CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes rema...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 1; pp. 513 - 521 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1821893117 |
Cover
Loading…
Summary: | Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewers: R.K.T., University of Cologne; and A.V., Memorial Sloan Kettering Cancer Center. Author contributions: S.R.N. and T.J. designed research; S.R.N., W.M.R., E.H.A.-G., and K.L.M. performed research; S.R.N., A.B., J.M.S., R.T.B., and T.J. analyzed data; and S.R.N. and T.J. wrote the paper. Contributed by Tyler Jacks, November 19, 2019 (sent for review December 24, 2018; reviewed by Roman K. Thomas and Andrea Ventura) |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1821893117 |