CR30 Buda, Barnes, Fich, Park, Yeats, Zhao, Domozych, Rose (CR7) 2013; 25 Yeats, Rose (CR56) 2013; 163 Mao, Cheng, Lei, Xu, Gao, Ren, Wang, Zhang, Wang, Wu, Guo, Liu, Wu, Wang, Wan (CR36) 2012; 235 Sturaro, Hartings, Schmelzer, Velasco, Salamini, Motto (CR49) 2005; 138 Wan, Wu, Li, An, Tian (CR51) 2020; 13 D’Auria (CR10) 2006; 9 Tacke, Korfhage, Michel, Maddaloni, Motto, Lanzini, Salamini, Doring (CR50) 1995; 8 Bonaventure, Salas, Pollard, Ohlrogge (CR6) 2003; 15 James, Lim, Keller, Plooy, Ralston, Dooner (CR24) 1995; 7 Doyle (CR12) 1990; 12 Aarts, Keijzer, Stiekema, Pereira (CR1) 1995; 7 Hooker, Millar, Kunst (CR21) 2002; 129 Cassagne, Lessire, Bessoule, Moreau, Creach, Schneider, Sturbois (CR8) 1994; 33 Beaudoin, Wu, Li, Haslam, Markham, Zheng, Napier, Kunst (CR4) 2009; 150 Joubès, Raffaele, Bourdenx, Garcia, Laroche-Traineau, Moreau, Domergue, Lessire (CR27) 2008; 67 Fich, Segerson, Rose (CR13) 2016; 67 Haas (CR17) 1982; 21 Chantret, Sourdille, Röder, Tavaud, Bernard, Doussinault (CR9) 2000; 100 Wang, Xiong, Li, Zhu, Zhu (CR54) 2011; 23 Neinhuis, Jetter (CR38) 1995; 18 Zhou, Li, Xiang, Gao, Xu, Liu, Zhang, Peng, Chen, Wan (CR57) 2015; 10 Samuels, Kunst, Jetter (CR47) 2008; 59 CR11 Price, Dehal, Arkin (CR43) 2009; 26 St-Pierre, Luca (CR48) 2000; 34 Katoh, Standley (CR28) 2013; 30 Hülskamp, Kopczak, Horejsi, Kihl, Pruitt (CR23) 1995; 8 CR52 Lee, Suh (CR32) 2015; 34 Nishijima, Iehisa, Matsuoka, Takumi (CR39) 2014; 14 Greer, Wen, Bird, Wu, Samuels, Kunst, Jetter (CR16) 2007; 145 Bartley, Peck, Kim, Ebert, Maniseri, Chiniquy, Sykes, Gao, Rautengarten, Vega-Sanchez (CR3) 2013; 161 Pollard, Beisson, Li, Ohlrogge (CR42) 2008; 13 Müller (CR37) 2006; 23 Jetter, Kunst (CR25) 2008; 54 Ji, Cao, Dong, Liu, Fang, Zhuang, Zhang, Lv, Wang, Sun, Liu, Li, Yang (CR26) 2018; 38 Baas, Pancost, van Geel, Sinninghe Damsté (CR2) 2000; 31 Kunst, Samuels (CR22) 2003; 42 Pu, Gao, Guo, Liu, Zhu, Xu, Yi, Wen, Tu, Ma, Fu, Zou, Shen (CR44) 2013; 13 Lee, Jung, Go, Kim, Kim, Cho, Park, Suh (CR33) 2009; 60 Wu, Feng, Jin, Wu, Hankey, Paisie, Li, Liu, Barsky, Zhang, Ganju, Zou (CR55) 2010; 3 Wang, Guan, Zhang, Dong, Tian, Qu (CR53) 2017; 173 Livak, Schmittgen (CR35) 2001; 25 Rowland, Zheng, Hepworth, Lam, Jetter, Kunst (CR46) 2006; 142 LE Bartley (3947_CR3) 2013; 161 MN Price (3947_CR43) 2009; 26 G Bonaventure (3947_CR6) 2003; 15 M Sturaro (3947_CR49) 2005; 138 A Bernard (3947_CR5) 2013; 52 C Neinhuis (3947_CR38) 1995; 18 Z Wang (3947_CR54) 2011; 23 TM Haslam (3947_CR19) 2013; 210 Y Pu (3947_CR44) 2013; 13 M Pollard (3947_CR42) 2008; 13 F Beaudoin (3947_CR4) 2009; 150 EA Fich (3947_CR13) 2016; 67 B St-Pierre (3947_CR48) 2000; 34 S Pascal (3947_CR41) 2013; 73 TM Haslam (3947_CR20) 2015; 167 E Tacke (3947_CR50) 1995; 8 3947_CR30 DW James Jr (3947_CR24) 1995; 7 Z Liu (3947_CR31) 2017; 8 J Joubès (3947_CR27) 2008; 67 L Kunst (3947_CR29) 2009; 12 X Zhou (3947_CR57) 2015; 10 TS Hooker (3947_CR21) 2002; 129 B Mao (3947_CR36) 2012; 235 JC D’Auria (3947_CR10) 2006; 9 S Lee (3947_CR32) 2015; 34 K Haas (3947_CR17) 1982; 21 R Franke (3947_CR15) 2009; 57 C Müller (3947_CR37) 2006; 23 M Riederer (3947_CR45) 2001; 52 L Kunst (3947_CR22) 2003; 42 TH Yeats (3947_CR56) 2013; 163 S Greer (3947_CR16) 2007; 145 O Rowland (3947_CR46) 2006; 142 TM Haslam (3947_CR18) 2012; 160 JJ Doyle (3947_CR12) 1990; 12 R Nishijima (3947_CR39) 2014; 14 X Wu (3947_CR55) 2010; 3 N Chantret (3947_CR9) 2000; 100 X Wang (3947_CR53) 2017; 173 MG Aarts (3947_CR1) 1995; 7 M Baas (3947_CR2) 2000; 31 GJ Buda (3947_CR7) 2013; 25 3947_CR11 3947_CR52 L Samuels (3947_CR47) 2008; 59 KJ Livak (3947_CR35) 2001; 25 C Cassagne (3947_CR8) 1994; 33 A Fiebig (3947_CR14) 2000; 12 K Katoh (3947_CR28) 2013; 30 M Hülskamp (3947_CR23) 1995; 8 SB Lee (3947_CR33) 2009; 60 X Wan (3947_CR51) 2020; 13 IAP Parkin (3947_CR40) 2014; 15 R Jetter (3947_CR25) 2008; 54 J Ji (3947_CR26) 2018; 38 |
References_xml | – volume: 12 start-page: 2001 year: 2000 end-page: 2008 ident: CR14 article-title: Alterations in , a gene identical to , differentially affect longchain lipid content on the surface of pollen and stems publication-title: Plant Cell – volume: 38 start-page: 128 year: 2018 ident: CR26 article-title: A 252-bp insertion in is responsible for the glossy phenotype in cabbage ( L. var ) publication-title: Mol Breeding – volume: 7 start-page: 309 year: 1995 end-page: 319 ident: CR24 article-title: Directed tagging of the Arabidopsis ) gene with the maize transposon activator publication-title: Plant Cell – volume: 73 start-page: 733 year: 2013 end-page: 746 ident: CR41 article-title: The mutant, like the mutant, is specifically affected in the very long chain fatty acid elongation process publication-title: Plant J – volume: 161 start-page: 1615 year: 2013 end-page: 1633 ident: CR3 article-title: Overexpression of a BAHD acyltransferase, , alters rice cell wall hydroxycinnamic acid content and saccharification publication-title: Plant Physiol – volume: 15 start-page: R77 year: 2014 ident: CR40 article-title: Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid publication-title: Genome Biol – volume: 25 start-page: 4000 year: 2013 end-page: 4013 ident: CR7 article-title: An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss publication-title: Plant Cell – volume: 210 start-page: 93 year: 2013 end-page: 107 ident: CR19 article-title: Extending the story of very-long-chain fatty acid elongation publication-title: Plant Sci – volume: 3 start-page: 818 year: 2010 end-page: 828 ident: CR55 article-title: A novel mechanism of indole-3-carbinol effects on breast carcinogenesis involves induction of Cdc25A degradation publication-title: Cancer Prev Res – volume: 52 start-page: 110 year: 2013 end-page: 129 ident: CR5 article-title: Arabidopsis cuticular waxes: advances in synthesis, export and regulation publication-title: Prog Lipid Res – volume: 33 start-page: 55 year: 1994 end-page: 69 ident: CR8 article-title: Biosynthesis of very long chain fatty acids in higher plants publication-title: Prog Lipid Res – volume: 145 start-page: 653 year: 2007 end-page: 667 ident: CR16 article-title: The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis publication-title: Plant Physiol – volume: 7 start-page: 2115 year: 1995 end-page: 2127 ident: CR1 article-title: Molecular characterization of the gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility publication-title: Plant Cell – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: CR28 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol Biol Evol – volume: 12 start-page: 721 year: 2009 end-page: 727 ident: CR29 article-title: Plant cuticles shine: advances in wax biosynthesis and export publication-title: Curr Opin Plant Biol – volume: 142 start-page: 866 year: 2006 end-page: 877 ident: CR46 article-title: encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis publication-title: Plant Physiol – volume: 10 start-page: e116676 year: 2015 ident: CR57 article-title: OsGL1–3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice publication-title: PLoS ONE – volume: 150 start-page: 1174 year: 2009 end-page: 1191 ident: CR4 article-title: Functional characterization of the Arabidopsis -ketoacyl-coenzyme A reductase candidates of the fatty acid elongase publication-title: Plant Physiol – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR35 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 method publication-title: Methods – volume: 18 start-page: 399 year: 1995 end-page: 406 ident: CR38 article-title: Ultrastructure and chemistry of epicuticular wax crystals in Polytrichales sporophytes publication-title: J Bryol – volume: 163 start-page: 5 year: 2013 end-page: 20 ident: CR56 article-title: The formation and function of plant cuticles publication-title: Plant Physiol – ident: CR11 – volume: 26 start-page: 1641 year: 2009 end-page: 1650 ident: CR43 article-title: FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix publication-title: Mol Biol Evol – volume: 34 start-page: 285 year: 2000 end-page: 315 ident: CR48 article-title: Evolution of acyltransferase genes: Origin and diversification of the BAHD superfamily of acyltransferase involved in secondary metabolism publication-title: Evol Metab Pathw – volume: 60 start-page: 462 year: 2009 end-page: 475 ident: CR33 article-title: Two Arabidopsis 3-ketoacyl CoA synthase genes, and , are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress publication-title: Plant J – volume: 23 start-page: 398 year: 2006 end-page: 417 ident: CR37 article-title: Plant-Insect interactions on cuticular surfaces. Biology of the Plant Cuticle publication-title: Blackwell Oxford – volume: 173 start-page: 944 year: 2017 end-page: 955 ident: CR53 article-title: A -ketoacyl-CoA synthase is Involved in Rice Leaf Cuticular Wax Synthesis and requires a CER2-LIKE Protein as a Cofactor publication-title: Plant Physiol – volume: 8 start-page: 907 year: 1995 end-page: 917 ident: CR50 article-title: Transposon tagging of the maize locus with the transposable element publication-title: Plant J – volume: 31 start-page: 535 year: 2000 end-page: 541 ident: CR2 article-title: A comparative study of lipids in species publication-title: Org Geochem – volume: 13 start-page: 236 year: 2008 end-page: 246 ident: CR42 article-title: Building lipid barriers: biosynthesis of cutin and suberin publication-title: Trends Plant Sci – volume: 9 start-page: 331 year: 2006 end-page: 340 ident: CR10 article-title: Acyltransferases in plants: A good time to be BAHD publication-title: Curr Opin Plant Biol – volume: 235 start-page: 39 year: 2012 end-page: 52 ident: CR36 article-title: Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax publication-title: Planta – volume: 129 start-page: 1568 year: 2002 end-page: 1580 ident: CR21 article-title: Significance of the expression of the condensing enzyme for cuticular wax production in Arabidopsis publication-title: Plant Physiol – volume: 167 start-page: 682 year: 2015 end-page: 692 ident: CR20 article-title: ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation publication-title: Plant Physiol – volume: 14 start-page: 246 year: 2014 ident: CR39 article-title: The cuticular wax inhibitor locus in wild diploid wheat : phenotypic survey, genetic analysis, and implications for the evolution of common wheat publication-title: BMC Plant Biol – volume: 100 start-page: 1217 year: 2000 end-page: 1224 ident: CR9 article-title: Location and mapping of the powdery mildew resistance gene and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat publication-title: Theor Appl Genet – volume: 13 start-page: 215 year: 2013 ident: CR44 article-title: A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in publication-title: BMC Plant Biol – volume: 13 start-page: 955 year: 2020 end-page: 983 ident: CR51 article-title: Lipid metabolism: critical roles in male fertilityand other aspects of reproductive developmentin plants publication-title: Mol Plant – volume: 42 start-page: 51 year: 2003 end-page: 80 ident: CR22 article-title: Biosynthesis and secretion of plant cuticular wax publication-title: Prog Lipid Res – ident: CR30 – volume: 67 start-page: 547 year: 2008 end-page: 566 ident: CR27 article-title: The VLCFA elongase gene family in : phylogenetic analysis, 3D modelling and expression profiling publication-title: Plant Mol Biol – volume: 67 start-page: 207 year: 2016 end-page: 233 ident: CR13 article-title: The plant polyester cutin: Biosynthesis, structure, and biological roles publication-title: Annu Rev Plant Biol – volume: 54 start-page: 670 year: 2008 end-page: 683 ident: CR25 article-title: Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels publication-title: Plant J – volume: 21 start-page: 657 year: 1982 end-page: 659 ident: CR17 article-title: Surface wax of Andreaea and Pogonatum species publication-title: Phytochemistry – volume: 57 start-page: 80 year: 2009 end-page: 95 ident: CR15 article-title: The gene from encodes a fatty acid elongase condensing enzyme involved in the biosynthesis of aliphatic suberin in roots and the chalaza-micropyle region of seeds publication-title: Plant J – volume: 15 start-page: 1020 year: 2003 end-page: 1033 ident: CR6 article-title: Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth publication-title: Plant Cell – volume: 23 start-page: 1971 year: 2011 end-page: 1984 ident: CR54 article-title: The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in publication-title: Plant Cell – volume: 34 start-page: 557 year: 2015 end-page: 572 ident: CR32 article-title: Advances in the understanding of cuticular waxes in and crop species publication-title: Plant Cell Rep – volume: 12 start-page: 13 year: 1990 end-page: 15 ident: CR12 article-title: Isolation of plant DNA from fresh tissue publication-title: Focus – volume: 52 start-page: 2023 year: 2001 end-page: 2032 ident: CR45 article-title: Protecting against water loss: analysis of the barrier properties of plant cuticles publication-title: J Exp Bot – ident: CR52 – volume: 138 start-page: 478 year: 2005 end-page: 489 ident: CR49 article-title: Cloning and characterization of , a maize gene involved in cuticle membrane and wax production publication-title: Plant Physiol – volume: 8 start-page: 703 year: 1995 end-page: 714 ident: CR23 article-title: Identification of genes required for pollen-stigma recognition in publication-title: Plant J – volume: 8 start-page: 239 year: 2017 ident: CR31 article-title: Fine-mapping and analysis of , a gene conferring glossy trait in cabbage ( L. var ) publication-title: Front Plant Sci – volume: 59 start-page: 683 year: 2008 end-page: 707 ident: CR47 article-title: Sealing plant surfaces: cuticular wax formation by epidermal cells publication-title: Annu Rev Plant Biol – volume: 160 start-page: 1164 year: 2012 end-page: 1174 ident: CR18 article-title: Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths publication-title: Plant Physiol – volume: 12 start-page: 13 year: 1990 ident: 3947_CR12 publication-title: Focus – volume: 52 start-page: 110 year: 2013 ident: 3947_CR5 publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2012.10.002 – ident: 3947_CR52 doi: 10.1007/s11032-018-0919-6 – ident: 3947_CR30 doi: 10.1186/s12870-017-1162-8 – volume: 129 start-page: 1568 year: 2002 ident: 3947_CR21 publication-title: Plant Physiol doi: 10.1104/pp.003707 – volume: 34 start-page: 557 year: 2015 ident: 3947_CR32 publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1772-2 – ident: 3947_CR11 – volume: 10 start-page: e116676 year: 2015 ident: 3947_CR57 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116676 – volume: 38 start-page: 128 year: 2018 ident: 3947_CR26 publication-title: Mol Breeding doi: 10.1007/s11032-018-0888-9 – volume: 31 start-page: 535 year: 2000 ident: 3947_CR2 publication-title: Org Geochem doi: 10.1016/S0146-6380(00)00037-1 – volume: 235 start-page: 39 year: 2012 ident: 3947_CR36 publication-title: Planta doi: 10.1007/s00425-011-1481-1 – volume: 163 start-page: 5 year: 2013 ident: 3947_CR56 publication-title: Plant Physiol doi: 10.1104/pp.113.222737 – volume: 25 start-page: 4000 year: 2013 ident: 3947_CR7 publication-title: Plant Cell doi: 10.1105/tpc.113.117648 – volume: 34 start-page: 285 year: 2000 ident: 3947_CR48 publication-title: Evol Metab Pathw doi: 10.1016/S0079-9920(00)80010-6 – volume: 18 start-page: 399 year: 1995 ident: 3947_CR38 publication-title: J Bryol doi: 10.1179/jbr.1995.18.3.399 – volume: 173 start-page: 944 year: 2017 ident: 3947_CR53 publication-title: Plant Physiol doi: 10.1104/pp.16.01527 – volume: 23 start-page: 1971 year: 2011 ident: 3947_CR54 publication-title: Plant Cell doi: 10.1105/tpc.110.081943 – volume: 138 start-page: 478 year: 2005 ident: 3947_CR49 publication-title: Plant Physiol doi: 10.1104/pp.104.058164 – volume: 30 start-page: 772 year: 2013 ident: 3947_CR28 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 67 start-page: 547 year: 2008 ident: 3947_CR27 publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9339-z – volume: 52 start-page: 2023 year: 2001 ident: 3947_CR45 publication-title: J Exp Bot doi: 10.1093/jexbot/52.363.2023 – volume: 15 start-page: 1020 year: 2003 ident: 3947_CR6 publication-title: Plant Cell doi: 10.1105/tpc.008946 – volume: 26 start-page: 1641 year: 2009 ident: 3947_CR43 publication-title: Mol Biol Evol doi: 10.1093/molbev/msp077 – volume: 12 start-page: 721 year: 2009 ident: 3947_CR29 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.09.009 – volume: 7 start-page: 2115 year: 1995 ident: 3947_CR1 publication-title: Plant Cell – volume: 13 start-page: 215 year: 2013 ident: 3947_CR44 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-13-215 – volume: 33 start-page: 55 year: 1994 ident: 3947_CR8 publication-title: Prog Lipid Res doi: 10.1016/0163-7827(94)90009-4 – volume: 160 start-page: 1164 year: 2012 ident: 3947_CR18 publication-title: Plant Physiol doi: 10.1104/pp.112.201640 – volume: 25 start-page: 402 year: 2001 ident: 3947_CR35 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 15 start-page: R77 year: 2014 ident: 3947_CR40 publication-title: Genome Biol doi: 10.1186/gb-2014-15-6-r77 – volume: 142 start-page: 866 year: 2006 ident: 3947_CR46 publication-title: Plant Physiol doi: 10.1104/pp.106.086785 – volume: 161 start-page: 1615 year: 2013 ident: 3947_CR3 publication-title: Plant Physiol doi: 10.1104/pp.112.208694 – volume: 21 start-page: 657 year: 1982 ident: 3947_CR17 publication-title: Phytochemistry doi: 10.1016/0031-9422(82)83159-2 – volume: 167 start-page: 682 year: 2015 ident: 3947_CR20 publication-title: Plant Physiol doi: 10.1104/pp.114.253195 – volume: 3 start-page: 818 year: 2010 ident: 3947_CR55 publication-title: Cancer Prev Res doi: 10.1158/1940-6207.CAPR-09-0213 – volume: 14 start-page: 246 year: 2014 ident: 3947_CR39 publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0246-y – volume: 8 start-page: 239 year: 2017 ident: 3947_CR31 publication-title: Front Plant Sci – volume: 42 start-page: 51 year: 2003 ident: 3947_CR22 publication-title: Prog Lipid Res doi: 10.1016/S0163-7827(02)00045-0 – volume: 9 start-page: 331 year: 2006 ident: 3947_CR10 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2006.03.016 – volume: 145 start-page: 653 year: 2007 ident: 3947_CR16 publication-title: Plant Physiol doi: 10.1104/pp.107.107300 – volume: 210 start-page: 93 year: 2013 ident: 3947_CR19 publication-title: Plant Sci doi: 10.1016/j.plantsci.2013.05.008 – volume: 13 start-page: 955 year: 2020 ident: 3947_CR51 publication-title: Mol Plant doi: 10.1016/j.molp.2020.05.009 – volume: 60 start-page: 462 year: 2009 ident: 3947_CR33 publication-title: Plant J doi: 10.1111/j.1365-313X.2009.03973.x – volume: 57 start-page: 80 year: 2009 ident: 3947_CR15 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03674.x – volume: 13 start-page: 236 year: 2008 ident: 3947_CR42 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2008.03.003 – volume: 12 start-page: 2001 year: 2000 ident: 3947_CR14 publication-title: Plant Cell doi: 10.1105/tpc.12.10.2001 – volume: 54 start-page: 670 year: 2008 ident: 3947_CR25 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03467.x – volume: 7 start-page: 309 year: 1995 ident: 3947_CR24 publication-title: Plant Cell – volume: 8 start-page: 907 year: 1995 ident: 3947_CR50 publication-title: Plant J doi: 10.1046/j.1365-313X.1995.8060907.x – volume: 8 start-page: 703 year: 1995 ident: 3947_CR23 publication-title: Plant J doi: 10.1046/j.1365-313X.1995.08050703.x – volume: 23 start-page: 398 year: 2006 ident: 3947_CR37 publication-title: Blackwell Oxford – volume: 100 start-page: 1217 year: 2000 ident: 3947_CR9 publication-title: Theor Appl Genet doi: 10.1007/s001220051427 – volume: 150 start-page: 1174 year: 2009 ident: 3947_CR4 publication-title: Plant Physiol doi: 10.1104/pp.109.137497 – volume: 73 start-page: 733 year: 2013 ident: 3947_CR41 publication-title: Plant J doi: 10.1111/tpj.12060 – volume: 59 start-page: 683 year: 2008 ident: 3947_CR47 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.103006.093219 – volume: 67 start-page: 207 year: 2016 ident: 3947_CR13 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043015-111929 |
SSID | ssj0002503 |
Score | 2.4475665 |
Snippet | Key message
A single nucleotide mutation of
BoCER2
is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was... A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed for... Key message Key message A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was... Key messageA single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was developed... KEY MESSAGE: A single nucleotide mutation of BoCER2 is the primary cause of the wax deficiency in cabbage. An effective allele-specific KASP marker was... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4055 |
SubjectTerms | acyltransferases Agriculture Alleles Analysis Biochemistry Biomedical and Life Sciences biosynthesis Biotechnology Brassica - genetics Brassica oleracea Brassica oleracea var. capitata cabbage Chromosome 1 Chromosome Mapping Cloning, Molecular Complementation Deficient mutant Endoplasmic reticulum Epicuticular wax Fatty acids flowers Gene Expression Regulation, Plant Gene mapping Genes Genes, Plant Genes, Recessive Genetic analysis Genetic Complementation Test Genetic Linkage Genetic research Genetic translation Genomes Genomics leaves Life Sciences Linkage analysis Localization loci Marker-assisted selection Monomers mutants Mutation Original Article Phenotype Phenotypes Phylogeny Physiological aspects Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Leaves Plants recessive genes Sequence analysis siliques Stop codon Transcription Translation termination very long chain fatty acids Waxes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCAkeEIxfGQMZhASIZSRx7CRPqEytNth4GFTqm-U49lRpSrakFez_4A_mznEzOom-Jpc48Z3Pn-27-wh5WwhrYSbhYVQZE6bKsDDXiQiF4jZmeVlwR_d28l0cTtOvMz7zG26dD6tc-UTnqKtG4x75J4DpHEkhePr54jJE1ig8XfUUGrfJHSxdhiFd2WxYcOH0PkTNASxJfNKMS51zZ0ohBihErEhhoK1NTDfd8z_z040DUzcPTR6SBx5A0lGv8Ufklqm3yf3RWeuLaJhtcrcnmLx6TP70ebjWb8xRVVcUTGveEynRxsIVOj6AxdxkfDo9SUJ6fPRtTMGoDPVB7JiuTvXS1ehQLf2lftNy3nRXNSDHbt7ReU21KktwS_T9lxagOLRFm3PTKm0UPd6H9tp9EEF2kgVe-PCETCfjnweHoedhCDXAiUUoSm4TVpSRskWlCpVnZVYpZarI6DSOcmtMqQuRR1wjABWcaxHHrNI2hfVKZNlTslU3tXlOaB5zcAgAMlhWprkCDxcznuosq2wsDEsCEq-UILUvUo5cGedyKK_sFCdBcdIpTrKAfByeuehLdGyUfoO6lVj7osbgmjO17Dp59ONUjkSOfPKwQAzIOy9kG2heK5-rAD-B5bLWJHfXJGFw6vXbKxOS3jl08tqUA_J6uI1PYsBbbZolymSI1JngG2QEniEz6MuAPOvNc-gAfLtgWRGQvZW9Xn_A_3tnZ_P3viD3EhwyLpxnl2wt2qV5CaBsUb5yI-8vh4EsoQ priority: 102 providerName: ProQuest |
Title | Identification and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata L.) |
URI | https://link.springer.com/article/10.1007/s00122-021-03947-3 https://www.ncbi.nlm.nih.gov/pubmed/34546379 https://www.proquest.com/docview/2595783454 https://www.proquest.com/docview/2575071365 https://www.proquest.com/docview/2636453237 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db5RAEN_YNib6YLR-UetlNSZqlAZYdoHHu4azte3FnF5yfSLLsttc0kADd9H-H_7BzsAeeo028YkEBhZ2Zmd-w84HIW8SYQxYEu56hdZuKDVzYxUIV0hufBbnCW_bvZ1NxNEs_Dznc5sU1qyj3ddbkq2m7pPd2l0gF0MKPJaEsDS2yA5H3x2keBYMe_0LRr2PlQMwEthUmb8_Y8Mc3VTKf1ilG9ukrfUZPyQPLGykw47Pj8gdXe6S-8OL2pbO0LvkbtdW8vox-dll3xr7O47KsqAgUIuufRKtDJyh6SG4cON0OjsLXHp6fJJSECVNbeg6JqlTtWorc8iafpc_aL6omusS8GKzaOiipErmOSgj-m5UAwCHsWh1qWuptKSnBzBefQAk2JNkiSfePyGzcfrt8Mi13RdcBSBi6Yqcm4AluSdNUshExlEeFVLqwtMq9L3YaJ2rRMQeVwg7BedK-D4rlAnBS_EMe0q2y6rUzwmNfQ5qAKAFi_IwlqDXfMZDFUWF8YVmgUP8NRMyZUuTY4eMy6wvqtwyLgPGZS3jMuaQD_09V11hjlupXyNvM6x4UWJIzYVcNU12_HWaDUWMXeTBLXTIW0tkKhheSZuhAB-BRbI2KPc3KGFJqs3LaxHKrEpoMvAzOXY14aFDXvWX8U4Mcyt1tUKaCPE5E_wWGoE7xwzm0iHPOvHsJwCfLliUOOTjWl5_v8C_Z2fv_8hfkHsBLqE2qGefbC_rlX4J0GyZD8hWNI8GZGc4Ho0mePx0fpLCcZROvkwH7Tr9BcP3Lu8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQ8IBhfgQEGgQBBRhLHTvKAUDdatbSdUFmlvRnHsadKUzKSVqP_B38HfyPnfI1Oom97TS5x4jvf_c6-D4ReRUxrsCTUdhKlbF8oYofSYzYTVLskjCNatnubHLLBzP96TI-30J8mF8aEVTY6sVTUSSbNHvlHgOnUNIWg_uezn7bpGmVOV5sWGpVYjNTqHFy24tPwC_D3tef1e0cHA7vuKmBLMI4Lm8VUeySKHaGjREQiDOIgEUIljpK-64RaqVhGLHSoNHCKUSqZ65JEah_Qt6MJvPca2vYJuDIdtL3fO_w2bXU_AIo2Tg-AkFen6ZTJeuUplm1CIhwS-bC010zhZYPwj0W8dERbWr7-HXS7hqy4W8nYXbSl0h10q3uS12U71A66XrW0XN1Dv6vMX11vBWKRJhiEeV61bsKZhiu4dwDuY783nU08G4-Hox4GMVa4Dps3CfJYLsuqICLH5-IXjudZsUoBqxbzAs9TLEUcgyLEb_dzAP8wFs5OVS6kEni8B-Ple0Bi-qEszIV399HsSnj0AHXSLFWPEA5dCioIYA0JYj8UoFNdQn0ZBIl2mSKehdyGCVzWZdFNd45T3hZ0LhnHgXG8ZBwnFnrfPnNWFQXZSP3S8JabahupCec5Ecui4MPvU95loelgDy6phd7URDqD4aWosyPgJ0yBrjXK3TVKUAdy_XYjQrxWRwW_WDwWetHeNk-aELtUZUtDExjfgDC6gYaZU2sCc2mhh5V4thNg3s5IEFnoQyOvFx_w_9l5vPl7n6Mbg6PJmI-Hh6Mn6KZnlk8ZTLSLOot8qZ4CJFzEz-p1iNGPq176fwEkSWvE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAcEJSXocCCQIDAre31ru0DQqFN1JC2qgqRcjPr9W4VqbKLnajkf_Br-HXM-FVSidx6tcevnbd3Zj5CXkfCGPAk3HZSrW1famaHyhO2kNy4LEwiXsG9HRyKvbH_dcIna-RP2wuDZZWtTawMdZor_Ee-DWE6R1AI7m-bpiziaHfw-eynjQhSuNPawmnUIjLSi3NI38pPw13g9RvPG_S_7-zZDcKArcBRzmyRcOOxKHGkiVIZyTBIglRKnTpa-a4TGq0TFYnQ4QpDK8G5Eq7LUmV8iMQdw-C-18j1gHEXdSyYdMkehhZdxR6ERF7TsFO17VX7WTYWRzgs8kHJl5ziZdfwj2-8tFlb-cDBXXKnCV5pr5a2e2RNZxvkdu-kaAZ46A1yowa3XNwnv-seYNP8FKQySymI9bQGcaK5gSO0vwOJ5KB_PD7wbLo_HPUpCLSmTQE9tspTNa_mg8iCnstfNJnm5SKDqLWclnSaUSWTBEwiffelgDQAnkXzU11IpSXd34LnFVtAgsgoMzzw_gEZXwmHHpL1LM_0Y0JDl4MxggCHBYkfSrCuLuO-CoLUuEIzzyJuy4RYNQPSEafjNO5GO1eMi4FxccW4mFnkQ3fNWT0eZCX1K-RtjHM3MpTgEzkvy3j47TjuiRCx7CE5tcjbhsjk8Hglmz4J-Agc1bVEublECYZBLZ9uRShuDFMZX6iRRV52p_FKLLbLdD5HmgCzBCb4ChqB-9cM1tIij2rx7BYA7y5YEFnkYyuvFy_w_9V5svp9X5CboPDx_vBw9JTc8lB7qqqiTbI-K-b6GcSGs-R5pYSU_Lhqrf8LV-lulA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+and+validation+of+an+ECERIFERUM2-+LIKE+gene+controlling+cuticular+wax+biosynthesis+in+cabbage+%28Brassica+oleracea+L.+var.+capitata+L.%29&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Ji%2C+Jialei&rft.au=Cao%2C+Wenxue&rft.au=Tong%2C+Long&rft.au=Fang%2C+Zhiyuan&rft.date=2021-12-01&rft.issn=0040-5752&rft.volume=134&rft.issue=12+p.4055-4066&rft.spage=4055&rft.epage=4066&rft_id=info:doi/10.1007%2Fs00122-021-03947-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |