Food Choices after Cognitive Load: An Affective Computing Approach

Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. Th...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 14; p. 6597
Main Authors Kappattanavar, Arpita Mallikarjuna, Hecker, Pascal, Moontaha, Sidratul, Steckhan, Nico, Arnrich, Bert
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.07.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.
AbstractList Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.
Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.
Audience Academic
Author Hecker, Pascal
Kappattanavar, Arpita Mallikarjuna
Moontaha, Sidratul
Arnrich, Bert
Steckhan, Nico
AuthorAffiliation 2 Institute for Social Medicine, Epidemiology and Health Economics, Charité, 10117 Berlin, Germany
1 Digital Health—Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany bert.arnrich@hpi.de (B.A.)
AuthorAffiliation_xml – name: 1 Digital Health—Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany bert.arnrich@hpi.de (B.A.)
– name: 2 Institute for Social Medicine, Epidemiology and Health Economics, Charité, 10117 Berlin, Germany
Author_xml – sequence: 1
  givenname: Arpita Mallikarjuna
  orcidid: 0000-0002-7322-0704
  surname: Kappattanavar
  fullname: Kappattanavar, Arpita Mallikarjuna
– sequence: 2
  givenname: Pascal
  orcidid: 0000-0001-6604-1671
  surname: Hecker
  fullname: Hecker, Pascal
– sequence: 3
  givenname: Sidratul
  orcidid: 0000-0001-7509-0088
  surname: Moontaha
  fullname: Moontaha, Sidratul
– sequence: 4
  givenname: Nico
  orcidid: 0000-0003-0245-2046
  surname: Steckhan
  fullname: Steckhan, Nico
– sequence: 5
  givenname: Bert
  orcidid: 0000-0001-8380-7667
  surname: Arnrich
  fullname: Arnrich, Bert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37514891$$D View this record in MEDLINE/PubMed
BookMark eNplkk1v3CAQhlGVqkm2PfQPVJZ6aQ-b8GUMvUSu1bSRVuqlPSPA4GXlBRfsSP33ZbNJlKTiMGh455l5gXNwEmKwALxH8IIQAS8zJoiyWjSvwBmimK45xvDkyf4UnOe8gxATQvgbcEqaGlEu0Bn4eh1jX3Xb6I3NlXKzTVUXh-Bnf2urTVT9l6oNVeucNXepLu6nZfZhqNppSlGZ7Vvw2qkx23f3cQV-X3_71f1Yb35-v-nazdrUUMxrhpxwxDLKG2Z6aHrqjNHEOkIUMpiV-YlSmGLMeqMdZs7YRiuHtbVYQ05W4ObI7aPaySn5vUp_ZVRe3iViGqRKszejlXWjDXQEcU0JRSVi7nqli33Odc1YYV0dWdOi97Y3NsxJjc-gz0-C38oh3koECWeogFbg0z0hxT-LzbPc-2zsOKpg45Il5pRCARFvivTjC-kuLimUuzqoSKEJfgBeHFWDKg58cLE0NmX1du9NeXDnS75talG6CyxKwYenHh6Hf3jcIrg8CkyKOSfrpPGzmn08WPJj8SIP30c-fp9S8flFxQP0f-0_miPCSA
CitedBy_id crossref_primary_10_22201_fesz_20075502e_2023_13_50_88410
crossref_primary_10_1088_1741_2552_ad593e
Cites_doi 10.3389/fpsyg.2018.01655
10.3390/educsci11090540
10.1016/j.specom.2015.05.007
10.1109/BigDataService49289.2020.00010
10.1109/ICHI48887.2020.9374328
10.1007/978-3-319-31700-7
10.1109/BIA48344.2019.8967457
10.3390/s22010408
10.3758/s13428-020-01516-y
10.1111/jcal.12590
10.1186/1475-2891-11-71
10.1145/2395123.2395127
10.1371/journal.pone.0227709
10.1207/S15326985EP3801_8
10.1177/154193120605000909
10.1007/11892755_59
10.3233/THC-209008
10.5334/jors.br
10.1037/h0054651
10.1007/s10648-017-9404-8
10.1007/s13679-011-0006-3
10.1093/gerona/58.2.M153
10.1016/j.jbi.2019.103139
10.1109/IFETC46817.2019.9073686
10.1109/EMS.2014.44
10.1111/j.1464-0597.2004.00161.x
10.1016/S0939-4753(03)80010-8
10.1037/0022-0663.100.1.223
10.1080/10640260701454394
10.3390/s23010340
10.1007/978-3-642-04898-2_288
10.1109/TMM.2019.2958761
10.1097/MD.0000000000016863
10.1016/j.eatbeh.2016.01.002
10.1037/0022-3514.54.6.1063
10.1016/j.appet.2008.12.006
10.1016/j.bspc.2022.103968
10.1016/j.eatbeh.2004.04.009
10.1109/CogInfoCom.2017.8268268
10.3390/app10113843
10.1016/j.jneumeth.2006.11.017
10.1007/s12008-022-01087-6
10.1016/S0166-4115(08)62386-9
10.1145/3340962
10.1007/978-3-030-04021-5_6
10.1037/0022-3514.78.4.753
10.1145/2818346.2820739
10.1093/gigascience/gix019
10.1080/08870446.2020.1766041
10.1155/2011/219253
10.1186/1471-2458-14-342
10.1073/pnas.0801268105
10.1109/EMBC.2015.7318762
10.1007/s00779-011-0466-1
10.1109/CogInfoCom.2016.7804532
10.1007/978-3-642-40483-2_11
10.3390/brainsci10080526
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23146597
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_57bc0f318b434131828fdab23388b566
PMC10386123
A759233929
37514891
10_3390_s23146597
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: German Federal Ministry for Economic Affairs and Energy
  grantid: ZF4776601HB9
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: 491466077
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-61f9f3e64876cd0cd4fccb3ef33a1c266593aa24226dcbf26fce7baf2bee2b083
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:56:08 EDT 2025
Thu Aug 21 18:36:43 EDT 2025
Fri Jul 11 02:58:58 EDT 2025
Fri Jul 25 05:15:26 EDT 2025
Tue Jun 10 21:21:24 EDT 2025
Mon Jul 21 06:00:32 EDT 2025
Tue Jul 01 01:20:16 EDT 2025
Thu Apr 24 22:57:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords cognitive load
sensors
photoplethysmography
physiological signals
electrodermal activity
eating behaviour
machine learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-61f9f3e64876cd0cd4fccb3ef33a1c266593aa24226dcbf26fce7baf2bee2b083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0245-2046
0000-0001-8380-7667
0000-0001-7509-0088
0000-0002-7322-0704
0000-0001-6604-1671
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23146597
PMID 37514891
PQID 2843123983
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_57bc0f318b434131828fdab23388b566
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10386123
proquest_miscellaneous_2844090187
proquest_journals_2843123983
gale_infotracacademiconefile_A759233929
pubmed_primary_37514891
crossref_citationtrail_10_3390_s23146597
crossref_primary_10_3390_s23146597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230721
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 7
  year: 2023
  text: 20230721
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Paquet (ref_23) 2003; 58
Quick (ref_5) 2016; 21
Korbach (ref_9) 2018; 30
ref_58
ref_13
ref_57
ref_12
ref_56
Fan (ref_14) 2020; 28
ref_55
Chen (ref_62) 2019; 98
ref_54
ref_53
ref_18
ref_16
(ref_2) 2018; 18
ref_15
Bellisle (ref_4) 2003; 13
Saeb (ref_27) 2017; 6
Yap (ref_38) 2015; 72
ref_61
Russoniello (ref_45) 2009; 7
Budidha (ref_52) 2022; 78
ref_25
Hart (ref_43) 1988; Volume 52
Stone (ref_37) 2015; 3
Watson (ref_46) 1988; 54
Berrett (ref_65) 2007; 15
ref_29
ref_28
Min (ref_24) 2019; 22
Zhang (ref_51) 2019; 16
Paas (ref_6) 2003; 38
Nguyen (ref_64) 2012; 11
Bell (ref_22) 2018; 9
Marcolin (ref_21) 2023; 17
Lattimore (ref_36) 2004; 5
Mangaroska (ref_60) 2022; 38
ref_35
Rubio (ref_44) 2004; 53
Chen (ref_7) 2013; 2
ref_34
Can (ref_63) 2019; 92
ref_33
ref_32
Ward (ref_20) 2000; 78
ref_31
ref_30
Yap (ref_11) 2011; 2011
Greco (ref_50) 2015; 63
Scott (ref_3) 2012; 1
Jaeggi (ref_40) 2008; 105
Stroop (ref_39) 1935; 18
Cinaz (ref_17) 2013; 17
DeLeeuw (ref_10) 2008; 100
Hsu (ref_19) 2021; 36
ref_47
Hart (ref_42) 2006; Volume 50
ref_41
Habhab (ref_59) 2009; 52
ref_1
Peirce (ref_26) 2007; 162
ref_49
ref_8
Makowski (ref_48) 2021; 53
References_xml – volume: 9
  start-page: 1655
  year: 2018
  ident: ref_22
  article-title: Beyond self-report: A review of physiological and neuroscientific methods to investigate consumer behavior
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.01655
– volume: 18
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Causes of emotional eating and matched treatment of obesity
  publication-title: Curr. Diabetes Rep.
– ident: ref_32
– ident: ref_61
  doi: 10.3390/educsci11090540
– volume: 72
  start-page: 74
  year: 2015
  ident: ref_38
  article-title: Voice source under cognitive load: Effects and classification
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2015.05.007
– ident: ref_18
  doi: 10.1109/BigDataService49289.2020.00010
– volume: 63
  start-page: 797
  year: 2015
  ident: ref_50
  article-title: cvxEDA: A convex optimization approach to electrodermal activity processing
  publication-title: IEEE Trans. Biomed. Eng.
– ident: ref_58
  doi: 10.1109/ICHI48887.2020.9374328
– ident: ref_8
  doi: 10.1007/978-3-319-31700-7
– ident: ref_31
  doi: 10.1109/BIA48344.2019.8967457
– ident: ref_25
  doi: 10.3390/s22010408
– volume: 53
  start-page: 1689
  year: 2021
  ident: ref_48
  article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-020-01516-y
– ident: ref_1
– volume: 38
  start-page: 40
  year: 2022
  ident: ref_60
  article-title: Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity
  publication-title: J. Comput. Assist. Learn
  doi: 10.1111/jcal.12590
– volume: 11
  start-page: 71
  year: 2012
  ident: ref_64
  article-title: Popcorn is more satiating than potato chips in normal-weight adults
  publication-title: Nutr. J.
  doi: 10.1186/1475-2891-11-71
– volume: 2
  start-page: 1
  year: 2013
  ident: ref_7
  article-title: Multimodal behavior and interaction as indicators of cognitive load
  publication-title: ACM Trans. Interact. Intell. Syst.
  doi: 10.1145/2395123.2395127
– ident: ref_53
  doi: 10.1371/journal.pone.0227709
– volume: 38
  start-page: 63
  year: 2003
  ident: ref_6
  article-title: Cognitive load measurement as a means to advance cognitive load theory
  publication-title: Educ. Psychol.
  doi: 10.1207/S15326985EP3801_8
– volume: Volume 50
  start-page: 904
  year: 2006
  ident: ref_42
  article-title: NASA-task load index (NASA-TLX); 20 years later
  publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
  doi: 10.1177/154193120605000909
– ident: ref_56
  doi: 10.1007/11892755_59
– volume: 28
  start-page: 67
  year: 2020
  ident: ref_14
  article-title: Assessment of mental workload based on multi-physiological signals
  publication-title: Technol. Health Care
  doi: 10.3233/THC-209008
– volume: 3
  start-page: e5
  year: 2015
  ident: ref_37
  article-title: A working memory test battery: Java-based collection of seven working memory tasks
  publication-title: J. Open Res. Softw.
  doi: 10.5334/jors.br
– volume: 18
  start-page: 643
  year: 1935
  ident: ref_39
  article-title: Studies of interference in serial verbal reactions
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0054651
– volume: 30
  start-page: 503
  year: 2018
  ident: ref_9
  article-title: Differentiating different types of cognitive load: A comparison of different measures
  publication-title: Educ. Psychol. Rev.
  doi: 10.1007/s10648-017-9404-8
– volume: 1
  start-page: 16
  year: 2012
  ident: ref_3
  article-title: Effects of chronic social stress on obesity
  publication-title: Curr. Obes. Rep.
  doi: 10.1007/s13679-011-0006-3
– ident: ref_41
– volume: 58
  start-page: M153
  year: 2003
  ident: ref_23
  article-title: Direct and indirect effects of everyday emotions on food intake of elderly patients in institutions
  publication-title: J. Gerontol. Ser. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/58.2.M153
– volume: 92
  start-page: 103139
  year: 2019
  ident: ref_63
  article-title: Stress detection in daily life scenarios using smart phones and wearable sensors: A survey
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2019.103139
– ident: ref_49
  doi: 10.1109/IFETC46817.2019.9073686
– ident: ref_55
  doi: 10.1109/EMS.2014.44
– ident: ref_28
– volume: 53
  start-page: 61
  year: 2004
  ident: ref_44
  article-title: Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods
  publication-title: Appl. Psychol.
  doi: 10.1111/j.1464-0597.2004.00161.x
– volume: 13
  start-page: 189
  year: 2003
  ident: ref_4
  article-title: Why should we study human food intake behaviour?
  publication-title: Nutr. Metab. Cardiovasc. Dis.
  doi: 10.1016/S0939-4753(03)80010-8
– volume: 100
  start-page: 223
  year: 2008
  ident: ref_10
  article-title: A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load
  publication-title: J. Educ. Psychol.
  doi: 10.1037/0022-0663.100.1.223
– volume: 15
  start-page: 373
  year: 2007
  ident: ref_65
  article-title: The role of spirituality in the treatment of trauma and eating disorders: Recommendations for clinical practice
  publication-title: Eat. Disord.
  doi: 10.1080/10640260701454394
– ident: ref_47
– ident: ref_33
  doi: 10.3390/s23010340
– ident: ref_57
  doi: 10.1007/978-3-642-04898-2_288
– volume: 22
  start-page: 2659
  year: 2019
  ident: ref_24
  article-title: Food recommendation: Framework, existing solutions, and challenges
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2958761
– volume: 98
  start-page: e16863
  year: 2019
  ident: ref_62
  article-title: Artificial neural networks-based classification of emotions using wristband heart rate monitor data
  publication-title: Medicine
  doi: 10.1097/MD.0000000000016863
– volume: 21
  start-page: 89
  year: 2016
  ident: ref_5
  article-title: Relationships of cognitive load on eating and weight-related behaviors of young adults
  publication-title: Eat. Behav.
  doi: 10.1016/j.eatbeh.2016.01.002
– volume: 54
  start-page: 1063
  year: 1988
  ident: ref_46
  article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.54.6.1063
– volume: 52
  start-page: 437
  year: 2009
  ident: ref_59
  article-title: The relationship between stress, dietary restraint, and food preferences in women
  publication-title: Appetite
  doi: 10.1016/j.appet.2008.12.006
– volume: 78
  start-page: 103968
  year: 2022
  ident: ref_52
  article-title: Comparison of pulse rate variability and morphological features of photoplethysmograms in estimation of blood pressure
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103968
– volume: 5
  start-page: 315
  year: 2004
  ident: ref_36
  article-title: Cognitive load, stress, and disinhibited eating
  publication-title: Eat. Behav.
  doi: 10.1016/j.eatbeh.2004.04.009
– ident: ref_12
  doi: 10.1109/CogInfoCom.2017.8268268
– ident: ref_16
  doi: 10.3390/app10113843
– volume: 162
  start-page: 8
  year: 2007
  ident: ref_26
  article-title: PsychoPy—Psychophysics software in Python
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.11.017
– volume: 17
  start-page: 45
  year: 2023
  ident: ref_21
  article-title: Towards an integrated framework to measure user engagement with interactive or physical products
  publication-title: Int. J. Interact. Des. Manuf.
  doi: 10.1007/s12008-022-01087-6
– volume: Volume 52
  start-page: 139
  year: 1988
  ident: ref_43
  article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62386-9
– volume: 7
  start-page: 189
  year: 2009
  ident: ref_45
  article-title: EEG, HRV and Psychological Correlates while Playing Bejeweled II: A Randomized Controlled Study
  publication-title: Annu. Rev. Cyberther. Telemed.
– volume: 16
  start-page: 1
  year: 2019
  ident: ref_51
  article-title: Photoplethysmogram-based Cognitive Load Assessment Using Multi-Feature Fusion Model
  publication-title: ACM Trans. Appl. Percept.
  doi: 10.1145/3340962
– ident: ref_29
  doi: 10.1007/978-3-030-04021-5_6
– volume: 78
  start-page: 753
  year: 2000
  ident: ref_20
  article-title: Don’t mind if I do: Disinhibited eating under cognitive load
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.78.4.753
– ident: ref_34
  doi: 10.1145/2818346.2820739
– volume: 6
  start-page: gix019
  year: 2017
  ident: ref_27
  article-title: The need to approximate the use-case in clinical machine learning
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix019
– volume: 36
  start-page: 236
  year: 2021
  ident: ref_19
  article-title: Effects of stress on eating behaviours in adolescents: A daily diary investigation
  publication-title: Psychol. Health
  doi: 10.1080/08870446.2020.1766041
– volume: 2011
  start-page: 219253
  year: 2011
  ident: ref_11
  article-title: Formant frequencies under cognitive load: Effects and classification
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2011/219253
– ident: ref_35
  doi: 10.1186/1471-2458-14-342
– volume: 105
  start-page: 6829
  year: 2008
  ident: ref_40
  article-title: Improving fluid intelligence with training on working memory
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801268105
– ident: ref_54
  doi: 10.1109/EMBC.2015.7318762
– volume: 17
  start-page: 229
  year: 2013
  ident: ref_17
  article-title: Monitoring of mental workload levels during an everyday life office-work scenario
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-011-0466-1
– ident: ref_13
  doi: 10.1109/CogInfoCom.2016.7804532
– ident: ref_30
  doi: 10.1007/978-3-642-40483-2_11
– ident: ref_15
  doi: 10.3390/brainsci10080526
SSID ssj0023338
Score 2.399252
Snippet Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6597
SubjectTerms Classification
cognitive load
Eating behavior
eating behaviour
electrodermal activity
machine learning
Obesity
photoplethysmography
physiological signals
Sensors
Telematics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB7Ep_og1aqNPWUtBX0JTXY3v3yLR49Dik89uLdlf2KhJKLn_9-ZJBdyWOiLr9kNbGZ2dr4vmXwD8M1zWRSiMrFPuImlDHmMFEzHeSV95rwuEtNVWzzky5W8X2frSasvqgnr5YF7wyFhNzYJuPOMpAMX4XAZnDYcqVVpEIvQ6Ys5b0umBqolcLjXERJI6r-_IIqReUbKTpPs04n0vz2KJ7lot05ykngWH-FwQIys7ld6BHu-OYaDiY7gJ7hbtK1j88eWop51bb_ZfFsXxH622t2yumF1V7tBl_peDngvqwdN8RNYLX78mi_joTlCbDHHb5DyhSoInyPhyK1LrJPBWiN8EEKnFtNuVgmtOf0o66wJPA_WF0YHbrznBoHXKew3beM_AytKg8b0rvTSSo98ORWSPpDmheMmC0kEN1ujKTsoh1MDiz8KGQTZV432jeDrOPWpl8v416Q7svw4gRSuuwvodzX4Xf3P7xFck98UxSEuxurhdwJ8JFK0UnWRIXYl9BfBbOtaNQToi8KsLFLSPhQRXI3DGFr0vUQ3vn3t5iD7pa6FEZz1O2FcsygQaZZVGkG5s0d2Hmp3pPn92Ml3kyQ9id6cv4cZvsAHjtud3jbzdAb7m-dXf4EwaWMuu4j4C0n3DiI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKs8GCjIICS5Rk9iJHS4oXbFUCHGiUm-RnxQJJW13-_8743jTXYG42o7kjD2Pzx5_A_DeV0JK3prcF5XJhQhNjhBM500rfO28loWJ2RY_mtMz8e28Pk8HbquUVrmxidFQu9HSGfkxmlFeElkd_3x5lVPVKLpdTSU07sODEj0NpXSp5dcZcHHEXxObEEdof7zCWEY0NfE7bfmgSNX_t0He8ki72ZJb7md5APspbmTdtNCP4Z4fnsCjLTbBp3CyHEfHFhcj6T6Lxb_ZYpMdxL6P2n1i3cC6mMFBTVNFB_yWdYlZ_BmcLb_8XJzmqURCbtHTrxH4hTZw3yDsaKwrrBPBWsN94FyXFkVSt1zrip7LOmtC1QTrpdGhMt5XBsOv57A3jIM_BCaV4Up5p7ywwiNqLrmga9JGusrUocjg40ZovU384VTG4k-POILk28_yzeDdPPRyIs3416ATkvw8gHiuY8N4_atPatPX0tgioN0xgtwtgiEVnDa4skoZjEQz-EDr1pM24mSsTo8K8JeI16rvZI0RLMWAGRxtlrZParrq7zZVBm_nblQwujXRgx9v4hjEwFS7MIMX006Y58wlxpuqLTNQO3tk56d2e4bfF5HEm4jpifrm5f_n9QoeUoF7Ok2uyiPYW1_f-NcYBq3Nm7jXbwFjogay
  priority: 102
  providerName: ProQuest
Title Food Choices after Cognitive Load: An Affective Computing Approach
URI https://www.ncbi.nlm.nih.gov/pubmed/37514891
https://www.proquest.com/docview/2843123983
https://www.proquest.com/docview/2844090187
https://pubmed.ncbi.nlm.nih.gov/PMC10386123
https://doaj.org/article/57bc0f318b434131828fdab23388b566
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEB_uA-R8EL-tnksVQV-qbZI2qSDSXW49RA8RF_atJGniCUere3ug_70z_WKL50sf2mlpJ5PM75ekvwF44ZiQkucmcjEzkRA-i5CC6SjLhUsrp2Vs2t0WZ9npSnxcp-s9GGps9g68vJbaUT2p1ebi9e9ff95jh39HjBMp-5tLxCgiQ2S8D4eYkCQVMvgsxsUExpGGdaJCU_MjuMElAgaVJ5Os1Ir3_ztE7-So6f7JnYS0vA23eiQZFl3T34E9V9-Fmzv6gvdgvmyaKlycNzQahG058HAx7BcKPzW6ehsWdVi0ezroVFfjAe8Ni15r_D6sliffFqdRXzQhspj7t0gFfe65y5CIZLaKbSW8tYY7z7lOLKbjNOdaM_qBtrLGs8xbJ432zDjHDAKyB3BQN7V7BKFUhivlKuWEFQ55dMIFLZxmsmIm9XEArwanlbZXFKfCFhclMgtydTm6OoDno-nPTkbjOqM5eX40IOXr9kSz-V72HalMpbGxx5HICErASI-Ur7TBRlbKIDYN4CW1W0kRgy9jdf-bAX4SKV2VhUwR0xIqDOB4aNpyiLsSszVPSBORB_BsvIxdjtZRdO2aq9YGWTFVMwzgYRcJ4zsPARWAmsTI5KOmV-of562sN0nVkxjO4_8-9AkcUbV7mlpmyTEcbDdX7ilioq2Zwb5cSzyq5YcZHM5Pzr58nbXzC7O2L_wFbXoMXQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sZ3HIiGULixbuvTUSr0Z27HbSigp3a0Qf4rfyExebATi1mvsRM54PPONPf4G4KXjMsvExIQu4iaU0qchhmA6TCfSJaXTWWSabIv9dH4oPx8lRxvwq78LQ2mVvU1sDHVZW9oj30YzKmIiqxPvz76HVDWKTlf7EhqtWuy5nz8wZFu-2_2A8_uK89nHg-k87KoKhBad4wpjJT_xwqWI1FNbRraU3lojnBdCxxb9VTIRWnO6YVpa43nqrcuM9tw4xw0iFvzuFbgqBXpyupk--zQEeALjvZa9CBuj7SViJ4mfy0Y-rykN8LcDWPOA4-zMNXc3uwU3O5zKilaxbsOGq-7AjTX2wruwM6vrkk1ParI1rCk2zqZ9NhJb1Lp8y4qKFU3GCD1qK0jgu6zomMzvweGlCO8-bFZ15R4Cy3Ij8tyVuZNWOozSYyHpWDbNSm4SHwXwpheash1fOZXN-KYwbiH5qkG-AbwYup61JB3_6rRDkh86EK9286A-P1bdMlVJZmzk0c4ZSe4dg6_cl9rgzOa5QeQbwGuaN0WrHwdjdXeJAX-JeLRUkSWImAlzBrDVT63qzMJS_VHiAJ4Pzbig6ZRGV66-aPpgzE21EgN40GrCMGaRIb7NJ3EA-UhHRj81bqlOTxrScCLCJ6qdR_8f1zO4Nj_4slCL3f29x3Cdo1LTTjaPt2BzdX7hniAEW5mnjd4z-HrZC-038hNF8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxG-jVaMo-hIu2d1kE0Ekd-3R2nIUsdC3NPtlCyWpvSviv-Zf50y-vEPxra-bzbKZnZ2ZX3b2NwBvLBNS8kwFNmQqEMIlAUKwMkgyYWNjSxmqJttinuweic_H8fEG_OrvwlBaZW8TG0Ntak3_yMdoRnlEZHV87Lq0iMPt2aeL7wFVkKKT1r6cRqsi-_bnD4Rvi49727jWbxmb7Xyd7gZdhYFAo6NcIm5ymeM2wag90SbURjitFbeO8zLS6LvijJclo9umRivHEqetVKVjylqmMHrBcW_ApiRUNILNyc788MsA9ziiv5bLiPMsHC8wkhI4oFzzgE2hgL_dwYo_XM_VXHF-s7twp4ta_bxVs3uwYav7cHuFy_ABTGZ1bfzpaU2Wx29Kj_vTPjfJP6hL88HPKz9v8keoqa0nge_6ecdr_hCOrkV8j2BU1ZV9Ar5MFU9Ta1IrtLCI2SMu6JA2kYap2IUevO-FVuiOvZyKaJwXiGJIvsUgXw9eD10vWsqOf3WakOSHDsSy3TTUl9-KbtMWsVQ6dGj1lCBnj1AsdaZUuLJpqjAO9uAdrVtBtgAno8vuSgN-ErFqFbmMMX6mCNSDrX5pi85ILIo_Ku3Bq-Exbm86sykrW181fRCBU-VEDx63mjDMmUuMdtMs8iBd05G1j1p_Up2dNhTiRItPxDtP_z-vl3ATN1lxsDfffwa3GOo0_dZm0RaMlpdX9jnGY0v1olN8H06ue6_9Bl_IS4I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Food+Choices+after+Cognitive+Load%3A+An+Affective+Computing+Approach&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kappattanavar%2C+Arpita+Mallikarjuna&rft.au=Hecker%2C+Pascal&rft.au=Moontaha%2C+Sidratul&rft.au=Steckhan%2C+Nico&rft.date=2023-07-21&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft_id=info:doi/10.3390%2Fs23146597&rft_id=info%3Apmid%2F37514891&rft.externalDocID=37514891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon