Dimeric sorting code for concentrative cargo selection by the COPII coat
The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en ro...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 14; pp. E3155 - E3162 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.04.2018
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1704639115 |
Cover
Loading…
Abstract | The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse–chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement–disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting. |
---|---|
AbstractList | The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting. One-third of the mammalian genome encodes proteins that are transported by the secretory pathway. Coat protein complexes such as COPII generate carrier vesicles and recruit cargos, orchestrated by cognate small GTPases as “molecular switches.” How coat complexes select specific cargos remains incompletely understood. Here we applied proximity-dependent biotinylation, fusing the promiscuous biotin ligase BirA* with the SAR1B GTPase, to track the dynamics of COPII-mediated export from the endoplasmic reticulum. LMAN1, a cargo receptor for COPII, is transiently enriched and released by the coat complex. The enrichment requires a dimeric sorting signal, formed by two copies of LMAN1. Hence, the COPII coat undergoes a dynamic engaging–disengaging cycle to select unique sets of secretory cargos. The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse–chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement–disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting. The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting.The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1 GTPases on the surface of the endoplasmic reticulum, orchestrates protein interactions to package cargos and generate transport vesicles en route to the Golgi. The dynamic nature of COPII, however, hinders analysis with conventional biochemical assays. Here we apply proximity-dependent biotinylation labeling to capture the dynamics of COPII transport in cells. When SAR1B was fused with a promiscuous biotin ligase, BirA*, the fusion protein SAR1B-BirA* biotinylates and thus enables the capture of COPII machinery and cargos in a GTP-dependent manner. Biochemical and pulse-chase imaging experiments demonstrate that the COPII coat undergoes a dynamic cycle of engagement-disengagement with the transmembrane cargo receptor LMAN1/ERGIC53. LMAN1 undergoes a process of concentrative sorting by the COPII coat, via a dimeric sorting code generated by oligomerization of the cargo receptor. Similar oligomerization events have been observed with other COPII sorting signals, suggesting that dimeric/multimeric sorting codes may serve as a general mechanism to generate selectivity of cargo sorting. |
Author | Nie, Chao 聂超 Chen, Xiao-Wei Ginsburg, David 陈晓伟 Wang, Huimin 王惠敏 王锐 Wang, Rui |
Author_xml | – sequence: 1 givenname: Chao surname: Nie fullname: Nie, Chao organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China – sequence: 2 fullname: 聂超 organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China – sequence: 3 givenname: Huimin surname: Wang fullname: Wang, Huimin organization: Center for Life Sciences, Peking University, Beijing 100871, China – sequence: 4 fullname: 王惠敏 organization: Center for Life Sciences, Peking University, Beijing 100871, China – sequence: 5 givenname: Rui surname: Wang fullname: Wang, Rui organization: Center for Life Sciences, Peking University, Beijing 100871, China – sequence: 6 fullname: 王锐 organization: Center for Life Sciences, Peking University, Beijing 100871, China – sequence: 7 givenname: David surname: Ginsburg fullname: Ginsburg, David organization: Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 – sequence: 8 givenname: Xiao-Wei surname: Chen fullname: Chen, Xiao-Wei organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China – sequence: 9 fullname: 陈晓伟 organization: State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29555761$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ksFvFCEUxompsdvq2ZNmEi-9bPuAYYCLSbNau0mTetAzYZg3WzazsALbpP-9bLa22oMnSPh9X773Pk7IUYgBCXlP4ZyC5BfbYPM5ldB2XFMqXpEZBU3nXavhiMwAmJyrlrXH5CTnNQBooeANOWZaCCE7OiPXX_wGk3dNjqn4sGpcHLAZY6qX4DCUZIu_x8bZtIpNxgld8TE0_UNT7rBZ3H5fLitqy1vyerRTxneP5yn5efX1x-J6fnP7bbm4vJk7Abrsk-E42hY6zmyvxQgwKhzs6AaK2KIG7F0vezYwbbloOdCBg5JKWjn2UvBT8vngu931GxwOESezTX5j04OJ1pt_X4K_M6t4b4RSumO0Gpw9GqT4a4e5mI3PDqfJBoy7bBhQoXinGVT00wt0HXcp1PEMo6CUBAm6Uh__TvQU5c-SK3BxAFyKOSccnxAKZl-j2ddonmusCvFC4Xyx-8XXkfz0H92Hg26dS0zPSToB9Rt0_DfyJ6uH |
CitedBy_id | crossref_primary_10_1007_s00418_018_1689_2 crossref_primary_10_1080_19336950_2019_1685626 crossref_primary_10_1126_sciadv_adm9216 crossref_primary_10_1002_elps_202000167 crossref_primary_10_1042_BST20220713 crossref_primary_10_1074_jbc_RA118_007071 crossref_primary_10_1098_rsob_190083 crossref_primary_10_1101_cshperspect_a041260 crossref_primary_10_15252_embj_2018100156 crossref_primary_10_1038_s41598_024_60687_2 crossref_primary_10_3389_fnut_2021_706067 crossref_primary_10_1038_s41467_023_44002_7 crossref_primary_10_1146_annurev_physiol_031522_100639 crossref_primary_10_3390_cells8091051 crossref_primary_10_1007_s13752_023_00444_2 crossref_primary_10_1083_jcb_202406103 crossref_primary_10_1016_j_ceb_2025_102501 crossref_primary_10_1083_jcb_202104044 crossref_primary_10_1080_21688370_2019_1710429 crossref_primary_10_1016_j_ceb_2021_01_008 crossref_primary_10_1371_journal_pone_0216249 crossref_primary_10_15252_embj_2022111513 crossref_primary_10_1016_j_jhazmat_2024_135301 crossref_primary_10_1016_j_cmet_2020_10_020 crossref_primary_10_1016_j_celrep_2022_111868 crossref_primary_10_1172_JCI163838 crossref_primary_10_3390_ijms21062101 crossref_primary_10_1016_j_cmet_2021_05_006 |
Cites_doi | 10.1016/S0962-8924(03)00082-5 10.1038/nmeth.1928 10.1093/emboj/cdf605 10.1016/j.sbi.2004.02.002 10.1083/jcb.200208074 10.1016/S0092-8674(03)00609-3 10.1016/S0092-8674(00)81146-0 10.1146/annurev-biochem-061608-091319 10.1074/jbc.M502160200 10.1126/science.8451644 10.1038/nrm3588 10.1091/mbc.e02-12-0777 10.1016/0092-8674(87)90224-8 10.1016/j.jprot.2014.09.011 10.1111/j.1600-0854.2009.00989.x 10.1242/jcs.115.3.619 10.1091/mbc.e10-08-0665 10.1182/blood-2011-05-352815 10.1146/annurev.cellbio.20.010403.105307 10.1042/bst0230541 10.1146/annurev-cellbio-111315-125016 10.1038/365347a0 10.1083/jcb.200709100 10.1016/j.molcel.2007.03.017 10.1038/ncb2226 10.1242/jcs.111.22.3411 10.1038/nrm2025 10.1083/jcb.131.1.57 10.1074/jbc.274.46.32539 10.1016/S0092-8674(03)00608-1 10.1002/0471140864.ps1923s74 10.1083/jcb.135.4.895 10.1182/blood-2010-04-278325 10.1016/S0092-8674(03)01079-1 10.1038/ng1153 10.1038/ncb2390 10.1083/jcb.200709012 10.1074/jbc.M113.461434 10.1093/emboj/cdf598 10.1016/j.cub.2015.01.017 10.1016/S0092-8674(00)81006-5 10.1016/j.tibs.2007.06.006 10.1038/14020 10.7554/eLife.00444 10.1016/j.devcel.2007.04.005 10.1038/emboj.2008.208 10.1074/jbc.274.22.15937 10.1016/j.devcel.2007.10.005 10.1126/science.1096303 10.1242/jcs.00759 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright © 2018 the Author(s). Published by PNAS. Copyright National Academy of Sciences Apr 3, 2018 Copyright © 2018 the Author(s). Published by PNAS. 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright © 2018 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Apr 3, 2018 – notice: Copyright © 2018 the Author(s). Published by PNAS. 2018 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1704639115 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | E3162 |
ExternalDocumentID | PMC5889621 29555761 10_1073_pnas_1704639115 26508426 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R35 HL135793 – fundername: NHLBI NIH HHS grantid: R01 HL039693 – fundername: NHLBI NIH HHS grantid: P01 HL057346 – fundername: Ministry of Science and Technology of the People's Republic of China (MOST) grantid: 2014BAI02B01 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: HL039693; P01-HL057346; R35HL135793 – fundername: National Natural Science Foundation of China (NSFC) grantid: 31571213; 31521062 – fundername: Howard Hughes Medical Institute (HHMI) grantid: Investigator |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION DOOOF JSODD NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-649effa40632ab95f00f8edafcd1ee4e90ebcb7b2d29a354301d308787a7fb753 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:21:48 EDT 2025 Thu Jul 10 18:31:32 EDT 2025 Mon Jun 30 08:32:27 EDT 2025 Wed Feb 19 02:44:13 EST 2025 Tue Jul 01 03:19:47 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Fri May 30 11:17:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | COPII LMAN1 proximity-dependent biotinylation cargo sorting cargo receptor |
Language | English |
License | Copyright © 2018 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c509t-649effa40632ab95f00f8edafcd1ee4e90ebcb7b2d29a354301d308787a7fb753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Contributed by David Ginsburg, February 17, 2018 (sent for review March 21, 2017; reviewed by Chris Fromme and Peter Tontonoz) Reviewers: C.F., Cornell University; and P.T., University of California, Los Angeles. Author contributions: C.N., D.G., and X.-W.C. designed research; C.N., H.W., R.W., and X.-W.C. performed research; H.W. contributed new reagents/analytic tools; C.N., R.W., D.G., and X.-W.C. analyzed data; and C.N., D.G., and X.-W.C. wrote the paper. |
ORCID | 0000-0002-6436-8942 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5889621 |
PMID | 29555761 |
PQID | 2108870709 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5889621 proquest_miscellaneous_2015836920 proquest_journals_2108870709 pubmed_primary_29555761 crossref_primary_10_1073_pnas_1704639115 crossref_citationtrail_10_1073_pnas_1704639115 jstor_primary_26508426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-03 |
PublicationDateYYYYMMDD | 2018-04-03 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 Schindler R (e_1_3_3_24_2) 1993; 61 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 9788882 - J Cell Sci. 1998 Nov;111 ( Pt 22):3411-25 10551804 - J Biol Chem. 1999 Nov 12;274(46):32539-42 18056412 - J Cell Biol. 2007 Dec 3;179(5):951-63 23580231 - Elife. 2013 Apr 09;2:e00444 15093828 - Curr Opin Struct Biol. 2004 Apr;14(2):147-53 23698585 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):382-92 17618120 - Trends Biochem Sci. 2007 Aug;32(8):381-8 27298089 - Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222 10428023 - Cell. 1999 Jul 23;98(2):125-7 12426381 - EMBO J. 2002 Nov 15;21(22):6095-104 18843296 - EMBO J. 2008 Nov 5;27(21):2918-28 12791295 - Trends Cell Biol. 2003 Jun;13(6):295-300 12717434 - Nat Genet. 2003 Jun;34(2):220-5 7559786 - J Cell Biol. 1995 Oct;131(1):57-67 22193160 - Nat Cell Biol. 2011 Dec 22;14(1):20-8 12941277 - Cell. 2003 Aug 22;114(4):497-509 11861768 - J Cell Sci. 2002 Feb 1;115(Pt 3):619-28 12499351 - J Cell Biol. 2002 Dec 23;159(6):915-21 20533886 - Annu Rev Biochem. 2010;79:777-802 8566411 - Biochem Soc Trans. 1995 Aug;23(3):541-4 17488620 - Dev Cell. 2007 May;12 (5):671-82 17981132 - Dev Cell. 2007 Nov;13(5):623-34 15473836 - Annu Rev Cell Dev Biol. 2004;20:87-123 21795745 - Blood. 2011 Sep 22;118(12):3384-91 9546392 - Cell. 1998 Apr 3;93(1):61-70 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8 12972550 - Mol Biol Cell. 2003 Sep;14(9):3605-16 21148297 - Mol Biol Cell. 2011 Jan 1;22(1):141-52 12426382 - EMBO J. 2002 Nov 15;21(22):6105-13 13130098 - J Cell Sci. 2003 Nov 1;116(Pt 21):4429-40 8377826 - Nature. 1993 Sep 23;365(6444):347-9 1096303 - Science. 1975 Aug 1;189(4200):347-58 25281560 - J Proteomics. 2015 Apr 6;118:81-94 18283111 - J Cell Biol. 2008 Feb 25;180(4):705-12 21516108 - Nat Cell Biol. 2011 May;13(5):580-8 19843282 - Traffic. 2009 Dec;10(12):1819-30 8451644 - Science. 1993 Mar 5;259(5100):1466-8 25689910 - Curr Biol. 2015 Feb 16;25(4):R151-3 17499046 - Mol Cell. 2007 May 11;26(3):403-14 10559958 - Nat Cell Biol. 1999 Oct;1(6):330-4 10336500 - J Biol Chem. 1999 May 28;274(22):15937-46 16990852 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):727-38 3594573 - Cell. 1987 Jul 17;50(2):289-300 15886209 - J Biol Chem. 2005 Jul 8;280(27):25881-6 24510646 - Curr Protoc Protein Sci. 2013 Nov 05;74:Unit 19.23. 8922375 - J Cell Biol. 1996 Nov;135(4):895-911 23709226 - J Biol Chem. 2013 Jul 12;288(28):20499-509 8223692 - Eur J Cell Biol. 1993 Jun;61(1):1-9 20817851 - Blood. 2010 Dec 16;116(25):5698-706 14744428 - Cell. 2004 Jan 23;116(2):153-66 12941276 - Cell. 2003 Aug 22;114(4):483-95 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1016/S0962-8924(03)00082-5 – ident: e_1_3_3_37_2 doi: 10.1038/nmeth.1928 – ident: e_1_3_3_9_2 doi: 10.1093/emboj/cdf605 – ident: e_1_3_3_11_2 doi: 10.1016/j.sbi.2004.02.002 – ident: e_1_3_3_18_2 doi: 10.1083/jcb.200208074 – ident: e_1_3_3_10_2 doi: 10.1016/S0092-8674(03)00609-3 – ident: e_1_3_3_25_2 doi: 10.1016/S0092-8674(00)81146-0 – ident: e_1_3_3_17_2 doi: 10.1146/annurev-biochem-061608-091319 – ident: e_1_3_3_36_2 doi: 10.1074/jbc.M502160200 – ident: e_1_3_3_33_2 doi: 10.1126/science.8451644 – ident: e_1_3_3_5_2 doi: 10.1038/nrm3588 – ident: e_1_3_3_43_2 doi: 10.1091/mbc.e02-12-0777 – ident: e_1_3_3_22_2 doi: 10.1016/0092-8674(87)90224-8 – ident: e_1_3_3_47_2 doi: 10.1016/j.jprot.2014.09.011 – ident: e_1_3_3_20_2 doi: 10.1111/j.1600-0854.2009.00989.x – ident: e_1_3_3_41_2 doi: 10.1242/jcs.115.3.619 – ident: e_1_3_3_50_2 doi: 10.1091/mbc.e10-08-0665 – ident: e_1_3_3_27_2 doi: 10.1182/blood-2011-05-352815 – ident: e_1_3_3_8_2 doi: 10.1146/annurev.cellbio.20.010403.105307 – ident: e_1_3_3_30_2 doi: 10.1042/bst0230541 – ident: e_1_3_3_3_2 doi: 10.1146/annurev-cellbio-111315-125016 – ident: e_1_3_3_32_2 doi: 10.1038/365347a0 – ident: e_1_3_3_29_2 doi: 10.1083/jcb.200709100 – ident: e_1_3_3_12_2 doi: 10.1016/j.molcel.2007.03.017 – ident: e_1_3_3_46_2 doi: 10.1038/ncb2226 – ident: e_1_3_3_44_2 doi: 10.1242/jcs.111.22.3411 – ident: e_1_3_3_6_2 doi: 10.1038/nrm2025 – ident: e_1_3_3_35_2 doi: 10.1083/jcb.131.1.57 – ident: e_1_3_3_40_2 doi: 10.1074/jbc.274.46.32539 – ident: e_1_3_3_14_2 doi: 10.1016/S0092-8674(03)00608-1 – ident: e_1_3_3_31_2 doi: 10.1002/0471140864.ps1923s74 – ident: e_1_3_3_19_2 doi: 10.1083/jcb.135.4.895 – ident: e_1_3_3_38_2 doi: 10.1182/blood-2010-04-278325 – volume: 61 start-page: 1 year: 1993 ident: e_1_3_3_24_2 article-title: ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif publication-title: Eur J Cell Biol – ident: e_1_3_3_1_2 doi: 10.1016/S0092-8674(03)01079-1 – ident: e_1_3_3_26_2 doi: 10.1038/ng1153 – ident: e_1_3_3_7_2 doi: 10.1038/ncb2390 – ident: e_1_3_3_49_2 doi: 10.1083/jcb.200709012 – ident: e_1_3_3_51_2 doi: 10.1074/jbc.M113.461434 – ident: e_1_3_3_45_2 doi: 10.1093/emboj/cdf598 – ident: e_1_3_3_42_2 doi: 10.1016/j.cub.2015.01.017 – ident: e_1_3_3_21_2 doi: 10.1016/S0092-8674(00)81006-5 – ident: e_1_3_3_16_2 doi: 10.1016/j.tibs.2007.06.006 – ident: e_1_3_3_28_2 doi: 10.1038/14020 – ident: e_1_3_3_48_2 doi: 10.7554/eLife.00444 – ident: e_1_3_3_4_2 doi: 10.1016/j.devcel.2007.04.005 – ident: e_1_3_3_13_2 doi: 10.1038/emboj.2008.208 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.274.22.15937 – ident: e_1_3_3_34_2 doi: 10.1016/j.devcel.2007.10.005 – ident: e_1_3_3_2_2 doi: 10.1126/science.1096303 – ident: e_1_3_3_39_2 doi: 10.1242/jcs.00759 – reference: 12791295 - Trends Cell Biol. 2003 Jun;13(6):295-300 – reference: 3594573 - Cell. 1987 Jul 17;50(2):289-300 – reference: 12499351 - J Cell Biol. 2002 Dec 23;159(6):915-21 – reference: 12426382 - EMBO J. 2002 Nov 15;21(22):6105-13 – reference: 10336500 - J Biol Chem. 1999 May 28;274(22):15937-46 – reference: 21795745 - Blood. 2011 Sep 22;118(12):3384-91 – reference: 18283111 - J Cell Biol. 2008 Feb 25;180(4):705-12 – reference: 12941277 - Cell. 2003 Aug 22;114(4):497-509 – reference: 15473836 - Annu Rev Cell Dev Biol. 2004;20:87-123 – reference: 1096303 - Science. 1975 Aug 1;189(4200):347-58 – reference: 22406856 - Nat Methods. 2012 Mar 11;9(5):493-8 – reference: 20533886 - Annu Rev Biochem. 2010;79:777-802 – reference: 24510646 - Curr Protoc Protein Sci. 2013 Nov 05;74:Unit 19.23. – reference: 15093828 - Curr Opin Struct Biol. 2004 Apr;14(2):147-53 – reference: 8377826 - Nature. 1993 Sep 23;365(6444):347-9 – reference: 21516108 - Nat Cell Biol. 2011 May;13(5):580-8 – reference: 12941276 - Cell. 2003 Aug 22;114(4):483-95 – reference: 14744428 - Cell. 2004 Jan 23;116(2):153-66 – reference: 27298089 - Annu Rev Cell Dev Biol. 2016 Oct 6;32:197-222 – reference: 10551804 - J Biol Chem. 1999 Nov 12;274(46):32539-42 – reference: 8922375 - J Cell Biol. 1996 Nov;135(4):895-911 – reference: 22193160 - Nat Cell Biol. 2011 Dec 22;14(1):20-8 – reference: 13130098 - J Cell Sci. 2003 Nov 1;116(Pt 21):4429-40 – reference: 9546392 - Cell. 1998 Apr 3;93(1):61-70 – reference: 17499046 - Mol Cell. 2007 May 11;26(3):403-14 – reference: 25281560 - J Proteomics. 2015 Apr 6;118:81-94 – reference: 18843296 - EMBO J. 2008 Nov 5;27(21):2918-28 – reference: 18056412 - J Cell Biol. 2007 Dec 3;179(5):951-63 – reference: 8223692 - Eur J Cell Biol. 1993 Jun;61(1):1-9 – reference: 10428023 - Cell. 1999 Jul 23;98(2):125-7 – reference: 19843282 - Traffic. 2009 Dec;10(12):1819-30 – reference: 11861768 - J Cell Sci. 2002 Feb 1;115(Pt 3):619-28 – reference: 17488620 - Dev Cell. 2007 May;12 (5):671-82 – reference: 7559786 - J Cell Biol. 1995 Oct;131(1):57-67 – reference: 17981132 - Dev Cell. 2007 Nov;13(5):623-34 – reference: 25689910 - Curr Biol. 2015 Feb 16;25(4):R151-3 – reference: 17618120 - Trends Biochem Sci. 2007 Aug;32(8):381-8 – reference: 23698585 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):382-92 – reference: 16990852 - Nat Rev Mol Cell Biol. 2006 Oct;7(10):727-38 – reference: 8451644 - Science. 1993 Mar 5;259(5100):1466-8 – reference: 20817851 - Blood. 2010 Dec 16;116(25):5698-706 – reference: 12426381 - EMBO J. 2002 Nov 15;21(22):6095-104 – reference: 8566411 - Biochem Soc Trans. 1995 Aug;23(3):541-4 – reference: 9788882 - J Cell Sci. 1998 Nov;111 ( Pt 22):3411-25 – reference: 15886209 - J Biol Chem. 2005 Jul 8;280(27):25881-6 – reference: 12972550 - Mol Biol Cell. 2003 Sep;14(9):3605-16 – reference: 10559958 - Nat Cell Biol. 1999 Oct;1(6):330-4 – reference: 23709226 - J Biol Chem. 2013 Jul 12;288(28):20499-509 – reference: 23580231 - Elife. 2013 Apr 09;2:e00444 – reference: 21148297 - Mol Biol Cell. 2011 Jan 1;22(1):141-52 – reference: 12717434 - Nat Genet. 2003 Jun;34(2):220-5 |
SSID | ssj0009580 |
Score | 2.4201865 |
Snippet | The flow of cargo vesicles along the secretory pathway requires concerted action among various regulators. The COPII complex, assembled by the activated SAR1... One-third of the mammalian genome encodes proteins that are transported by the secretory pathway. Coat protein complexes such as COPII generate carrier... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E3155 |
SubjectTerms | Biochemistry Biological Sciences Biotin Biotinylation Cargo Dimers Endoplasmic reticulum Fusion protein Golgi apparatus Guanosine triphosphate Oligomerization PNAS Plus Protein interaction Proteins Regulators Secretory vesicles Transport Vesicles |
Title | Dimeric sorting code for concentrative cargo selection by the COPII coat |
URI | https://www.jstor.org/stable/26508426 https://www.ncbi.nlm.nih.gov/pubmed/29555761 https://www.proquest.com/docview/2108870709 https://www.proquest.com/docview/2015836920 https://pubmed.ncbi.nlm.nih.gov/PMC5889621 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWAQGMhIRBqqUhInaZzHbnR0SJQ-bFLfIsd2tkkoRU36AH8Nfyp3cX6ODQEvUZpcrcjf5e7s3H1HyNtUe7DucQNHaV87gfBiJ2VCORJMofKFdDOF-x2fl9PFRfBpHa5Ho5-9rKVdmU7kj1vrSv4HVbgGuGKV7D8g2w4KF-Ac8IUjIAzHv8L4w7XJhC8229IUzyrD4S2xGDEva1ZvKbaXm3FRdbxBtDHixHZ1X1ZnZyAqBtvzq9ajFU3-wLLZMJx15Se1TSjGzni17JoZL83njpMrsWku2XMO4arNGZ4cT23TO8ds4htDs9hha7FOPrL53ObH9hyEfXvm4kkc2vy0v0Xh8Sqzxe8yOP7wlH3bzMBfBqaieqKNOYZoxpkGpqFoa69N_WejmEHP_M59z5D-1r4cfhtb_5ujAMuG3Y1zUUy8CFnT4mbYIfs2wwgWoph75D6DhQj2yPi49nq0ztwUOdXP3pBHRf77G2MP4h6T-nrbouZmbm4v2Dl_RB7WqxQ6Myq3T0Y6f0z2m9mkRzVZ-bsnZFHrIK11kKIOUtBBOtBBWukgbXWQpt8pqBatdJCiDj4lF6fz85OFU3fncCQEmSXCorNMQEDoM5HGYea6GddKZFJ5Wgc6dnUq0yhlisXCDwPwJArpJ3kkoiyFVfIB2cs3uX5OKEys1lyD04aAVio3DYQvFYypkCEzkxaZNHOXyJq6HjuofE2qFIrIT3Cyk26yLXLU_uGbYW25W_SgAqOVaxC3yGGDTlK_80XCPPTK4CZji7xpb4NFxs9sItebHchAhM39acxcizwzYHaDx2EIK3zPItEA5lYA2d6Hd_Lrq4r1PeQ8njLvxV3P-5I86N69Q7JXbnf6FQTMZfq60tlfQLm6zQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimeric+sorting+code+for+concentrative+cargo+selection+by+the+COPII+coat&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nie%2C+Chao&rft.au=%E8%81%82%E8%B6%85&rft.au=Wang%2C+Huimin&rft.au=%E7%8E%8B%E6%83%A0%E6%95%8F&rft.date=2018-04-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=14&rft.spage=E3155&rft.epage=E3162&rft_id=info:doi/10.1073%2Fpnas.1704639115&rft.externalDocID=26508426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |