CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer

Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes rema...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 1; pp. 513 - 521
Main Authors Ng, Sheng Rong, Rideout, William M., Akama-Garren, Elliot H., Bhutkar, Arjun, Mercer, Kim L., Schenkel, Jason M., Bronson, Roderick T., Jacks, Tyler
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.01.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1821893117

Cover

Abstract Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
AbstractList SCLC is a deadly disease for which treatment outcomes have not improved significantly for over 30 y due to the lack of effective new therapies. Large-scale sequencing studies have identified many recurrently mutated genes in human SCLC tumors, whose functions remain poorly understood. We have adapted the CRISPR-Cas9 system to rapidly model mutations in target genes in a mouse model of SCLC. Using this system, we show that the gene p107 functions as a tumor suppressor gene in SCLC. Furthermore, loss of p107 confers a distinct tumor phenotype from loss of its close relative p130 . Our results demonstrate the utility of our system for better understanding the genetic factors that contribute to SCLC progression. Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130 , loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 . Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130. Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130 , loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 . Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene significantly accelerates tumor progression. Notably, compared with loss of the closely related gene , loss of results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of or Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic sequencing studies have identified many recurrently mutated genes in human SCLC tumors. However, the functional roles of most of these genes remain to be validated. Here, we have adapted the CRISPR-Cas9 system to a well-established murine model of SCLC to rapidly model loss-of-function mutations in candidate genes identified from SCLC sequencing studies. We show that loss of the gene p107 significantly accelerates tumor progression. Notably, compared with loss of the closely related gene p130, loss of p107 results in fewer but larger tumors as well as earlier metastatic spread. In addition, we observe differences in proliferation and apoptosis as well as altered distribution of initiated tumors in the lung, resulting from loss of p107 or p130 Collectively, these data demonstrate the feasibility of using the CRISPR-Cas9 system to model loss of candidate tumor suppressor genes in SCLC, and we anticipate that this approach will facilitate efforts to investigate mechanisms driving tumor progression in this deadly disease.
Author Bhutkar, Arjun
Rideout, William M.
Jacks, Tyler
Schenkel, Jason M.
Akama-Garren, Elliot H.
Mercer, Kim L.
Bronson, Roderick T.
Ng, Sheng Rong
Author_xml – sequence: 1
  givenname: Sheng Rong
  surname: Ng
  fullname: Ng, Sheng Rong
– sequence: 2
  givenname: William M.
  surname: Rideout
  fullname: Rideout, William M.
– sequence: 3
  givenname: Elliot H.
  surname: Akama-Garren
  fullname: Akama-Garren, Elliot H.
– sequence: 4
  givenname: Arjun
  surname: Bhutkar
  fullname: Bhutkar, Arjun
– sequence: 5
  givenname: Kim L.
  surname: Mercer
  fullname: Mercer, Kim L.
– sequence: 6
  givenname: Jason M.
  surname: Schenkel
  fullname: Schenkel, Jason M.
– sequence: 7
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
– sequence: 8
  givenname: Tyler
  surname: Jacks
  fullname: Jacks, Tyler
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31871154$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vFSEUxYmpsa_VtSsNiRs308IMMLAxMS9-NGmiqbomzHB58jIDI8w08b-X6atP7cINcMPvHO7lnKGTEAMg9JySC0ra5nIKJl9QWVOpGkrbR2hDiaKVYIqcoA0hdVtJVrNTdJbznhCiuCRP0GlDZUspZxs0bW-uvny-qUaw3sxg8RgtDD7ssAkWuyX0s4_BDPjWDN6atcDR4b7criXgeRljwnmZpgQ5l-MOAmTsA86jGQbcQ1mGpRgWTQ_pKXrszJDh2f1-jr69f_d1-7G6_vThavv2uuo5UXMlDIPOMAXC1lbImgOXnIBwlrVOCFNbEF0LogHjWkmoY0x20CnjnLUd5c05enPwnZauDNdDmJMZ9JT8aNJPHY3X_94E_13v4q0WivO6WQ1e3xuk-GOBPOvR53UaEyAuWddNQ5packUK-uoBuo9LKr92R3HKaGmxUC__7ujYyu8wCnB5APoUc07gjggleo1br3HrP3EXBX-g6P18F1IZyQ__0b046PZ5jun4TC2kapmizS-a3Lts
CitedBy_id crossref_primary_10_1177_15353702221074293
crossref_primary_10_1101_cshperspect_a041348
crossref_primary_10_1016_j_smim_2020_101406
crossref_primary_10_1016_j_phymed_2021_153830
crossref_primary_10_1016_j_biopha_2022_113011
crossref_primary_10_1093_hmg_ddab119
crossref_primary_10_1101_cshperspect_a041384
crossref_primary_10_1016_j_bbrc_2021_12_023
crossref_primary_10_1038_s41568_022_00441_w
crossref_primary_10_1038_s41587_023_01783_y
crossref_primary_10_1073_pnas_2322917121
crossref_primary_10_1016_j_ijbiomac_2021_10_029
crossref_primary_10_1155_2022_1892459
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_3390_cancers13050963
crossref_primary_10_1038_s41388_023_02929_7
crossref_primary_10_1101_gad_338228_120
crossref_primary_10_1158_2159_8290_CD_21_0441
crossref_primary_10_1002_ijc_34342
crossref_primary_10_1186_s12943_023_01738_6
crossref_primary_10_32604_oncologie_2022_021863
crossref_primary_10_1016_j_immuni_2021_01_011
crossref_primary_10_1111_pin_13040
crossref_primary_10_1186_s12943_022_01661_2
crossref_primary_10_3724_abbs_2023080
crossref_primary_10_1002_eji_202048712
crossref_primary_10_1002_cac2_12366
crossref_primary_10_3390_cancers13195025
crossref_primary_10_7554_eLife_70691
crossref_primary_10_3389_fcell_2021_641618
crossref_primary_10_34133_bmr_0023
crossref_primary_10_1038_s41572_020_00235_0
crossref_primary_10_3390_cancers13010014
crossref_primary_10_34172_bi_2024_30087
crossref_primary_10_1038_s41388_021_01723_7
crossref_primary_10_1080_10428194_2020_1805740
crossref_primary_10_7554_eLife_66222
crossref_primary_10_1007_s11033_022_07766_7
crossref_primary_10_1007_s00432_022_04160_5
crossref_primary_10_1007_s44178_024_00134_4
crossref_primary_10_1007_s12010_023_04708_2
crossref_primary_10_1007_s10142_023_01117_w
crossref_primary_10_12717_DR_2023_27_1_1
crossref_primary_10_3389_fgene_2024_1364742
crossref_primary_10_1016_j_ccell_2023_03_015
crossref_primary_10_1186_s40164_023_00457_4
crossref_primary_10_1007_s13205_021_02680_4
crossref_primary_10_1016_j_lfs_2020_118525
crossref_primary_10_32604_oncologie_2022_019415
crossref_primary_10_1093_narcan_zcaa026
crossref_primary_10_1111_cge_14424
crossref_primary_10_1002_biot_202300077
crossref_primary_10_1186_s40364_024_00701_x
crossref_primary_10_1038_s41417_020_00256_7
crossref_primary_10_1186_s40164_024_00570_y
Cites_doi 10.2165/11597640-000000000-00000
10.1038/nprot.2009.95
10.1016/j.immuni.2018.09.020
10.1158/0008-5472.CAN-09-1359
10.1038/nature14664
10.1016/j.cell.2017.10.025
10.1038/nature12213
10.1158/1541-7786.MCR-13-0554
10.1016/j.cell.2013.06.044
10.1038/ng.2396
10.1101/gad.2046711
10.1073/pnas.0506580102
10.1158/1541-7786.MCR-17-0576
10.1038/nature13906
10.1038/nbt.3836
10.1038/nmeth.2600
10.1016/S0893-6080(00)00026-5
10.1126/science.1232033
10.3389/fimmu.2016.00407
10.1038/nm.4407
10.1016/j.cell.2016.05.052
10.1158/2159-8290.CD-18-0385
10.1038/nrc3950
10.1038/sj.gt.3301197
10.1038/nbt.3437
10.1038/nature22323
10.1038/nature20777
10.1158/2159-8290.CD-15-0854
10.1038/srep16836
10.18632/oncotarget.11583
10.1038/ncomms15999
10.1126/science.aaf7907
10.1038/nmeth.4108
10.1016/j.cell.2014.02.031
10.1183/09031936.00105009
10.1038/nature13589
10.1186/1471-2105-11-94
10.1016/S0093-7754(01)90072-7
10.1126/science.1231143
10.1002/cncr.29098
10.1016/j.celrep.2014.10.035
10.1200/JCO.2005.04.4859
10.1038/nature09881
10.1016/j.cell.2014.09.014
10.1038/nbt.3155
10.1186/1747-1028-5-9
10.1016/S1535-6108(03)00220-4
10.1146/annurev-immunol-032713-120252
10.1128/MCB.16.12.6965
10.7554/eLife.00471
10.1002/emmm.201303297
10.1016/j.celrep.2016.06.020
10.1038/nm.4285
10.1016/j.ccell.2016.12.005
10.1038/nmeth.3312
10.1016/j.molcel.2014.04.022
10.1158/2159-8290.CD-17-0250
10.1126/science.1192272
10.1016/j.cell.2014.09.039
10.1101/gad.267393.115
10.1038/nature13902
10.3389/fimmu.2016.00244
10.1038/nmeth.3047
10.1186/1471-2105-12-323
10.1016/j.cmet.2016.07.001
10.1186/gb-2009-10-3-r25
10.1158/0008-5472.CAN-09-4228
10.18637/jss.v076.i02
10.1038/nbt.3390
10.1126/science.1235122
10.1101/gad.264861.115
10.1016/j.trac.2013.03.013
10.1038/ng.2405
10.1038/nature14136
10.1038/s41598-017-17204-5
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jan 7, 2020
Copyright © 2020 the Author(s). Published by PNAS. 2020
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jan 7, 2020
– notice: Copyright © 2020 the Author(s). Published by PNAS. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1821893117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 521
ExternalDocumentID PMC6955235
31871154
10_1073_pnas_1821893117
26897491
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007753
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: P30 CA014051
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: P30-CA14051
– fundername: Virginia and D.K. Ludwig Fund for Cancer Research (D.K. Ludwig Fund)
  grantid: N.A.
– fundername: Howard Hughes Medical Institute (HHMI)
  grantid: N.A.
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADULT
EJD
ID FETCH-LOGICAL-c509t-6a4eba49e6d2d6825e5850e6fd47f66a2de6b7e63eaf7801f448beb9affddb153
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:12:28 EDT 2025
Fri Sep 05 08:39:07 EDT 2025
Mon Jun 30 08:15:49 EDT 2025
Wed Feb 19 02:07:26 EST 2025
Thu Apr 24 23:08:25 EDT 2025
Tue Jul 01 03:40:13 EDT 2025
Thu May 29 09:13:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CRISPR
p107
small cell lung cancer
GEMM
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-6a4eba49e6d2d6825e5850e6fd47f66a2de6b7e63eaf7801f448beb9affddb153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewers: R.K.T., University of Cologne; and A.V., Memorial Sloan Kettering Cancer Center.
Author contributions: S.R.N. and T.J. designed research; S.R.N., W.M.R., E.H.A.-G., and K.L.M. performed research; S.R.N., A.B., J.M.S., R.T.B., and T.J. analyzed data; and S.R.N. and T.J. wrote the paper.
Contributed by Tyler Jacks, November 19, 2019 (sent for review December 24, 2018; reviewed by Roman K. Thomas and Andrea Ventura)
ORCID 0000-0002-8525-483X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6955235
PMID 31871154
PQID 2335141780
PQPubID 42026
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6955235
proquest_miscellaneous_2330328590
proquest_journals_2335141780
pubmed_primary_31871154
crossref_primary_10_1073_pnas_1821893117
crossref_citationtrail_10_1073_pnas_1821893117
jstor_primary_26897491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-07
PublicationDateYYYYMMDD 2020-01-07
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Papagiannakopoulos T. (e_1_3_4_70_2) 2016; 24
Jia D. (e_1_3_4_17_2) 2018; 8
Huang J. (e_1_3_4_32_2) 2017; 8
Peifer M. (e_1_3_4_20_2) 2012; 44
Konermann S. (e_1_3_4_44_2) 2015; 517
Langmead B. (e_1_3_4_65_2) 2009; 10
Jinek M. (e_1_3_4_22_2) 2013; 2
Frieda K. L. (e_1_3_4_53_2) 2017; 541
Dimitrova N. (e_1_3_4_69_2) 2016; 6
Li C. M. C. (e_1_3_4_68_2) 2015; 29
Meuwissen R. (e_1_3_4_7_2) 2003; 4
Vogelstein B. (e_1_3_4_18_2) 2013; 339
Platt R. J. (e_1_3_4_28_2) 2014; 159
Biton A. (e_1_3_4_75_2) 2014; 9
Byers L. A. (e_1_3_4_4_2) 2015; 121
Nissim L. (e_1_3_4_34_2) 2014; 54
Smith E. J. (e_1_3_4_55_2) 1996; 16
Lawrence M. S. (e_1_3_4_19_2) 2013; 499
Sautès-Fridman C. (e_1_3_4_59_2) 2016; 7
Dow L. E. (e_1_3_4_29_2) 2015; 33
Subramanian A. (e_1_3_4_39_2) 2005; 102
McFadden D. G. (e_1_3_4_9_2) 2014; 156
Haurwitz R. E. (e_1_3_4_33_2) 2010; 329
Sánchez-Rivera F. J. (e_1_3_4_40_2) 2015; 15
Mollaoglu G. (e_1_3_4_16_2) 2017; 31
George J. (e_1_3_4_5_2) 2015; 524
Wirt S. E. (e_1_3_4_56_2) 2010; 5
Roper J. (e_1_3_4_31_2) 2017; 35
Chavez A. (e_1_3_4_42_2) 2015; 12
Liao H.-K. (e_1_3_4_47_2) 2017; 171
Denny S. K. (e_1_3_4_13_2) 2016; 166
Chuang C. H. (e_1_3_4_49_2) 2017; 23
Hiraoka N. (e_1_3_4_58_2) 2016; 7
Rudin C. M. (e_1_3_4_21_2) 2012; 44
Bullard J. H. (e_1_3_4_67_2) 2010; 11
Chiou S.-H. (e_1_3_4_30_2) 2015; 29
Maddalo D. (e_1_3_4_26_2) 2014; 516
Chiou S. H. (e_1_3_4_50_2) 2017; 7
Mollaoglu G. (e_1_3_4_72_2) 2018; 49
McKenna A. (e_1_3_4_51_2) 2016; 353
DuPage M. (e_1_3_4_35_2) 2009; 4
Gilbert L. A. (e_1_3_4_41_2) 2013; 154
Govindan R. (e_1_3_4_1_2) 2006; 24
Rutledge D. N. (e_1_3_4_74_2) 2013; 50
Anderson R. D. (e_1_3_4_63_2) 2000; 7
Li B. (e_1_3_4_66_2) 2011; 12
Tanenbaum M. E. (e_1_3_4_43_2) 2014; 159
Lim J. S. (e_1_3_4_37_2) 2017; 545
Nevins J. R. (e_1_3_4_54_2) 1998; 9
Dahlman J. E. (e_1_3_4_45_2) 2015; 33
Sanjana N. E. (e_1_3_4_36_2) 2014; 11
Dooley A. L. (e_1_3_4_12_2) 2011; 25
Schaffer B. E. (e_1_3_4_8_2) 2010; 70
Simpson D. S. (e_1_3_4_57_2) 2009; 69
Doench J. G. (e_1_3_4_64_2) 2016; 34
Perez-Pinera P. (e_1_3_4_46_2) 2013; 10
Mali P. (e_1_3_4_24_2) 2013; 339
Huijbers I. J. (e_1_3_4_11_2) 2014; 6
Cui M. (e_1_3_4_10_2) 2014; 12
Sánchez-Rivera F. J. (e_1_3_4_27_2) 2014; 516
Xia Y. (e_1_3_4_61_2) 2018; 16
Wistuba I. I. (e_1_3_4_6_2) 2001; 28
Buckley C. D. (e_1_3_4_60_2) 2015; 33
Califano R. (e_1_3_4_2_2) 2012; 72
Xue W. (e_1_3_4_25_2) 2014; 514
Bankhead P. (e_1_3_4_76_2) 2017; 7
Semenova E. A. (e_1_3_4_14_2) 2016; 16
Demedts I. K. (e_1_3_4_3_2) 2010; 35
Hyvärinen A. (e_1_3_4_38_2) 2000; 13
Wu N. (e_1_3_4_15_2) 2016; 7
Winslow M. M. (e_1_3_4_48_2) 2011; 473
e_1_3_4_73_2
Cong L. (e_1_3_4_23_2) 2013; 339
Kalhor R. (e_1_3_4_52_2) 2017; 14
Akama-Garren E. H. (e_1_3_4_62_2) 2016; 6
Romero R. (e_1_3_4_71_2) 2017; 23
References_xml – volume: 72
  start-page: 471
  year: 2012
  ident: e_1_3_4_2_2
  article-title: Management of small cell lung cancer: Recent developments for optimal care
  publication-title: Drugs
  doi: 10.2165/11597640-000000000-00000
– volume: 4
  start-page: 1064
  year: 2009
  ident: e_1_3_4_35_2
  article-title: Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.95
– volume: 49
  start-page: 764
  year: 2018
  ident: e_1_3_4_72_2
  article-title: The lineage-defining transcription factors SOX2 and NKX2-1 determine lung cancer cell fate and shape the tumor immune microenvironment
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.09.020
– volume: 69
  start-page: 8733
  year: 2009
  ident: e_1_3_4_57_2
  article-title: Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-1359
– volume: 524
  start-page: 47
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Comprehensive genomic profiles of small cell lung cancer
  publication-title: Nature
  doi: 10.1038/nature14664
– volume: 171
  start-page: 1495
  year: 2017
  ident: e_1_3_4_47_2
  article-title: In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.025
– volume: 499
  start-page: 214
  year: 2013
  ident: e_1_3_4_19_2
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– volume: 12
  start-page: 654
  year: 2014
  ident: e_1_3_4_10_2
  article-title: PTEN is a potent suppressor of small cell lung cancer
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-13-0554
– volume: 154
  start-page: 442
  year: 2013
  ident: e_1_3_4_41_2
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 9
  start-page: 585
  year: 1998
  ident: e_1_3_4_54_2
  article-title: Toward an understanding of the functional complexity of the E2F and retinoblastoma families
  publication-title: Cell Growth Differ.
– volume: 44
  start-page: 1104
  year: 2012
  ident: e_1_3_4_20_2
  article-title: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2396
– volume: 25
  start-page: 1470
  year: 2011
  ident: e_1_3_4_12_2
  article-title: Nuclear factor I/B is an oncogene in small cell lung cancer
  publication-title: Genes Dev.
  doi: 10.1101/gad.2046711
– volume: 102
  start-page: 15545
  year: 2005
  ident: e_1_3_4_39_2
  article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506580102
– volume: 16
  start-page: 825
  year: 2018
  ident: e_1_3_4_61_2
  article-title: Targeting CREB pathway suppresses small cell lung cancer
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-17-0576
– volume: 516
  start-page: 428
  year: 2014
  ident: e_1_3_4_27_2
  article-title: Rapid modelling of cooperating genetic events in cancer through somatic genome editing
  publication-title: Nature
  doi: 10.1038/nature13906
– volume: 35
  start-page: 569
  year: 2017
  ident: e_1_3_4_31_2
  article-title: In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3836
– volume: 10
  start-page: 973
  year: 2013
  ident: e_1_3_4_46_2
  article-title: RNA-guided gene activation by CRISPR-Cas9-based transcription factors
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2600
– volume: 13
  start-page: 411
  year: 2000
  ident: e_1_3_4_38_2
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 339
  start-page: 823
  year: 2013
  ident: e_1_3_4_24_2
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 7
  start-page: 407
  year: 2016
  ident: e_1_3_4_59_2
  article-title: Tertiary lymphoid structures in cancers: Prognostic value, regulation, and manipulation for therapeutic intervention
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00407
– volume: 23
  start-page: 1362
  year: 2017
  ident: e_1_3_4_71_2
  article-title: Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis
  publication-title: Nat. Med.
  doi: 10.1038/nm.4407
– volume: 166
  start-page: 328
  year: 2016
  ident: e_1_3_4_13_2
  article-title: Nfib promotes metastasis through a widespread increase in chromatin accessibility
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.052
– volume: 8
  start-page: 1422
  year: 2018
  ident: e_1_3_4_17_2
  article-title: Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-18-0385
– volume: 15
  start-page: 387
  year: 2015
  ident: e_1_3_4_40_2
  article-title: Applications of the CRISPR-Cas9 system in cancer biology
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3950
– volume: 7
  start-page: 1034
  year: 2000
  ident: e_1_3_4_63_2
  article-title: A simple method for the rapid generation of recombinant adenovirus vectors
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3301197
– volume: 34
  start-page: 184
  year: 2016
  ident: e_1_3_4_64_2
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3437
– volume: 545
  start-page: 360
  year: 2017
  ident: e_1_3_4_37_2
  article-title: Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer
  publication-title: Nature
  doi: 10.1038/nature22323
– volume: 541
  start-page: 107
  year: 2017
  ident: e_1_3_4_53_2
  article-title: Synthetic recording and in situ readout of lineage information in single cells
  publication-title: Nature
  doi: 10.1038/nature20777
– volume: 6
  start-page: 188
  year: 2016
  ident: e_1_3_4_69_2
  article-title: Stromal expression of miR-143/145 promotes neoangiogenesis in lung cancer development
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-0854
– volume: 6
  start-page: 16836
  year: 2016
  ident: e_1_3_4_62_2
  article-title: A modular assembly platform for rapid generation of DNA constructs
  publication-title: Sci. Rep.
  doi: 10.1038/srep16836
– volume: 7
  start-page: 57514
  year: 2016
  ident: e_1_3_4_15_2
  article-title: NFIB overexpression cooperates with Rb/p53 deletion to promote small cell lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11583
– volume: 8
  start-page: 15999
  year: 2017
  ident: e_1_3_4_32_2
  article-title: Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15999
– volume: 353
  start-page: aaf7907
  year: 2016
  ident: e_1_3_4_51_2
  article-title: Whole-organism lineage tracing by combinatorial and cumulative genome editing
  publication-title: Science
  doi: 10.1126/science.aaf7907
– volume: 14
  start-page: 195
  year: 2017
  ident: e_1_3_4_52_2
  article-title: Rapidly evolving homing CRISPR barcodes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4108
– volume: 156
  start-page: 1298
  year: 2014
  ident: e_1_3_4_9_2
  article-title: Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.031
– volume: 35
  start-page: 202
  year: 2010
  ident: e_1_3_4_3_2
  article-title: Treatment of extensive-stage small cell lung carcinoma: Current status and future prospects
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00105009
– volume: 514
  start-page: 380
  year: 2014
  ident: e_1_3_4_25_2
  article-title: CRISPR-mediated direct mutation of cancer genes in the mouse liver
  publication-title: Nature
  doi: 10.1038/nature13589
– volume: 11
  start-page: 94
  year: 2010
  ident: e_1_3_4_67_2
  article-title: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-11-94
– volume: 28
  start-page: 3
  year: 2001
  ident: e_1_3_4_6_2
  article-title: Molecular genetics of small cell lung carcinoma
  publication-title: Semin. Oncol.
  doi: 10.1016/S0093-7754(01)90072-7
– volume: 339
  start-page: 819
  year: 2013
  ident: e_1_3_4_23_2
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 121
  start-page: 664
  year: 2015
  ident: e_1_3_4_4_2
  article-title: Small cell lung cancer: Where do we go from here?
  publication-title: Cancer
  doi: 10.1002/cncr.29098
– volume: 9
  start-page: 1235
  year: 2014
  ident: e_1_3_4_75_2
  article-title: Independent component analysis uncovers the landscape of the bladder tumor transcriptome and reveals insights into luminal and basal subtypes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.10.035
– volume: 24
  start-page: 4539
  year: 2006
  ident: e_1_3_4_1_2
  article-title: Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: Analysis of the surveillance, epidemiologic, and end results database
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.04.4859
– volume: 473
  start-page: 101
  year: 2011
  ident: e_1_3_4_48_2
  article-title: Suppression of lung adenocarcinoma progression by Nkx2-1
  publication-title: Nature
  doi: 10.1038/nature09881
– volume: 159
  start-page: 440
  year: 2014
  ident: e_1_3_4_28_2
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.014
– volume: 33
  start-page: 390
  year: 2015
  ident: e_1_3_4_29_2
  article-title: Inducible in vivo genome editing with CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3155
– volume: 5
  start-page: 9
  year: 2010
  ident: e_1_3_4_56_2
  article-title: p107 in the public eye: An Rb understudy and more
  publication-title: Cell Div.
  doi: 10.1186/1747-1028-5-9
– volume: 4
  start-page: 181
  year: 2003
  ident: e_1_3_4_7_2
  article-title: Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00220-4
– volume: 33
  start-page: 715
  year: 2015
  ident: e_1_3_4_60_2
  article-title: Stromal cells in chronic inflammation and tertiary lymphoid organ formation
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120252
– volume: 16
  start-page: 6965
  year: 1996
  ident: e_1_3_4_55_2
  article-title: The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.12.6965
– volume: 2
  start-page: e00471
  year: 2013
  ident: e_1_3_4_22_2
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
  doi: 10.7554/eLife.00471
– volume: 6
  start-page: 212
  year: 2014
  ident: e_1_3_4_11_2
  article-title: Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201303297
– volume: 16
  start-page: 631
  year: 2016
  ident: e_1_3_4_14_2
  article-title: Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.06.020
– volume: 23
  start-page: 291
  year: 2017
  ident: e_1_3_4_49_2
  article-title: Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis
  publication-title: Nat. Med.
  doi: 10.1038/nm.4285
– volume: 31
  start-page: 270
  year: 2017
  ident: e_1_3_4_16_2
  article-title: MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.12.005
– volume: 12
  start-page: 326
  year: 2015
  ident: e_1_3_4_42_2
  article-title: Highly efficient Cas9-mediated transcriptional programming
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3312
– volume: 54
  start-page: 698
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.022
– volume: 7
  start-page: 1184
  year: 2017
  ident: e_1_3_4_50_2
  article-title: BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-17-0250
– volume: 329
  start-page: 1355
  year: 2010
  ident: e_1_3_4_33_2
  article-title: Sequence- and structure-specific RNA processing by a CRISPR endonuclease
  publication-title: Science
  doi: 10.1126/science.1192272
– volume: 159
  start-page: 635
  year: 2014
  ident: e_1_3_4_43_2
  article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.039
– volume: 29
  start-page: 1850
  year: 2015
  ident: e_1_3_4_68_2
  article-title: Foxa2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma metastasis
  publication-title: Genes Dev.
  doi: 10.1101/gad.267393.115
– volume: 516
  start-page: 423
  year: 2014
  ident: e_1_3_4_26_2
  article-title: In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system
  publication-title: Nature
  doi: 10.1038/nature13902
– volume: 7
  start-page: 244
  year: 2016
  ident: e_1_3_4_58_2
  article-title: Tertiary lymphoid organs in cancer tissues
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00244
– volume: 11
  start-page: 783
  year: 2014
  ident: e_1_3_4_36_2
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3047
– volume: 12
  start-page: 323
  year: 2011
  ident: e_1_3_4_66_2
  article-title: RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-12-323
– volume: 24
  start-page: 324
  year: 2016
  ident: e_1_3_4_70_2
  article-title: Circadian rhythm disruption promotes lung tumorigenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.07.001
– volume: 10
  start-page: R25
  year: 2009
  ident: e_1_3_4_65_2
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 70
  start-page: 3877
  year: 2010
  ident: e_1_3_4_8_2
  article-title: Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-4228
– ident: e_1_3_4_73_2
  doi: 10.18637/jss.v076.i02
– volume: 33
  start-page: 1159
  year: 2015
  ident: e_1_3_4_45_2
  article-title: Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3390
– volume: 339
  start-page: 1546
  year: 2013
  ident: e_1_3_4_18_2
  article-title: Cancer genome landscapes
  publication-title: Science
  doi: 10.1126/science.1235122
– volume: 29
  start-page: 1576
  year: 2015
  ident: e_1_3_4_30_2
  article-title: Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing
  publication-title: Genes Dev.
  doi: 10.1101/gad.264861.115
– volume: 50
  start-page: 22
  year: 2013
  ident: e_1_3_4_74_2
  article-title: Independent components analysis with the JADE algorithm
  publication-title: TrAC Trends Analyt. Chem.
  doi: 10.1016/j.trac.2013.03.013
– volume: 44
  start-page: 1111
  year: 2012
  ident: e_1_3_4_21_2
  article-title: Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2405
– volume: 517
  start-page: 583
  year: 2015
  ident: e_1_3_4_44_2
  article-title: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 7
  start-page: 16878
  year: 2017
  ident: e_1_3_4_76_2
  article-title: QuPath: Open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
SSID ssj0009580
Score 2.5293133
Snippet Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer that remains among the most lethal of solid tumor malignancies. Recent genomic...
SCLC is a deadly disease for which treatment outcomes have not improved significantly for over 30 y due to the lack of effective new therapies. Large-scale...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 513
SubjectTerms Animal models
Animals
Apoptosis
Apoptosis - genetics
Biological Sciences
Cell Line
Cell Proliferation - genetics
CRISPR
CRISPR-Cas Systems - genetics
Disease Models, Animal
Disease Progression
Feasibility Studies
Gene Editing - methods
Gene Expression Regulation, Neoplastic
Gene sequencing
Genes
Genes, Tumor Suppressor
Humans
Loss of Function Mutation
Lung - pathology
Lung cancer
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Metastases
Mice
Mice, Transgenic
Mutation
Neoplasm Staging
Retinoblastoma-Like Protein p107 - genetics
Retinoblastoma-Like Protein p130 - genetics
Small cell lung carcinoma
Small Cell Lung Carcinoma - genetics
Small Cell Lung Carcinoma - pathology
Solid tumors
Tumor Burden - genetics
Tumor suppressor genes
Tumor Suppressor Protein p53 - genetics
Tumors
Title CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer
URI https://www.jstor.org/stable/26897491
https://www.ncbi.nlm.nih.gov/pubmed/31871154
https://www.proquest.com/docview/2335141780
https://www.proquest.com/docview/2330328590
https://pubmed.ncbi.nlm.nih.gov/PMC6955235
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWBQGMhIPAxFKc2X0zyWCVaQVlVjk_YWxbGzlq1p1SQv_I38UdzZiZN2mzR4iazk6tS5X-4rd2dCPnpCODLJ4EXiDBwUzj0bBpEdDHnCRQoeQIbxjtMpm1z4Py6Dy17vTydrqSr5IP19Z13J_3AVzgFfsUr2HzhrJoUTMAb-whE4DMcH8fj47PvP2Zmtqj_QclTb2jRVh6ix6kAf3HMhjG2YYiULOvpWWS1XG6uo1iobFoZXKPkwBFIs8ZM1RvWtmwrLchEcm64lOzOar2jyDKZNYHHclqnUsqOwbGs2bTc9nuog9Vxi8t-q1p6ql7aQq0ophjoSZJ0ODCivk2Vin2BysY4aqXwTa2IIvsyr8lpnjI83v6q8G9JwhyqkEXbFtAuq09fF1QOpJTMYNjbz9d6iRnQ74S2MakEc6ArXWqcHugr7lroA-YZ7HOdJMQA_ywHbrZlxqzH3jsI0aYzqA37oxThB3E7wiDx2w1AlDZxcOp0W0CNdEFUvrmk0FXqfd_7Blo2k02TvcoB283g7htH5M_K09mjoWMNzn_Rk_pzsN3ynR3Vj808vyHoHr7TBKwVE0havtMUrXWXU4JUqvNIWr1ThlS5yqvBKEa8U8Uo1Xl-Si29fz48ndr3jh52C4VraLPElT_xIMuEKNnIDCd7sULJM-GHGWOIKyXgomQfiJQTbKvP9EZc8SrJMCA7K-4Ds5atcviY0TSV3R8OMi8TxQy4imICDL5Rxfxil0uuTQfOM47Ruh4-7stzE93C1T47MD9a6E8z9pAeKaYbOZSPw2yOnTw4bLsa1HCli18NqGgfW0ycfzGWQ8vjQkhzeOkWDjS-DCGheaaabyUErh9hUq0_CLTgYAuwgv30lX8xVJ3kWBYHrBW8evrS35En7xh6SvXJTyXdglpf8vUL7X9iR5vA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR-mediated+modeling+and+functional+validation+of+candidate+tumor+suppressor+genes+in+small+cell+lung+cancer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ng%2C+Sheng+Rong&rft.au=Rideout%2C+William+M.&rft.au=Akama-Garren%2C+Elliot+H.&rft.au=Bhutkar%2C+Arjun&rft.date=2020-01-07&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=1&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1073%2Fpnas.1821893117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1821893117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon