CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes rema...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 1; pp. 513 - 521 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1821893117 |
Cover
Abstract | Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. |
---|---|
AbstractList | SCLC is a deadly disease for which treatment outcomes have not improved significantly for over 30 y due to the lack of effective new therapies. Large-scale sequencing studies have identified many recurrently mutated genes in human SCLC tumors, whose functions remain poorly understood. We have adapted the CRISPR-Cas9 system to rapidly model mutations in target genes in a mouse model of SCLC. Using this system, we show that the gene
p107
functions as a tumor suppressor gene in SCLC. Furthermore, loss of
p107
confers a distinct tumor phenotype from loss of its close relative
p130
. Our results demonstrate the utility of our system for better understanding the genetic factors that contribute to SCLC progression.
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene
p107
significantly accelerates tumor progression. Notably, compared with loss of the closely related gene
p130
, loss of
p107
results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of
p107
or
p130
. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130 , loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 . Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene significantly accelerates tumor progression. Notably, compared with loss of the closely related gene , loss of results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of or Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease. |
Author | Bhutkar, Arjun Rideout, William M. Jacks, Tyler Schenkel, Jason M. Akama-Garren, Elliot H. Mercer, Kim L. Bronson, Roderick T. Ng, Sheng Rong |
Author_xml | – sequence: 1 givenname: Sheng Rong surname: Ng fullname: Ng, Sheng Rong – sequence: 2 givenname: William M. surname: Rideout fullname: Rideout, William M. – sequence: 3 givenname: Elliot H. surname: Akama-Garren fullname: Akama-Garren, Elliot H. – sequence: 4 givenname: Arjun surname: Bhutkar fullname: Bhutkar, Arjun – sequence: 5 givenname: Kim L. surname: Mercer fullname: Mercer, Kim L. – sequence: 6 givenname: Jason M. surname: Schenkel fullname: Schenkel, Jason M. – sequence: 7 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. – sequence: 8 givenname: Tyler surname: Jacks fullname: Jacks, Tyler |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31871154$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vFSEUxYmpsa_VtSsNiRs308IMMLAxMS9-NGmiqbomzHB58jIDI8w08b-X6atP7cINcMPvHO7lnKGTEAMg9JySC0ra5nIKJl9QWVOpGkrbR2hDiaKVYIqcoA0hdVtJVrNTdJbznhCiuCRP0GlDZUspZxs0bW-uvny-qUaw3sxg8RgtDD7ssAkWuyX0s4_BDPjWDN6atcDR4b7criXgeRljwnmZpgQ5l-MOAmTsA86jGQbcQ1mGpRgWTQ_pKXrszJDh2f1-jr69f_d1-7G6_vThavv2uuo5UXMlDIPOMAXC1lbImgOXnIBwlrVOCFNbEF0LogHjWkmoY0x20CnjnLUd5c05enPwnZauDNdDmJMZ9JT8aNJPHY3X_94E_13v4q0WivO6WQ1e3xuk-GOBPOvR53UaEyAuWddNQ5packUK-uoBuo9LKr92R3HKaGmxUC__7ujYyu8wCnB5APoUc07gjggleo1br3HrP3EXBX-g6P18F1IZyQ__0b046PZ5jun4TC2kapmizS-a3Lts |
CitedBy_id | crossref_primary_10_1177_15353702221074293 crossref_primary_10_1101_cshperspect_a041348 crossref_primary_10_1016_j_smim_2020_101406 crossref_primary_10_1016_j_phymed_2021_153830 crossref_primary_10_1016_j_biopha_2022_113011 crossref_primary_10_1093_hmg_ddab119 crossref_primary_10_1101_cshperspect_a041384 crossref_primary_10_1016_j_bbrc_2021_12_023 crossref_primary_10_1038_s41568_022_00441_w crossref_primary_10_1038_s41587_023_01783_y crossref_primary_10_1073_pnas_2322917121 crossref_primary_10_1016_j_ijbiomac_2021_10_029 crossref_primary_10_1155_2022_1892459 crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_3390_cancers13050963 crossref_primary_10_1038_s41388_023_02929_7 crossref_primary_10_1101_gad_338228_120 crossref_primary_10_1158_2159_8290_CD_21_0441 crossref_primary_10_1002_ijc_34342 crossref_primary_10_1186_s12943_023_01738_6 crossref_primary_10_32604_oncologie_2022_021863 crossref_primary_10_1016_j_immuni_2021_01_011 crossref_primary_10_1111_pin_13040 crossref_primary_10_1186_s12943_022_01661_2 crossref_primary_10_3724_abbs_2023080 crossref_primary_10_1002_eji_202048712 crossref_primary_10_1002_cac2_12366 crossref_primary_10_3390_cancers13195025 crossref_primary_10_7554_eLife_70691 crossref_primary_10_3389_fcell_2021_641618 crossref_primary_10_34133_bmr_0023 crossref_primary_10_1038_s41572_020_00235_0 crossref_primary_10_3390_cancers13010014 crossref_primary_10_34172_bi_2024_30087 crossref_primary_10_1038_s41388_021_01723_7 crossref_primary_10_1080_10428194_2020_1805740 crossref_primary_10_7554_eLife_66222 crossref_primary_10_1007_s11033_022_07766_7 crossref_primary_10_1007_s00432_022_04160_5 crossref_primary_10_1007_s44178_024_00134_4 crossref_primary_10_1007_s12010_023_04708_2 crossref_primary_10_1007_s10142_023_01117_w crossref_primary_10_12717_DR_2023_27_1_1 crossref_primary_10_3389_fgene_2024_1364742 crossref_primary_10_1016_j_ccell_2023_03_015 crossref_primary_10_1186_s40164_023_00457_4 crossref_primary_10_1007_s13205_021_02680_4 crossref_primary_10_1016_j_lfs_2020_118525 crossref_primary_10_32604_oncologie_2022_019415 crossref_primary_10_1093_narcan_zcaa026 crossref_primary_10_1111_cge_14424 crossref_primary_10_1002_biot_202300077 crossref_primary_10_1186_s40364_024_00701_x crossref_primary_10_1038_s41417_020_00256_7 crossref_primary_10_1186_s40164_024_00570_y |
Cites_doi | 10.2165/11597640-000000000-00000 10.1038/nprot.2009.95 10.1016/j.immuni.2018.09.020 10.1158/0008-5472.CAN-09-1359 10.1038/nature14664 10.1016/j.cell.2017.10.025 10.1038/nature12213 10.1158/1541-7786.MCR-13-0554 10.1016/j.cell.2013.06.044 10.1038/ng.2396 10.1101/gad.2046711 10.1073/pnas.0506580102 10.1158/1541-7786.MCR-17-0576 10.1038/nature13906 10.1038/nbt.3836 10.1038/nmeth.2600 10.1016/S0893-6080(00)00026-5 10.1126/science.1232033 10.3389/fimmu.2016.00407 10.1038/nm.4407 10.1016/j.cell.2016.05.052 10.1158/2159-8290.CD-18-0385 10.1038/nrc3950 10.1038/sj.gt.3301197 10.1038/nbt.3437 10.1038/nature22323 10.1038/nature20777 10.1158/2159-8290.CD-15-0854 10.1038/srep16836 10.18632/oncotarget.11583 10.1038/ncomms15999 10.1126/science.aaf7907 10.1038/nmeth.4108 10.1016/j.cell.2014.02.031 10.1183/09031936.00105009 10.1038/nature13589 10.1186/1471-2105-11-94 10.1016/S0093-7754(01)90072-7 10.1126/science.1231143 10.1002/cncr.29098 10.1016/j.celrep.2014.10.035 10.1200/JCO.2005.04.4859 10.1038/nature09881 10.1016/j.cell.2014.09.014 10.1038/nbt.3155 10.1186/1747-1028-5-9 10.1016/S1535-6108(03)00220-4 10.1146/annurev-immunol-032713-120252 10.1128/MCB.16.12.6965 10.7554/eLife.00471 10.1002/emmm.201303297 10.1016/j.celrep.2016.06.020 10.1038/nm.4285 10.1016/j.ccell.2016.12.005 10.1038/nmeth.3312 10.1016/j.molcel.2014.04.022 10.1158/2159-8290.CD-17-0250 10.1126/science.1192272 10.1016/j.cell.2014.09.039 10.1101/gad.267393.115 10.1038/nature13902 10.3389/fimmu.2016.00244 10.1038/nmeth.3047 10.1186/1471-2105-12-323 10.1016/j.cmet.2016.07.001 10.1186/gb-2009-10-3-r25 10.1158/0008-5472.CAN-09-4228 10.18637/jss.v076.i02 10.1038/nbt.3390 10.1126/science.1235122 10.1101/gad.264861.115 10.1016/j.trac.2013.03.013 10.1038/ng.2405 10.1038/nature14136 10.1038/s41598-017-17204-5 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jan 7, 2020 Copyright © 2020 the Author(s). Published by PNAS. 2020 |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jan 7, 2020 – notice: Copyright © 2020 the Author(s). Published by PNAS. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1821893117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 521 |
ExternalDocumentID | PMC6955235 31871154 10_1073_pnas_1821893117 26897491 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007753 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: P30 CA014051 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: P30-CA14051 – fundername: Virginia and D.K. Ludwig Fund for Cancer Research (D.K. Ludwig Fund) grantid: N.A. – fundername: Howard Hughes Medical Institute (HHMI) grantid: N.A. |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF DOOOF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADULT EJD |
ID | FETCH-LOGICAL-c509t-6a4eba49e6d2d6825e5850e6fd47f66a2de6b7e63eaf7801f448beb9affddb153 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:12:28 EDT 2025 Fri Sep 05 08:39:07 EDT 2025 Mon Jun 30 08:15:49 EDT 2025 Wed Feb 19 02:07:26 EST 2025 Thu Apr 24 23:08:25 EDT 2025 Tue Jul 01 03:40:13 EDT 2025 Thu May 29 09:13:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CRISPR p107 small cell lung cancer GEMM |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-6a4eba49e6d2d6825e5850e6fd47f66a2de6b7e63eaf7801f448beb9affddb153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewers: R.K.T., University of Cologne; and A.V., Memorial Sloan Kettering Cancer Center. Author contributions: S.R.N. and T.J. designed research; S.R.N., W.M.R., E.H.A.-G., and K.L.M. performed research; S.R.N., A.B., J.M.S., R.T.B., and T.J. analyzed data; and S.R.N. and T.J. wrote the paper. Contributed by Tyler Jacks, November 19, 2019 (sent for review December 24, 2018; reviewed by Roman K. Thomas and Andrea Ventura) |
ORCID | 0000-0002-8525-483X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6955235 |
PMID | 31871154 |
PQID | 2335141780 |
PQPubID | 42026 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955235 proquest_miscellaneous_2330328590 proquest_journals_2335141780 pubmed_primary_31871154 crossref_primary_10_1073_pnas_1821893117 crossref_citationtrail_10_1073_pnas_1821893117 jstor_primary_26897491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-07 |
PublicationDateYYYYMMDD | 2020-01-07 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Papagiannakopoulos T. (e_1_3_4_70_2) 2016; 24 Jia D. (e_1_3_4_17_2) 2018; 8 Huang J. (e_1_3_4_32_2) 2017; 8 Peifer M. (e_1_3_4_20_2) 2012; 44 Konermann S. (e_1_3_4_44_2) 2015; 517 Langmead B. (e_1_3_4_65_2) 2009; 10 Jinek M. (e_1_3_4_22_2) 2013; 2 Frieda K. L. (e_1_3_4_53_2) 2017; 541 Dimitrova N. (e_1_3_4_69_2) 2016; 6 Li C. M. C. (e_1_3_4_68_2) 2015; 29 Meuwissen R. (e_1_3_4_7_2) 2003; 4 Vogelstein B. (e_1_3_4_18_2) 2013; 339 Platt R. J. (e_1_3_4_28_2) 2014; 159 Biton A. (e_1_3_4_75_2) 2014; 9 Byers L. A. (e_1_3_4_4_2) 2015; 121 Nissim L. (e_1_3_4_34_2) 2014; 54 Smith E. J. (e_1_3_4_55_2) 1996; 16 Lawrence M. S. (e_1_3_4_19_2) 2013; 499 Sautès-Fridman C. (e_1_3_4_59_2) 2016; 7 Dow L. E. (e_1_3_4_29_2) 2015; 33 Subramanian A. (e_1_3_4_39_2) 2005; 102 McFadden D. G. (e_1_3_4_9_2) 2014; 156 Haurwitz R. E. (e_1_3_4_33_2) 2010; 329 Sánchez-Rivera F. J. (e_1_3_4_40_2) 2015; 15 Mollaoglu G. (e_1_3_4_16_2) 2017; 31 George J. (e_1_3_4_5_2) 2015; 524 Wirt S. E. (e_1_3_4_56_2) 2010; 5 Roper J. (e_1_3_4_31_2) 2017; 35 Chavez A. (e_1_3_4_42_2) 2015; 12 Liao H.-K. (e_1_3_4_47_2) 2017; 171 Denny S. K. (e_1_3_4_13_2) 2016; 166 Chuang C. H. (e_1_3_4_49_2) 2017; 23 Hiraoka N. (e_1_3_4_58_2) 2016; 7 Rudin C. M. (e_1_3_4_21_2) 2012; 44 Bullard J. H. (e_1_3_4_67_2) 2010; 11 Chiou S.-H. (e_1_3_4_30_2) 2015; 29 Maddalo D. (e_1_3_4_26_2) 2014; 516 Chiou S. H. (e_1_3_4_50_2) 2017; 7 Mollaoglu G. (e_1_3_4_72_2) 2018; 49 McKenna A. (e_1_3_4_51_2) 2016; 353 DuPage M. (e_1_3_4_35_2) 2009; 4 Gilbert L. A. (e_1_3_4_41_2) 2013; 154 Govindan R. (e_1_3_4_1_2) 2006; 24 Rutledge D. N. (e_1_3_4_74_2) 2013; 50 Anderson R. D. (e_1_3_4_63_2) 2000; 7 Li B. (e_1_3_4_66_2) 2011; 12 Tanenbaum M. E. (e_1_3_4_43_2) 2014; 159 Lim J. S. (e_1_3_4_37_2) 2017; 545 Nevins J. R. (e_1_3_4_54_2) 1998; 9 Dahlman J. E. (e_1_3_4_45_2) 2015; 33 Sanjana N. E. (e_1_3_4_36_2) 2014; 11 Dooley A. L. (e_1_3_4_12_2) 2011; 25 Schaffer B. E. (e_1_3_4_8_2) 2010; 70 Simpson D. S. (e_1_3_4_57_2) 2009; 69 Doench J. G. (e_1_3_4_64_2) 2016; 34 Perez-Pinera P. (e_1_3_4_46_2) 2013; 10 Mali P. (e_1_3_4_24_2) 2013; 339 Huijbers I. J. (e_1_3_4_11_2) 2014; 6 Cui M. (e_1_3_4_10_2) 2014; 12 Sánchez-Rivera F. J. (e_1_3_4_27_2) 2014; 516 Xia Y. (e_1_3_4_61_2) 2018; 16 Wistuba I. I. (e_1_3_4_6_2) 2001; 28 Buckley C. D. (e_1_3_4_60_2) 2015; 33 Califano R. (e_1_3_4_2_2) 2012; 72 Xue W. (e_1_3_4_25_2) 2014; 514 Bankhead P. (e_1_3_4_76_2) 2017; 7 Semenova E. A. (e_1_3_4_14_2) 2016; 16 Demedts I. K. (e_1_3_4_3_2) 2010; 35 Hyvärinen A. (e_1_3_4_38_2) 2000; 13 Wu N. (e_1_3_4_15_2) 2016; 7 Winslow M. M. (e_1_3_4_48_2) 2011; 473 e_1_3_4_73_2 Cong L. (e_1_3_4_23_2) 2013; 339 Kalhor R. (e_1_3_4_52_2) 2017; 14 Akama-Garren E. H. (e_1_3_4_62_2) 2016; 6 Romero R. (e_1_3_4_71_2) 2017; 23 |
References_xml | – volume: 72 start-page: 471 year: 2012 ident: e_1_3_4_2_2 article-title: Management of small cell lung cancer: Recent developments for optimal care publication-title: Drugs doi: 10.2165/11597640-000000000-00000 – volume: 4 start-page: 1064 year: 2009 ident: e_1_3_4_35_2 article-title: Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.95 – volume: 49 start-page: 764 year: 2018 ident: e_1_3_4_72_2 article-title: The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment publication-title: Immunity doi: 10.1016/j.immuni.2018.09.020 – volume: 69 start-page: 8733 year: 2009 ident: e_1_3_4_57_2 article-title: Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-1359 – volume: 524 start-page: 47 year: 2015 ident: e_1_3_4_5_2 article-title: Comprehensive genomic profiles of small cell lung cancer publication-title: Nature doi: 10.1038/nature14664 – volume: 171 start-page: 1495 year: 2017 ident: e_1_3_4_47_2 article-title: In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation publication-title: Cell doi: 10.1016/j.cell.2017.10.025 – volume: 499 start-page: 214 year: 2013 ident: e_1_3_4_19_2 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 – volume: 12 start-page: 654 year: 2014 ident: e_1_3_4_10_2 article-title: PTEN is a potent suppressor of small cell lung cancer publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-13-0554 – volume: 154 start-page: 442 year: 2013 ident: e_1_3_4_41_2 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 9 start-page: 585 year: 1998 ident: e_1_3_4_54_2 article-title: Toward an understanding of the functional complexity of the E2F and retinoblastoma families publication-title: Cell Growth Differ. – volume: 44 start-page: 1104 year: 2012 ident: e_1_3_4_20_2 article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer publication-title: Nat. Genet. doi: 10.1038/ng.2396 – volume: 25 start-page: 1470 year: 2011 ident: e_1_3_4_12_2 article-title: Nuclear factor I/B is an oncogene in small cell lung cancer publication-title: Genes Dev. doi: 10.1101/gad.2046711 – volume: 102 start-page: 15545 year: 2005 ident: e_1_3_4_39_2 article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506580102 – volume: 16 start-page: 825 year: 2018 ident: e_1_3_4_61_2 article-title: Targeting CREB pathway suppresses small cell lung cancer publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0576 – volume: 516 start-page: 428 year: 2014 ident: e_1_3_4_27_2 article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing publication-title: Nature doi: 10.1038/nature13906 – volume: 35 start-page: 569 year: 2017 ident: e_1_3_4_31_2 article-title: In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3836 – volume: 10 start-page: 973 year: 2013 ident: e_1_3_4_46_2 article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors publication-title: Nat. Methods doi: 10.1038/nmeth.2600 – volume: 13 start-page: 411 year: 2000 ident: e_1_3_4_38_2 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 339 start-page: 823 year: 2013 ident: e_1_3_4_24_2 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 7 start-page: 407 year: 2016 ident: e_1_3_4_59_2 article-title: Tertiary lymphoid structures in cancers: Prognostic value, regulation, and manipulation for therapeutic intervention publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00407 – volume: 23 start-page: 1362 year: 2017 ident: e_1_3_4_71_2 article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis publication-title: Nat. Med. doi: 10.1038/nm.4407 – volume: 166 start-page: 328 year: 2016 ident: e_1_3_4_13_2 article-title: Nfib promotes metastasis through a widespread increase in chromatin accessibility publication-title: Cell doi: 10.1016/j.cell.2016.05.052 – volume: 8 start-page: 1422 year: 2018 ident: e_1_3_4_17_2 article-title: Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-0385 – volume: 15 start-page: 387 year: 2015 ident: e_1_3_4_40_2 article-title: Applications of the CRISPR-Cas9 system in cancer biology publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3950 – volume: 7 start-page: 1034 year: 2000 ident: e_1_3_4_63_2 article-title: A simple method for the rapid generation of recombinant adenovirus vectors publication-title: Gene Ther. doi: 10.1038/sj.gt.3301197 – volume: 34 start-page: 184 year: 2016 ident: e_1_3_4_64_2 article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3437 – volume: 545 start-page: 360 year: 2017 ident: e_1_3_4_37_2 article-title: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer publication-title: Nature doi: 10.1038/nature22323 – volume: 541 start-page: 107 year: 2017 ident: e_1_3_4_53_2 article-title: Synthetic recording and in situ readout of lineage information in single cells publication-title: Nature doi: 10.1038/nature20777 – volume: 6 start-page: 188 year: 2016 ident: e_1_3_4_69_2 article-title: Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0854 – volume: 6 start-page: 16836 year: 2016 ident: e_1_3_4_62_2 article-title: A modular assembly platform for rapid generation of DNA constructs publication-title: Sci. Rep. doi: 10.1038/srep16836 – volume: 7 start-page: 57514 year: 2016 ident: e_1_3_4_15_2 article-title: NFIB overexpression cooperates with Rb/p53 deletion to promote small cell lung cancer publication-title: Oncotarget doi: 10.18632/oncotarget.11583 – volume: 8 start-page: 15999 year: 2017 ident: e_1_3_4_32_2 article-title: Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma publication-title: Nat. Commun. doi: 10.1038/ncomms15999 – volume: 353 start-page: aaf7907 year: 2016 ident: e_1_3_4_51_2 article-title: Whole-organism lineage tracing by combinatorial and cumulative genome editing publication-title: Science doi: 10.1126/science.aaf7907 – volume: 14 start-page: 195 year: 2017 ident: e_1_3_4_52_2 article-title: Rapidly evolving homing CRISPR barcodes publication-title: Nat. Methods doi: 10.1038/nmeth.4108 – volume: 156 start-page: 1298 year: 2014 ident: e_1_3_4_9_2 article-title: Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing publication-title: Cell doi: 10.1016/j.cell.2014.02.031 – volume: 35 start-page: 202 year: 2010 ident: e_1_3_4_3_2 article-title: Treatment of extensive-stage small cell lung carcinoma: Current status and future prospects publication-title: Eur. Respir. J. doi: 10.1183/09031936.00105009 – volume: 514 start-page: 380 year: 2014 ident: e_1_3_4_25_2 article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver publication-title: Nature doi: 10.1038/nature13589 – volume: 11 start-page: 94 year: 2010 ident: e_1_3_4_67_2 article-title: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments publication-title: BMC Bioinf. doi: 10.1186/1471-2105-11-94 – volume: 28 start-page: 3 year: 2001 ident: e_1_3_4_6_2 article-title: Molecular genetics of small cell lung carcinoma publication-title: Semin. Oncol. doi: 10.1016/S0093-7754(01)90072-7 – volume: 339 start-page: 819 year: 2013 ident: e_1_3_4_23_2 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 121 start-page: 664 year: 2015 ident: e_1_3_4_4_2 article-title: Small cell lung cancer: Where do we go from here? publication-title: Cancer doi: 10.1002/cncr.29098 – volume: 9 start-page: 1235 year: 2014 ident: e_1_3_4_75_2 article-title: Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.10.035 – volume: 24 start-page: 4539 year: 2006 ident: e_1_3_4_1_2 article-title: Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: Analysis of the surveillance, epidemiologic, and end results database publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.04.4859 – volume: 473 start-page: 101 year: 2011 ident: e_1_3_4_48_2 article-title: Suppression of lung adenocarcinoma progression by Nkx2-1 publication-title: Nature doi: 10.1038/nature09881 – volume: 159 start-page: 440 year: 2014 ident: e_1_3_4_28_2 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell doi: 10.1016/j.cell.2014.09.014 – volume: 33 start-page: 390 year: 2015 ident: e_1_3_4_29_2 article-title: Inducible in vivo genome editing with CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3155 – volume: 5 start-page: 9 year: 2010 ident: e_1_3_4_56_2 article-title: p107 in the public eye: An Rb understudy and more publication-title: Cell Div. doi: 10.1186/1747-1028-5-9 – volume: 4 start-page: 181 year: 2003 ident: e_1_3_4_7_2 article-title: Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00220-4 – volume: 33 start-page: 715 year: 2015 ident: e_1_3_4_60_2 article-title: Stromal cells in chronic inflammation and tertiary lymphoid organ formation publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120252 – volume: 16 start-page: 6965 year: 1996 ident: e_1_3_4_55_2 article-title: The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.12.6965 – volume: 2 start-page: e00471 year: 2013 ident: e_1_3_4_22_2 article-title: RNA-programmed genome editing in human cells publication-title: eLife doi: 10.7554/eLife.00471 – volume: 6 start-page: 212 year: 2014 ident: e_1_3_4_11_2 article-title: Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201303297 – volume: 16 start-page: 631 year: 2016 ident: e_1_3_4_14_2 article-title: Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.06.020 – volume: 23 start-page: 291 year: 2017 ident: e_1_3_4_49_2 article-title: Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis publication-title: Nat. Med. doi: 10.1038/nm.4285 – volume: 31 start-page: 270 year: 2017 ident: e_1_3_4_16_2 article-title: MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.12.005 – volume: 12 start-page: 326 year: 2015 ident: e_1_3_4_42_2 article-title: Highly efficient Cas9-mediated transcriptional programming publication-title: Nat. Methods doi: 10.1038/nmeth.3312 – volume: 54 start-page: 698 year: 2014 ident: e_1_3_4_34_2 article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.022 – volume: 7 start-page: 1184 year: 2017 ident: e_1_3_4_50_2 article-title: BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-17-0250 – volume: 329 start-page: 1355 year: 2010 ident: e_1_3_4_33_2 article-title: Sequence- and structure-specific RNA processing by a CRISPR endonuclease publication-title: Science doi: 10.1126/science.1192272 – volume: 159 start-page: 635 year: 2014 ident: e_1_3_4_43_2 article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell doi: 10.1016/j.cell.2014.09.039 – volume: 29 start-page: 1850 year: 2015 ident: e_1_3_4_68_2 article-title: Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis publication-title: Genes Dev. doi: 10.1101/gad.267393.115 – volume: 516 start-page: 423 year: 2014 ident: e_1_3_4_26_2 article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system publication-title: Nature doi: 10.1038/nature13902 – volume: 7 start-page: 244 year: 2016 ident: e_1_3_4_58_2 article-title: Tertiary lymphoid organs in cancer tissues publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00244 – volume: 11 start-page: 783 year: 2014 ident: e_1_3_4_36_2 article-title: Improved vectors and genome-wide libraries for CRISPR screening publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 12 start-page: 323 year: 2011 ident: e_1_3_4_66_2 article-title: RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-323 – volume: 24 start-page: 324 year: 2016 ident: e_1_3_4_70_2 article-title: Circadian rhythm disruption promotes lung tumorigenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.07.001 – volume: 10 start-page: R25 year: 2009 ident: e_1_3_4_65_2 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 70 start-page: 3877 year: 2010 ident: e_1_3_4_8_2 article-title: Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4228 – ident: e_1_3_4_73_2 doi: 10.18637/jss.v076.i02 – volume: 33 start-page: 1159 year: 2015 ident: e_1_3_4_45_2 article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3390 – volume: 339 start-page: 1546 year: 2013 ident: e_1_3_4_18_2 article-title: Cancer genome landscapes publication-title: Science doi: 10.1126/science.1235122 – volume: 29 start-page: 1576 year: 2015 ident: e_1_3_4_30_2 article-title: Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing publication-title: Genes Dev. doi: 10.1101/gad.264861.115 – volume: 50 start-page: 22 year: 2013 ident: e_1_3_4_74_2 article-title: Independent components analysis with the JADE algorithm publication-title: TrAC Trends Analyt. Chem. doi: 10.1016/j.trac.2013.03.013 – volume: 44 start-page: 1111 year: 2012 ident: e_1_3_4_21_2 article-title: Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer publication-title: Nat. Genet. doi: 10.1038/ng.2405 – volume: 517 start-page: 583 year: 2015 ident: e_1_3_4_44_2 article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex publication-title: Nature doi: 10.1038/nature14136 – volume: 7 start-page: 16878 year: 2017 ident: e_1_3_4_76_2 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 |
SSID | ssj0009580 |
Score | 2.5293133 |
Snippet | Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic... SCLC is a deadly disease for which treatment outcomes have not improved significantly for over 30 y due to the lack of effective new therapies. Large-scale... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 513 |
SubjectTerms | Animal models Animals Apoptosis Apoptosis - genetics Biological Sciences Cell Line Cell Proliferation - genetics CRISPR CRISPR-Cas Systems - genetics Disease Models, Animal Disease Progression Feasibility Studies Gene Editing - methods Gene Expression Regulation, Neoplastic Gene sequencing Genes Genes, Tumor Suppressor Humans Loss of Function Mutation Lung - pathology Lung cancer Lung Neoplasms - genetics Lung Neoplasms - pathology Metastases Mice Mice, Transgenic Mutation Neoplasm Staging Retinoblastoma-Like Protein p107 - genetics Retinoblastoma-Like Protein p130 - genetics Small cell lung carcinoma Small Cell Lung Carcinoma - genetics Small Cell Lung Carcinoma - pathology Solid tumors Tumor Burden - genetics Tumor suppressor genes Tumor Suppressor Protein p53 - genetics Tumors |
Title | CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer |
URI | https://www.jstor.org/stable/26897491 https://www.ncbi.nlm.nih.gov/pubmed/31871154 https://www.proquest.com/docview/2335141780 https://www.proquest.com/docview/2330328590 https://pubmed.ncbi.nlm.nih.gov/PMC6955235 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIPAxFKc2X0zyWCVaQVlVjk_YWxbGzlq1p1SQv_I38UdzZiZN2mzR4iazk6tS5X-4rd2dCPnpCODLJ4EXiDBwUzj0bBpEdDHnCRQoeQIbxjtMpm1z4Py6Dy17vTydrqSr5IP19Z13J_3AVzgFfsUr2HzhrJoUTMAb-whE4DMcH8fj47PvP2Zmtqj_QclTb2jRVh6ix6kAf3HMhjG2YYiULOvpWWS1XG6uo1iobFoZXKPkwBFIs8ZM1RvWtmwrLchEcm64lOzOar2jyDKZNYHHclqnUsqOwbGs2bTc9nuog9Vxi8t-q1p6ql7aQq0ophjoSZJ0ODCivk2Vin2BysY4aqXwTa2IIvsyr8lpnjI83v6q8G9JwhyqkEXbFtAuq09fF1QOpJTMYNjbz9d6iRnQ74S2MakEc6ArXWqcHugr7lroA-YZ7HOdJMQA_ywHbrZlxqzH3jsI0aYzqA37oxThB3E7wiDx2w1AlDZxcOp0W0CNdEFUvrmk0FXqfd_7Blo2k02TvcoB283g7htH5M_K09mjoWMNzn_Rk_pzsN3ynR3Vj808vyHoHr7TBKwVE0havtMUrXWXU4JUqvNIWr1ThlS5yqvBKEa8U8Uo1Xl-Si29fz48ndr3jh52C4VraLPElT_xIMuEKNnIDCd7sULJM-GHGWOIKyXgomQfiJQTbKvP9EZc8SrJMCA7K-4Ds5atcviY0TSV3R8OMi8TxQy4imICDL5Rxfxil0uuTQfOM47Ruh4-7stzE93C1T47MD9a6E8z9pAeKaYbOZSPw2yOnTw4bLsa1HCli18NqGgfW0ycfzGWQ8vjQkhzeOkWDjS-DCGheaaabyUErh9hUq0_CLTgYAuwgv30lX8xVJ3kWBYHrBW8evrS35En7xh6SvXJTyXdglpf8vUL7X9iR5vA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-mediated+modeling+and+functional+validation+of+candidate+tumor+suppressor+genes+in+small+cell+lung+cancer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ng%2C+Sheng+Rong&rft.au=Rideout%2C+William+M.&rft.au=Akama-Garren%2C+Elliot+H.&rft.au=Bhutkar%2C+Arjun&rft.date=2020-01-07&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=1&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1073%2Fpnas.1821893117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1821893117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |