Dimeric sorting code for concentrative cargo selection by the COPII coat

The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en ro...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 14; pp. E3155 - E3162
Main Authors Nie, Chao, 聂超, Wang, Huimin, 王惠敏, Wang, Rui, 王锐, Ginsburg, David, Chen, Xiao-Wei, 陈晓伟
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.04.2018
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1704639115

Cover

Loading…
Abstract The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse–chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement–disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.
AbstractList The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.
One-third of the mammalian genome encodes proteins that are transported by the secretory pathway. Coat protein complexes such as COPII generate carrier vesicles and recruit cargos, orchestrated by cognate small GTPases as “molecular switches.” How coat complexes select specific cargos remains incompletely understood. Here we applied proximity-dependent biotinylation, fusing the promiscuous biotin ligase BirA* with the SAR1B GTPase, to track the dynamics of COPII-mediated export from the endoplasmic reticulum. LMAN1, a cargo receptor for COPII, is transiently enriched and released by the coat complex. The enrichment requires a dimeric sorting signal, formed by two copies of LMAN1. Hence, the COPII coat undergoes a dynamic engaging–disengaging cycle to select unique sets of secretory cargos. The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse–chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement–disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.
The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.
Author Nie, Chao
聂超
Chen, Xiao-Wei
Ginsburg, David
陈晓伟
Wang, Huimin
王惠敏
王锐
Wang, Rui
Author_xml – sequence: 1
  givenname: Chao
  surname: Nie
  fullname: Nie, Chao
  organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
– sequence: 2
  fullname: 聂超
  organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Huimin
  surname: Wang
  fullname: Wang, Huimin
  organization: Center for Life Sciences, Peking University, Beijing 100871, China
– sequence: 4
  fullname: 王惠敏
  organization: Center for Life Sciences, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Center for Life Sciences, Peking University, Beijing 100871, China
– sequence: 6
  fullname: 王锐
  organization: Center for Life Sciences, Peking University, Beijing 100871, China
– sequence: 7
  givenname: David
  surname: Ginsburg
  fullname: Ginsburg, David
  organization: Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
– sequence: 8
  givenname: Xiao-Wei
  surname: Chen
  fullname: Chen, Xiao-Wei
  organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
– sequence: 9
  fullname: 陈晓伟
  organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29555761$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFvFCEUxompsdvq2ZNmEi-9bPuAYYCLSbNau0mTetAzYZg3WzazsALbpP-9bLa22oMnSPh9X773Pk7IUYgBCXlP4ZyC5BfbYPM5ldB2XFMqXpEZBU3nXavhiMwAmJyrlrXH5CTnNQBooeANOWZaCCE7OiPXX_wGk3dNjqn4sGpcHLAZY6qX4DCUZIu_x8bZtIpNxgld8TE0_UNT7rBZ3H5fLitqy1vyerRTxneP5yn5efX1x-J6fnP7bbm4vJk7Abrsk-E42hY6zmyvxQgwKhzs6AaK2KIG7F0vezYwbbloOdCBg5JKWjn2UvBT8vngu931GxwOESezTX5j04OJ1pt_X4K_M6t4b4RSumO0Gpw9GqT4a4e5mI3PDqfJBoy7bBhQoXinGVT00wt0HXcp1PEMo6CUBAm6Uh__TvQU5c-SK3BxAFyKOSccnxAKZl-j2ddonmusCvFC4Xyx-8XXkfz0H92Hg26dS0zPSToB9Rt0_DfyJ6uH
CitedBy_id crossref_primary_10_1007_s00418_018_1689_2
crossref_primary_10_1080_19336950_2019_1685626
crossref_primary_10_1126_sciadv_adm9216
crossref_primary_10_1002_elps_202000167
crossref_primary_10_1042_BST20220713
crossref_primary_10_1074_jbc_RA118_007071
crossref_primary_10_1098_rsob_190083
crossref_primary_10_1101_cshperspect_a041260
crossref_primary_10_15252_embj_2018100156
crossref_primary_10_1038_s41598_024_60687_2
crossref_primary_10_3389_fnut_2021_706067
crossref_primary_10_1038_s41467_023_44002_7
crossref_primary_10_1146_annurev_physiol_031522_100639
crossref_primary_10_3390_cells8091051
crossref_primary_10_1007_s13752_023_00444_2
crossref_primary_10_1083_jcb_202406103
crossref_primary_10_1016_j_ceb_2025_102501
crossref_primary_10_1083_jcb_202104044
crossref_primary_10_1080_21688370_2019_1710429
crossref_primary_10_1016_j_ceb_2021_01_008
crossref_primary_10_1371_journal_pone_0216249
crossref_primary_10_15252_embj_2022111513
crossref_primary_10_1016_j_jhazmat_2024_135301
crossref_primary_10_1016_j_cmet_2020_10_020
crossref_primary_10_1016_j_celrep_2022_111868
crossref_primary_10_1172_JCI163838
crossref_primary_10_3390_ijms21062101
crossref_primary_10_1016_j_cmet_2021_05_006
Cites_doi 10.1016/S0962-8924(03)00082-5
10.1038/nmeth.1928
10.1093/emboj/cdf605
10.1016/j.sbi.2004.02.002
10.1083/jcb.200208074
10.1016/S0092-8674(03)00609-3
10.1016/S0092-8674(00)81146-0
10.1146/annurev-biochem-061608-091319
10.1074/jbc.M502160200
10.1126/science.8451644
10.1038/nrm3588
10.1091/mbc.e02-12-0777
10.1016/0092-8674(87)90224-8
10.1016/j.jprot.2014.09.011
10.1111/j.1600-0854.2009.00989.x
10.1242/jcs.115.3.619
10.1091/mbc.e10-08-0665
10.1182/blood-2011-05-352815
10.1146/annurev.cellbio.20.010403.105307
10.1042/bst0230541
10.1146/annurev-cellbio-111315-125016
10.1038/365347a0
10.1083/jcb.200709100
10.1016/j.molcel.2007.03.017
10.1038/ncb2226
10.1242/jcs.111.22.3411
10.1038/nrm2025
10.1083/jcb.131.1.57
10.1074/jbc.274.46.32539
10.1016/S0092-8674(03)00608-1
10.1002/0471140864.ps1923s74
10.1083/jcb.135.4.895
10.1182/blood-2010-04-278325
10.1016/S0092-8674(03)01079-1
10.1038/ng1153
10.1038/ncb2390
10.1083/jcb.200709012
10.1074/jbc.M113.461434
10.1093/emboj/cdf598
10.1016/j.cub.2015.01.017
10.1016/S0092-8674(00)81006-5
10.1016/j.tibs.2007.06.006
10.1038/14020
10.7554/eLife.00444
10.1016/j.devcel.2007.04.005
10.1038/emboj.2008.208
10.1074/jbc.274.22.15937
10.1016/j.devcel.2007.10.005
10.1126/science.1096303
10.1242/jcs.00759
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright © 2018 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Apr 3, 2018
Copyright © 2018 the Author(s). Published by PNAS. 2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright © 2018 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Apr 3, 2018
– notice: Copyright © 2018 the Author(s). Published by PNAS. 2018
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1704639115
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E3162
ExternalDocumentID PMC5889621
29555761
10_1073_pnas_1704639115
26508426
Genre Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R35 HL135793
– fundername: NHLBI NIH HHS
  grantid: R01 HL039693
– fundername: NHLBI NIH HHS
  grantid: P01 HL057346
– fundername: Ministry of Science and Technology of the People's Republic of China (MOST)
  grantid: 2014BAI02B01
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: HL039693; P01-HL057346; R35HL135793
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 31571213; 31521062
– fundername: Howard Hughes Medical Institute (HHMI)
  grantid: Investigator
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
DOOOF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-649effa40632ab95f00f8edafcd1ee4e90ebcb7b2d29a354301d308787a7fb753
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:21:48 EDT 2025
Thu Jul 10 18:31:32 EDT 2025
Mon Jun 30 08:32:27 EDT 2025
Wed Feb 19 02:44:13 EST 2025
Tue Jul 01 03:19:47 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Fri May 30 11:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords COPII
LMAN1
proximity-dependent biotinylation
cargo sorting
cargo receptor
Language English
License Copyright © 2018 the Author(s). Published by PNAS.
This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c509t-649effa40632ab95f00f8edafcd1ee4e90ebcb7b2d29a354301d308787a7fb753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Contributed by David Ginsburg, February 17, 2018 (sent for review March 21, 2017; reviewed by Chris Fromme and Peter Tontonoz)
Reviewers: C.F., Cornell University; and P.T., University of California, Los Angeles.
Author contributions: C.N., D.G., and X.-W.C. designed research; C.N., H.W., R.W., and X.-W.C. performed research; H.W. contributed new reagents/analytic tools; C.N., R.W., D.G., and X.-W.C. analyzed data; and C.N., D.G., and X.-W.C. wrote the paper.
ORCID 0000-0002-6436-8942
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5889621
PMID 29555761
PQID 2108870709
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889621
proquest_miscellaneous_2015836920
proquest_journals_2108870709
pubmed_primary_29555761
crossref_primary_10_1073_pnas_1704639115
crossref_citationtrail_10_1073_pnas_1704639115
jstor_primary_26508426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-03
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
Schindler R (e_1_3_3_24_2) 1993; 61
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
9788882 - J Cell Sci. 1998 Nov;111 ( Pt 22):3411-25
10551804 - J Biol Chem. 1999 Nov 12;274(46):32539-42
18056412 - J Cell Biol. 2007 Dec 3;179(5):951-63
23580231 - Elife. 2013 Apr 09;2:e00444
15093828 - Curr Opin Struct Biol. 2004 Apr;14(2):147-53
23698585 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):382-92
17618120 - Trends Biochem Sci. 2007 Aug;32(8):381-8
27298089 - Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222
10428023 - Cell. 1999 Jul 23;98(2):125-7
12426381 - EMBO J. 2002 Nov 15;21(22):6095-104
18843296 - EMBO J. 2008 Nov 5;27(21):2918-28
12791295 - Trends Cell Biol. 2003 Jun;13(6):295-300
12717434 - Nat Genet. 2003 Jun;34(2):220-5
7559786 - J Cell Biol. 1995 Oct;131(1):57-67
22193160 - Nat Cell Biol. 2011 Dec 22;14(1):20-8
12941277 - Cell. 2003 Aug 22;114(4):497-509
11861768 - J Cell Sci. 2002 Feb 1;115(Pt 3):619-28
12499351 - J Cell Biol. 2002 Dec 23;159(6):915-21
20533886 - Annu Rev Biochem. 2010;79:777-802
8566411 - Biochem Soc Trans. 1995 Aug;23(3):541-4
17488620 - Dev Cell. 2007 May;12 (5):671-82
17981132 - Dev Cell. 2007 Nov;13(5):623-34
15473836 - Annu Rev Cell Dev Biol. 2004;20:87-123
21795745 - Blood. 2011 Sep 22;118(12):3384-91
9546392 - Cell. 1998 Apr 3;93(1):61-70
22406856 - Nat Methods. 2012 Mar 11;9(5):493-8
12972550 - Mol Biol Cell. 2003 Sep;14(9):3605-16
21148297 - Mol Biol Cell. 2011 Jan 1;22(1):141-52
12426382 - EMBO J. 2002 Nov 15;21(22):6105-13
13130098 - J Cell Sci. 2003 Nov 1;116(Pt 21):4429-40
8377826 - Nature. 1993 Sep 23;365(6444):347-9
1096303 - Science. 1975 Aug 1;189(4200):347-58
25281560 - J Proteomics. 2015 Apr 6;118:81-94
18283111 - J Cell Biol. 2008 Feb 25;180(4):705-12
21516108 - Nat Cell Biol. 2011 May;13(5):580-8
19843282 - Traffic. 2009 Dec;10(12):1819-30
8451644 - Science. 1993 Mar 5;259(5100):1466-8
25689910 - Curr Biol. 2015 Feb 16;25(4):R151-3
17499046 - Mol Cell. 2007 May 11;26(3):403-14
10559958 - Nat Cell Biol. 1999 Oct;1(6):330-4
10336500 - J Biol Chem. 1999 May 28;274(22):15937-46
16990852 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):727-38
3594573 - Cell. 1987 Jul 17;50(2):289-300
15886209 - J Biol Chem. 2005 Jul 8;280(27):25881-6
24510646 - Curr Protoc Protein Sci. 2013 Nov 05;74:Unit 19.23.
8922375 - J Cell Biol. 1996 Nov;135(4):895-911
23709226 - J Biol Chem. 2013 Jul 12;288(28):20499-509
8223692 - Eur J Cell Biol. 1993 Jun;61(1):1-9
20817851 - Blood. 2010 Dec 16;116(25):5698-706
14744428 - Cell. 2004 Jan 23;116(2):153-66
12941276 - Cell. 2003 Aug 22;114(4):483-95
References_xml – ident: e_1_3_3_15_2
  doi: 10.1016/S0962-8924(03)00082-5
– ident: e_1_3_3_37_2
  doi: 10.1038/nmeth.1928
– ident: e_1_3_3_9_2
  doi: 10.1093/emboj/cdf605
– ident: e_1_3_3_11_2
  doi: 10.1016/j.sbi.2004.02.002
– ident: e_1_3_3_18_2
  doi: 10.1083/jcb.200208074
– ident: e_1_3_3_10_2
  doi: 10.1016/S0092-8674(03)00609-3
– ident: e_1_3_3_25_2
  doi: 10.1016/S0092-8674(00)81146-0
– ident: e_1_3_3_17_2
  doi: 10.1146/annurev-biochem-061608-091319
– ident: e_1_3_3_36_2
  doi: 10.1074/jbc.M502160200
– ident: e_1_3_3_33_2
  doi: 10.1126/science.8451644
– ident: e_1_3_3_5_2
  doi: 10.1038/nrm3588
– ident: e_1_3_3_43_2
  doi: 10.1091/mbc.e02-12-0777
– ident: e_1_3_3_22_2
  doi: 10.1016/0092-8674(87)90224-8
– ident: e_1_3_3_47_2
  doi: 10.1016/j.jprot.2014.09.011
– ident: e_1_3_3_20_2
  doi: 10.1111/j.1600-0854.2009.00989.x
– ident: e_1_3_3_41_2
  doi: 10.1242/jcs.115.3.619
– ident: e_1_3_3_50_2
  doi: 10.1091/mbc.e10-08-0665
– ident: e_1_3_3_27_2
  doi: 10.1182/blood-2011-05-352815
– ident: e_1_3_3_8_2
  doi: 10.1146/annurev.cellbio.20.010403.105307
– ident: e_1_3_3_30_2
  doi: 10.1042/bst0230541
– ident: e_1_3_3_3_2
  doi: 10.1146/annurev-cellbio-111315-125016
– ident: e_1_3_3_32_2
  doi: 10.1038/365347a0
– ident: e_1_3_3_29_2
  doi: 10.1083/jcb.200709100
– ident: e_1_3_3_12_2
  doi: 10.1016/j.molcel.2007.03.017
– ident: e_1_3_3_46_2
  doi: 10.1038/ncb2226
– ident: e_1_3_3_44_2
  doi: 10.1242/jcs.111.22.3411
– ident: e_1_3_3_6_2
  doi: 10.1038/nrm2025
– ident: e_1_3_3_35_2
  doi: 10.1083/jcb.131.1.57
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.274.46.32539
– ident: e_1_3_3_14_2
  doi: 10.1016/S0092-8674(03)00608-1
– ident: e_1_3_3_31_2
  doi: 10.1002/0471140864.ps1923s74
– ident: e_1_3_3_19_2
  doi: 10.1083/jcb.135.4.895
– ident: e_1_3_3_38_2
  doi: 10.1182/blood-2010-04-278325
– volume: 61
  start-page: 1
  year: 1993
  ident: e_1_3_3_24_2
  article-title: ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif
  publication-title: Eur J Cell Biol
– ident: e_1_3_3_1_2
  doi: 10.1016/S0092-8674(03)01079-1
– ident: e_1_3_3_26_2
  doi: 10.1038/ng1153
– ident: e_1_3_3_7_2
  doi: 10.1038/ncb2390
– ident: e_1_3_3_49_2
  doi: 10.1083/jcb.200709012
– ident: e_1_3_3_51_2
  doi: 10.1074/jbc.M113.461434
– ident: e_1_3_3_45_2
  doi: 10.1093/emboj/cdf598
– ident: e_1_3_3_42_2
  doi: 10.1016/j.cub.2015.01.017
– ident: e_1_3_3_21_2
  doi: 10.1016/S0092-8674(00)81006-5
– ident: e_1_3_3_16_2
  doi: 10.1016/j.tibs.2007.06.006
– ident: e_1_3_3_28_2
  doi: 10.1038/14020
– ident: e_1_3_3_48_2
  doi: 10.7554/eLife.00444
– ident: e_1_3_3_4_2
  doi: 10.1016/j.devcel.2007.04.005
– ident: e_1_3_3_13_2
  doi: 10.1038/emboj.2008.208
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.274.22.15937
– ident: e_1_3_3_34_2
  doi: 10.1016/j.devcel.2007.10.005
– ident: e_1_3_3_2_2
  doi: 10.1126/science.1096303
– ident: e_1_3_3_39_2
  doi: 10.1242/jcs.00759
– reference: 12791295 - Trends Cell Biol. 2003 Jun;13(6):295-300
– reference: 3594573 - Cell. 1987 Jul 17;50(2):289-300
– reference: 12499351 - J Cell Biol. 2002 Dec 23;159(6):915-21
– reference: 12426382 - EMBO J. 2002 Nov 15;21(22):6105-13
– reference: 10336500 - J Biol Chem. 1999 May 28;274(22):15937-46
– reference: 21795745 - Blood. 2011 Sep 22;118(12):3384-91
– reference: 18283111 - J Cell Biol. 2008 Feb 25;180(4):705-12
– reference: 12941277 - Cell. 2003 Aug 22;114(4):497-509
– reference: 15473836 - Annu Rev Cell Dev Biol. 2004;20:87-123
– reference: 1096303 - Science. 1975 Aug 1;189(4200):347-58
– reference: 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8
– reference: 20533886 - Annu Rev Biochem. 2010;79:777-802
– reference: 24510646 - Curr Protoc Protein Sci. 2013 Nov 05;74:Unit 19.23.
– reference: 15093828 - Curr Opin Struct Biol. 2004 Apr;14(2):147-53
– reference: 8377826 - Nature. 1993 Sep 23;365(6444):347-9
– reference: 21516108 - Nat Cell Biol. 2011 May;13(5):580-8
– reference: 12941276 - Cell. 2003 Aug 22;114(4):483-95
– reference: 14744428 - Cell. 2004 Jan 23;116(2):153-66
– reference: 27298089 - Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222
– reference: 10551804 - J Biol Chem. 1999 Nov 12;274(46):32539-42
– reference: 8922375 - J Cell Biol. 1996 Nov;135(4):895-911
– reference: 22193160 - Nat Cell Biol. 2011 Dec 22;14(1):20-8
– reference: 13130098 - J Cell Sci. 2003 Nov 1;116(Pt 21):4429-40
– reference: 9546392 - Cell. 1998 Apr 3;93(1):61-70
– reference: 17499046 - Mol Cell. 2007 May 11;26(3):403-14
– reference: 25281560 - J Proteomics. 2015 Apr 6;118:81-94
– reference: 18843296 - EMBO J. 2008 Nov 5;27(21):2918-28
– reference: 18056412 - J Cell Biol. 2007 Dec 3;179(5):951-63
– reference: 8223692 - Eur J Cell Biol. 1993 Jun;61(1):1-9
– reference: 10428023 - Cell. 1999 Jul 23;98(2):125-7
– reference: 19843282 - Traffic. 2009 Dec;10(12):1819-30
– reference: 11861768 - J Cell Sci. 2002 Feb 1;115(Pt 3):619-28
– reference: 17488620 - Dev Cell. 2007 May;12 (5):671-82
– reference: 7559786 - J Cell Biol. 1995 Oct;131(1):57-67
– reference: 17981132 - Dev Cell. 2007 Nov;13(5):623-34
– reference: 25689910 - Curr Biol. 2015 Feb 16;25(4):R151-3
– reference: 17618120 - Trends Biochem Sci. 2007 Aug;32(8):381-8
– reference: 23698585 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):382-92
– reference: 16990852 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):727-38
– reference: 8451644 - Science. 1993 Mar 5;259(5100):1466-8
– reference: 20817851 - Blood. 2010 Dec 16;116(25):5698-706
– reference: 12426381 - EMBO J. 2002 Nov 15;21(22):6095-104
– reference: 8566411 - Biochem Soc Trans. 1995 Aug;23(3):541-4
– reference: 9788882 - J Cell Sci. 1998 Nov;111 ( Pt 22):3411-25
– reference: 15886209 - J Biol Chem. 2005 Jul 8;280(27):25881-6
– reference: 12972550 - Mol Biol Cell. 2003 Sep;14(9):3605-16
– reference: 10559958 - Nat Cell Biol. 1999 Oct;1(6):330-4
– reference: 23709226 - J Biol Chem. 2013 Jul 12;288(28):20499-509
– reference: 23580231 - Elife. 2013 Apr 09;2:e00444
– reference: 21148297 - Mol Biol Cell. 2011 Jan 1;22(1):141-52
– reference: 12717434 - Nat Genet. 2003 Jun;34(2):220-5
SSID ssj0009580
Score 2.4201865
Snippet The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1...
One-third of the mammalian genome encodes proteins that are transported by the secretory pathway. Coat protein complexes such as COPII generate carrier...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E3155
SubjectTerms Biochemistry
Biological Sciences
Biotin
Biotinylation
Cargo
Dimers
Endoplasmic reticulum
Fusion protein
Golgi apparatus
Guanosine triphosphate
Oligomerization
PNAS Plus
Protein interaction
Proteins
Regulators
Secretory vesicles
Transport
Vesicles
Title Dimeric sorting code for concentrative cargo selection by the COPII coat
URI https://www.jstor.org/stable/26508426
https://www.ncbi.nlm.nih.gov/pubmed/29555761
https://www.proquest.com/docview/2108870709
https://www.proquest.com/docview/2015836920
https://pubmed.ncbi.nlm.nih.gov/PMC5889621
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIRBqqUhInaZzHbnR0SJQ-bFLfIsd2tkkoRU36AH8Nfyp3cX6ODQEvUZpcrcjf5e7s3H1HyNtUe7DucQNHaV87gfBiJ2VCORJMofKFdDOF-x2fl9PFRfBpHa5Ho5-9rKVdmU7kj1vrSv4HVbgGuGKV7D8g2w4KF-Ac8IUjIAzHv8L4w7XJhC8229IUzyrD4S2xGDEva1ZvKbaXm3FRdbxBtDHixHZ1X1ZnZyAqBtvzq9ajFU3-wLLZMJx15Se1TSjGzni17JoZL83njpMrsWku2XMO4arNGZ4cT23TO8ds4htDs9hha7FOPrL53ObH9hyEfXvm4kkc2vy0v0Xh8Sqzxe8yOP7wlH3bzMBfBqaieqKNOYZoxpkGpqFoa69N_WejmEHP_M59z5D-1r4cfhtb_5ujAMuG3Y1zUUy8CFnT4mbYIfs2wwgWoph75D6DhQj2yPi49nq0ztwUOdXP3pBHRf77G2MP4h6T-nrbouZmbm4v2Dl_RB7WqxQ6Myq3T0Y6f0z2m9mkRzVZ-bsnZFHrIK11kKIOUtBBOtBBWukgbXWQpt8pqBatdJCiDj4lF6fz85OFU3fncCQEmSXCorNMQEDoM5HGYea6GddKZFJ5Wgc6dnUq0yhlisXCDwPwJArpJ3kkoiyFVfIB2cs3uX5OKEys1lyD04aAVio3DYQvFYypkCEzkxaZNHOXyJq6HjuofE2qFIrIT3Cyk26yLXLU_uGbYW25W_SgAqOVaxC3yGGDTlK_80XCPPTK4CZji7xpb4NFxs9sItebHchAhM39acxcizwzYHaDx2EIK3zPItEA5lYA2d6Hd_Lrq4r1PeQ8njLvxV3P-5I86N69Q7JXbnf6FQTMZfq60tlfQLm6zQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimeric+sorting+code+for+concentrative+cargo+selection+by+the+COPII+coat&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nie%2C+Chao&rft.au=%E8%81%82%E8%B6%85&rft.au=Wang%2C+Huimin&rft.au=%E7%8E%8B%E6%83%A0%E6%95%8F&rft.date=2018-04-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=14&rft.spage=E3155&rft.epage=E3162&rft_id=info:doi/10.1073%2Fpnas.1704639115&rft.externalDocID=26508426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon