Food Choices after Cognitive Load: An Affective Computing Approach
Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. Th...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 14; p. 6597 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.07.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications. |
---|---|
AbstractList | Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications. Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications.Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using subjective questionnaires. Isolated studies in other domains objectively assess cognitive load without considering its effects on eating behaviour. This study aims to explore the potential for developing an integrated eating behaviour assistant system that incorporates cognitive load factors. Two experimental sessions were conducted using custom-developed experimentation software to induce different stimuli. During these sessions, we collected 30 h of physiological, food consumption, and affective states questionnaires data to automatically detect cognitive load and analyse its effect on food choice. Utilising grid search optimisation and leave-one-subject-out cross-validation, a support vector machine model achieved a mean classification accuracy of 85.12% for the two cognitive load tasks using eight relevant features. Statistical analysis was performed on calorie consumption and questionnaire data. Furthermore, 75% of the subjects with higher negative affect significantly increased consumption of specific foods after high-cognitive-load tasks. These findings offer insights into the intricate relationship between cognitive load, affective states, and food choice, paving the way for an eating behaviour assistant system to manage food choices during cognitive load. Future research should enhance system capabilities and explore real-world applications. |
Audience | Academic |
Author | Hecker, Pascal Kappattanavar, Arpita Mallikarjuna Moontaha, Sidratul Arnrich, Bert Steckhan, Nico |
AuthorAffiliation | 2 Institute for Social Medicine, Epidemiology and Health Economics, Charité, 10117 Berlin, Germany 1 Digital Health—Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany bert.arnrich@hpi.de (B.A.) |
AuthorAffiliation_xml | – name: 1 Digital Health—Connected Healthcare, Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany bert.arnrich@hpi.de (B.A.) – name: 2 Institute for Social Medicine, Epidemiology and Health Economics, Charité, 10117 Berlin, Germany |
Author_xml | – sequence: 1 givenname: Arpita Mallikarjuna orcidid: 0000-0002-7322-0704 surname: Kappattanavar fullname: Kappattanavar, Arpita Mallikarjuna – sequence: 2 givenname: Pascal orcidid: 0000-0001-6604-1671 surname: Hecker fullname: Hecker, Pascal – sequence: 3 givenname: Sidratul orcidid: 0000-0001-7509-0088 surname: Moontaha fullname: Moontaha, Sidratul – sequence: 4 givenname: Nico orcidid: 0000-0003-0245-2046 surname: Steckhan fullname: Steckhan, Nico – sequence: 5 givenname: Bert orcidid: 0000-0001-8380-7667 surname: Arnrich fullname: Arnrich, Bert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37514891$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk1v3CAQhlGVqkm2PfQPVJZ6aQ-b8GUMvUSu1bSRVuqlPSPA4GXlBRfsSP33ZbNJlKTiMGh455l5gXNwEmKwALxH8IIQAS8zJoiyWjSvwBmimK45xvDkyf4UnOe8gxATQvgbcEqaGlEu0Bn4eh1jX3Xb6I3NlXKzTVUXh-Bnf2urTVT9l6oNVeucNXepLu6nZfZhqNppSlGZ7Vvw2qkx23f3cQV-X3_71f1Yb35-v-nazdrUUMxrhpxwxDLKG2Z6aHrqjNHEOkIUMpiV-YlSmGLMeqMdZs7YRiuHtbVYQ05W4ObI7aPaySn5vUp_ZVRe3iViGqRKszejlXWjDXQEcU0JRSVi7nqli33Odc1YYV0dWdOi97Y3NsxJjc-gz0-C38oh3koECWeogFbg0z0hxT-LzbPc-2zsOKpg45Il5pRCARFvivTjC-kuLimUuzqoSKEJfgBeHFWDKg58cLE0NmX1du9NeXDnS75talG6CyxKwYenHh6Hf3jcIrg8CkyKOSfrpPGzmn08WPJj8SIP30c-fp9S8flFxQP0f-0_miPCSA |
CitedBy_id | crossref_primary_10_22201_fesz_20075502e_2023_13_50_88410 crossref_primary_10_1088_1741_2552_ad593e |
Cites_doi | 10.3389/fpsyg.2018.01655 10.3390/educsci11090540 10.1016/j.specom.2015.05.007 10.1109/BigDataService49289.2020.00010 10.1109/ICHI48887.2020.9374328 10.1007/978-3-319-31700-7 10.1109/BIA48344.2019.8967457 10.3390/s22010408 10.3758/s13428-020-01516-y 10.1111/jcal.12590 10.1186/1475-2891-11-71 10.1145/2395123.2395127 10.1371/journal.pone.0227709 10.1207/S15326985EP3801_8 10.1177/154193120605000909 10.1007/11892755_59 10.3233/THC-209008 10.5334/jors.br 10.1037/h0054651 10.1007/s10648-017-9404-8 10.1007/s13679-011-0006-3 10.1093/gerona/58.2.M153 10.1016/j.jbi.2019.103139 10.1109/IFETC46817.2019.9073686 10.1109/EMS.2014.44 10.1111/j.1464-0597.2004.00161.x 10.1016/S0939-4753(03)80010-8 10.1037/0022-0663.100.1.223 10.1080/10640260701454394 10.3390/s23010340 10.1007/978-3-642-04898-2_288 10.1109/TMM.2019.2958761 10.1097/MD.0000000000016863 10.1016/j.eatbeh.2016.01.002 10.1037/0022-3514.54.6.1063 10.1016/j.appet.2008.12.006 10.1016/j.bspc.2022.103968 10.1016/j.eatbeh.2004.04.009 10.1109/CogInfoCom.2017.8268268 10.3390/app10113843 10.1016/j.jneumeth.2006.11.017 10.1007/s12008-022-01087-6 10.1016/S0166-4115(08)62386-9 10.1145/3340962 10.1007/978-3-030-04021-5_6 10.1037/0022-3514.78.4.753 10.1145/2818346.2820739 10.1093/gigascience/gix019 10.1080/08870446.2020.1766041 10.1155/2011/219253 10.1186/1471-2458-14-342 10.1073/pnas.0801268105 10.1109/EMBC.2015.7318762 10.1007/s00779-011-0466-1 10.1109/CogInfoCom.2016.7804532 10.1007/978-3-642-40483-2_11 10.3390/brainsci10080526 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23146597 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_57bc0f318b434131828fdab23388b566 PMC10386123 A759233929 37514891 10_3390_s23146597 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: German Federal Ministry for Economic Affairs and Energy grantid: ZF4776601HB9 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grantid: 491466077 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-61f9f3e64876cd0cd4fccb3ef33a1c266593aa24226dcbf26fce7baf2bee2b083 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:56:08 EDT 2025 Thu Aug 21 18:36:43 EDT 2025 Fri Jul 11 02:58:58 EDT 2025 Fri Jul 25 05:15:26 EDT 2025 Tue Jun 10 21:21:24 EDT 2025 Mon Jul 21 06:00:32 EDT 2025 Tue Jul 01 01:20:16 EDT 2025 Thu Apr 24 22:57:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | cognitive load sensors photoplethysmography physiological signals electrodermal activity eating behaviour machine learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-61f9f3e64876cd0cd4fccb3ef33a1c266593aa24226dcbf26fce7baf2bee2b083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0245-2046 0000-0001-8380-7667 0000-0001-7509-0088 0000-0002-7322-0704 0000-0001-6604-1671 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23146597 |
PMID | 37514891 |
PQID | 2843123983 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57bc0f318b434131828fdab23388b566 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10386123 proquest_miscellaneous_2844090187 proquest_journals_2843123983 gale_infotracacademiconefile_A759233929 pubmed_primary_37514891 crossref_citationtrail_10_3390_s23146597 crossref_primary_10_3390_s23146597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230721 |
PublicationDateYYYYMMDD | 2023-07-21 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230721 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Paquet (ref_23) 2003; 58 Quick (ref_5) 2016; 21 Korbach (ref_9) 2018; 30 ref_58 ref_13 ref_57 ref_12 ref_56 Fan (ref_14) 2020; 28 ref_55 Chen (ref_62) 2019; 98 ref_54 ref_53 ref_18 ref_16 (ref_2) 2018; 18 ref_15 Bellisle (ref_4) 2003; 13 Saeb (ref_27) 2017; 6 Yap (ref_38) 2015; 72 ref_61 Russoniello (ref_45) 2009; 7 Budidha (ref_52) 2022; 78 ref_25 Hart (ref_43) 1988; Volume 52 Stone (ref_37) 2015; 3 Watson (ref_46) 1988; 54 Berrett (ref_65) 2007; 15 ref_29 ref_28 Min (ref_24) 2019; 22 Zhang (ref_51) 2019; 16 Paas (ref_6) 2003; 38 Nguyen (ref_64) 2012; 11 Bell (ref_22) 2018; 9 Marcolin (ref_21) 2023; 17 Lattimore (ref_36) 2004; 5 Mangaroska (ref_60) 2022; 38 ref_35 Rubio (ref_44) 2004; 53 Chen (ref_7) 2013; 2 ref_34 Can (ref_63) 2019; 92 ref_33 ref_32 Ward (ref_20) 2000; 78 ref_31 ref_30 Yap (ref_11) 2011; 2011 Greco (ref_50) 2015; 63 Scott (ref_3) 2012; 1 Jaeggi (ref_40) 2008; 105 Stroop (ref_39) 1935; 18 Cinaz (ref_17) 2013; 17 DeLeeuw (ref_10) 2008; 100 Hsu (ref_19) 2021; 36 ref_47 Hart (ref_42) 2006; Volume 50 ref_41 Habhab (ref_59) 2009; 52 ref_1 Peirce (ref_26) 2007; 162 ref_49 ref_8 Makowski (ref_48) 2021; 53 |
References_xml | – volume: 9 start-page: 1655 year: 2018 ident: ref_22 article-title: Beyond self-report: A review of physiological and neuroscientific methods to investigate consumer behavior publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.01655 – volume: 18 start-page: 1 year: 2018 ident: ref_2 article-title: Causes of emotional eating and matched treatment of obesity publication-title: Curr. Diabetes Rep. – ident: ref_32 – ident: ref_61 doi: 10.3390/educsci11090540 – volume: 72 start-page: 74 year: 2015 ident: ref_38 article-title: Voice source under cognitive load: Effects and classification publication-title: Speech Commun. doi: 10.1016/j.specom.2015.05.007 – ident: ref_18 doi: 10.1109/BigDataService49289.2020.00010 – volume: 63 start-page: 797 year: 2015 ident: ref_50 article-title: cvxEDA: A convex optimization approach to electrodermal activity processing publication-title: IEEE Trans. Biomed. Eng. – ident: ref_58 doi: 10.1109/ICHI48887.2020.9374328 – ident: ref_8 doi: 10.1007/978-3-319-31700-7 – ident: ref_31 doi: 10.1109/BIA48344.2019.8967457 – ident: ref_25 doi: 10.3390/s22010408 – volume: 53 start-page: 1689 year: 2021 ident: ref_48 article-title: NeuroKit2: A Python toolbox for neurophysiological signal processing publication-title: Behav. Res. Methods doi: 10.3758/s13428-020-01516-y – ident: ref_1 – volume: 38 start-page: 40 year: 2022 ident: ref_60 article-title: Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity publication-title: J. Comput. Assist. Learn doi: 10.1111/jcal.12590 – volume: 11 start-page: 71 year: 2012 ident: ref_64 article-title: Popcorn is more satiating than potato chips in normal-weight adults publication-title: Nutr. J. doi: 10.1186/1475-2891-11-71 – volume: 2 start-page: 1 year: 2013 ident: ref_7 article-title: Multimodal behavior and interaction as indicators of cognitive load publication-title: ACM Trans. Interact. Intell. Syst. doi: 10.1145/2395123.2395127 – ident: ref_53 doi: 10.1371/journal.pone.0227709 – volume: 38 start-page: 63 year: 2003 ident: ref_6 article-title: Cognitive load measurement as a means to advance cognitive load theory publication-title: Educ. Psychol. doi: 10.1207/S15326985EP3801_8 – volume: Volume 50 start-page: 904 year: 2006 ident: ref_42 article-title: NASA-task load index (NASA-TLX); 20 years later publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting doi: 10.1177/154193120605000909 – ident: ref_56 doi: 10.1007/11892755_59 – volume: 28 start-page: 67 year: 2020 ident: ref_14 article-title: Assessment of mental workload based on multi-physiological signals publication-title: Technol. Health Care doi: 10.3233/THC-209008 – volume: 3 start-page: e5 year: 2015 ident: ref_37 article-title: A working memory test battery: Java-based collection of seven working memory tasks publication-title: J. Open Res. Softw. doi: 10.5334/jors.br – volume: 18 start-page: 643 year: 1935 ident: ref_39 article-title: Studies of interference in serial verbal reactions publication-title: J. Exp. Psychol. doi: 10.1037/h0054651 – volume: 30 start-page: 503 year: 2018 ident: ref_9 article-title: Differentiating different types of cognitive load: A comparison of different measures publication-title: Educ. Psychol. Rev. doi: 10.1007/s10648-017-9404-8 – volume: 1 start-page: 16 year: 2012 ident: ref_3 article-title: Effects of chronic social stress on obesity publication-title: Curr. Obes. Rep. doi: 10.1007/s13679-011-0006-3 – ident: ref_41 – volume: 58 start-page: M153 year: 2003 ident: ref_23 article-title: Direct and indirect effects of everyday emotions on food intake of elderly patients in institutions publication-title: J. Gerontol. Ser. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/58.2.M153 – volume: 92 start-page: 103139 year: 2019 ident: ref_63 article-title: Stress detection in daily life scenarios using smart phones and wearable sensors: A survey publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2019.103139 – ident: ref_49 doi: 10.1109/IFETC46817.2019.9073686 – ident: ref_55 doi: 10.1109/EMS.2014.44 – ident: ref_28 – volume: 53 start-page: 61 year: 2004 ident: ref_44 article-title: Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods publication-title: Appl. Psychol. doi: 10.1111/j.1464-0597.2004.00161.x – volume: 13 start-page: 189 year: 2003 ident: ref_4 article-title: Why should we study human food intake behaviour? publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/S0939-4753(03)80010-8 – volume: 100 start-page: 223 year: 2008 ident: ref_10 article-title: A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load publication-title: J. Educ. Psychol. doi: 10.1037/0022-0663.100.1.223 – volume: 15 start-page: 373 year: 2007 ident: ref_65 article-title: The role of spirituality in the treatment of trauma and eating disorders: Recommendations for clinical practice publication-title: Eat. Disord. doi: 10.1080/10640260701454394 – ident: ref_47 – ident: ref_33 doi: 10.3390/s23010340 – ident: ref_57 doi: 10.1007/978-3-642-04898-2_288 – volume: 22 start-page: 2659 year: 2019 ident: ref_24 article-title: Food recommendation: Framework, existing solutions, and challenges publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2958761 – volume: 98 start-page: e16863 year: 2019 ident: ref_62 article-title: Artificial neural networks-based classification of emotions using wristband heart rate monitor data publication-title: Medicine doi: 10.1097/MD.0000000000016863 – volume: 21 start-page: 89 year: 2016 ident: ref_5 article-title: Relationships of cognitive load on eating and weight-related behaviors of young adults publication-title: Eat. Behav. doi: 10.1016/j.eatbeh.2016.01.002 – volume: 54 start-page: 1063 year: 1988 ident: ref_46 article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.54.6.1063 – volume: 52 start-page: 437 year: 2009 ident: ref_59 article-title: The relationship between stress, dietary restraint, and food preferences in women publication-title: Appetite doi: 10.1016/j.appet.2008.12.006 – volume: 78 start-page: 103968 year: 2022 ident: ref_52 article-title: Comparison of pulse rate variability and morphological features of photoplethysmograms in estimation of blood pressure publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103968 – volume: 5 start-page: 315 year: 2004 ident: ref_36 article-title: Cognitive load, stress, and disinhibited eating publication-title: Eat. Behav. doi: 10.1016/j.eatbeh.2004.04.009 – ident: ref_12 doi: 10.1109/CogInfoCom.2017.8268268 – ident: ref_16 doi: 10.3390/app10113843 – volume: 162 start-page: 8 year: 2007 ident: ref_26 article-title: PsychoPy—Psychophysics software in Python publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.11.017 – volume: 17 start-page: 45 year: 2023 ident: ref_21 article-title: Towards an integrated framework to measure user engagement with interactive or physical products publication-title: Int. J. Interact. Des. Manuf. doi: 10.1007/s12008-022-01087-6 – volume: Volume 52 start-page: 139 year: 1988 ident: ref_43 article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – volume: 7 start-page: 189 year: 2009 ident: ref_45 article-title: EEG, HRV and Psychological Correlates while Playing Bejeweled II: A Randomized Controlled Study publication-title: Annu. Rev. Cyberther. Telemed. – volume: 16 start-page: 1 year: 2019 ident: ref_51 article-title: Photoplethysmogram-based Cognitive Load Assessment Using Multi-Feature Fusion Model publication-title: ACM Trans. Appl. Percept. doi: 10.1145/3340962 – ident: ref_29 doi: 10.1007/978-3-030-04021-5_6 – volume: 78 start-page: 753 year: 2000 ident: ref_20 article-title: Don’t mind if I do: Disinhibited eating under cognitive load publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.78.4.753 – ident: ref_34 doi: 10.1145/2818346.2820739 – volume: 6 start-page: gix019 year: 2017 ident: ref_27 article-title: The need to approximate the use-case in clinical machine learning publication-title: Gigascience doi: 10.1093/gigascience/gix019 – volume: 36 start-page: 236 year: 2021 ident: ref_19 article-title: Effects of stress on eating behaviours in adolescents: A daily diary investigation publication-title: Psychol. Health doi: 10.1080/08870446.2020.1766041 – volume: 2011 start-page: 219253 year: 2011 ident: ref_11 article-title: Formant frequencies under cognitive load: Effects and classification publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2011/219253 – ident: ref_35 doi: 10.1186/1471-2458-14-342 – volume: 105 start-page: 6829 year: 2008 ident: ref_40 article-title: Improving fluid intelligence with training on working memory publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801268105 – ident: ref_54 doi: 10.1109/EMBC.2015.7318762 – volume: 17 start-page: 229 year: 2013 ident: ref_17 article-title: Monitoring of mental workload levels during an everyday life office-work scenario publication-title: Pers. Ubiquitous Comput. doi: 10.1007/s00779-011-0466-1 – ident: ref_13 doi: 10.1109/CogInfoCom.2016.7804532 – ident: ref_30 doi: 10.1007/978-3-642-40483-2_11 – ident: ref_15 doi: 10.3390/brainsci10080526 |
SSID | ssj0023338 |
Score | 2.399252 |
Snippet | Psychology and nutritional science research has highlighted the impact of negative emotions and cognitive load on calorie consumption behaviour using... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6597 |
SubjectTerms | Classification cognitive load Eating behavior eating behaviour electrodermal activity machine learning Obesity photoplethysmography physiological signals Sensors Telematics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB7Ep_og1aqNPWUtBX0JTXY3v3yLR49Dik89uLdlf2KhJKLn_9-ZJBdyWOiLr9kNbGZ2dr4vmXwD8M1zWRSiMrFPuImlDHmMFEzHeSV95rwuEtNVWzzky5W8X2frSasvqgnr5YF7wyFhNzYJuPOMpAMX4XAZnDYcqVVpEIvQ6Ys5b0umBqolcLjXERJI6r-_IIqReUbKTpPs04n0vz2KJ7lot05ykngWH-FwQIys7ld6BHu-OYaDiY7gJ7hbtK1j88eWop51bb_ZfFsXxH622t2yumF1V7tBl_peDngvqwdN8RNYLX78mi_joTlCbDHHb5DyhSoInyPhyK1LrJPBWiN8EEKnFtNuVgmtOf0o66wJPA_WF0YHbrznBoHXKew3beM_AytKg8b0rvTSSo98ORWSPpDmheMmC0kEN1ujKTsoh1MDiz8KGQTZV432jeDrOPWpl8v416Q7svw4gRSuuwvodzX4Xf3P7xFck98UxSEuxurhdwJ8JFK0UnWRIXYl9BfBbOtaNQToi8KsLFLSPhQRXI3DGFr0vUQ3vn3t5iD7pa6FEZz1O2FcsygQaZZVGkG5s0d2Hmp3pPn92Ml3kyQ9id6cv4cZvsAHjtud3jbzdAb7m-dXf4EwaWMuu4j4C0n3DiI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKs8GCjIICS5Rk9iJHS4oXbFUCHGiUm-RnxQJJW13-_8743jTXYG42o7kjD2Pzx5_A_DeV0JK3prcF5XJhQhNjhBM500rfO28loWJ2RY_mtMz8e28Pk8HbquUVrmxidFQu9HSGfkxmlFeElkd_3x5lVPVKLpdTSU07sODEj0NpXSp5dcZcHHEXxObEEdof7zCWEY0NfE7bfmgSNX_t0He8ki72ZJb7md5APspbmTdtNCP4Z4fnsCjLTbBp3CyHEfHFhcj6T6Lxb_ZYpMdxL6P2n1i3cC6mMFBTVNFB_yWdYlZ_BmcLb_8XJzmqURCbtHTrxH4hTZw3yDsaKwrrBPBWsN94FyXFkVSt1zrip7LOmtC1QTrpdGhMt5XBsOv57A3jIM_BCaV4Up5p7ywwiNqLrmga9JGusrUocjg40ZovU384VTG4k-POILk28_yzeDdPPRyIs3416ATkvw8gHiuY8N4_atPatPX0tgioN0xgtwtgiEVnDa4skoZjEQz-EDr1pM24mSsTo8K8JeI16rvZI0RLMWAGRxtlrZParrq7zZVBm_nblQwujXRgx9v4hjEwFS7MIMX006Y58wlxpuqLTNQO3tk56d2e4bfF5HEm4jpifrm5f_n9QoeUoF7Ok2uyiPYW1_f-NcYBq3Nm7jXbwFjogay priority: 102 providerName: ProQuest |
Title | Food Choices after Cognitive Load: An Affective Computing Approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37514891 https://www.proquest.com/docview/2843123983 https://www.proquest.com/docview/2844090187 https://pubmed.ncbi.nlm.nih.gov/PMC10386123 https://doaj.org/article/57bc0f318b434131828fdab23388b566 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3di9QwEB_uA-R8EL-tnksVQV-qbZI2qSDSXW49RA8RF_atJGniCUere3ug_70z_WKL50sf2mlpJ5PM75ekvwF44ZiQkucmcjEzkRA-i5CC6SjLhUsrp2Vs2t0WZ9npSnxcp-s9GGps9g68vJbaUT2p1ebi9e9ff95jh39HjBMp-5tLxCgiQ2S8D4eYkCQVMvgsxsUExpGGdaJCU_MjuMElAgaVJ5Os1Ir3_ztE7-So6f7JnYS0vA23eiQZFl3T34E9V9-Fmzv6gvdgvmyaKlycNzQahG058HAx7BcKPzW6ehsWdVi0ezroVFfjAe8Ni15r_D6sliffFqdRXzQhspj7t0gFfe65y5CIZLaKbSW8tYY7z7lOLKbjNOdaM_qBtrLGs8xbJ432zDjHDAKyB3BQN7V7BKFUhivlKuWEFQ55dMIFLZxmsmIm9XEArwanlbZXFKfCFhclMgtydTm6OoDno-nPTkbjOqM5eX40IOXr9kSz-V72HalMpbGxx5HICErASI-Ur7TBRlbKIDYN4CW1W0kRgy9jdf-bAX4SKV2VhUwR0xIqDOB4aNpyiLsSszVPSBORB_BsvIxdjtZRdO2aq9YGWTFVMwzgYRcJ4zsPARWAmsTI5KOmV-of562sN0nVkxjO4_8-9AkcUbV7mlpmyTEcbDdX7ilioq2Zwb5cSzyq5YcZHM5Pzr58nbXzC7O2L_wFbXoMXQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1sZ3HIiGULixbuvTUSr0Z27HbSigp3a0Qf4rfyExebATi1mvsRM54PPONPf4G4KXjMsvExIQu4iaU0qchhmA6TCfSJaXTWWSabIv9dH4oPx8lRxvwq78LQ2mVvU1sDHVZW9oj30YzKmIiqxPvz76HVDWKTlf7EhqtWuy5nz8wZFu-2_2A8_uK89nHg-k87KoKhBad4wpjJT_xwqWI1FNbRraU3lojnBdCxxb9VTIRWnO6YVpa43nqrcuM9tw4xw0iFvzuFbgqBXpyupk--zQEeALjvZa9CBuj7SViJ4mfy0Y-rykN8LcDWPOA4-zMNXc3uwU3O5zKilaxbsOGq-7AjTX2wruwM6vrkk1ParI1rCk2zqZ9NhJb1Lp8y4qKFU3GCD1qK0jgu6zomMzvweGlCO8-bFZ15R4Cy3Ij8tyVuZNWOozSYyHpWDbNSm4SHwXwpheash1fOZXN-KYwbiH5qkG-AbwYup61JB3_6rRDkh86EK9286A-P1bdMlVJZmzk0c4ZSe4dg6_cl9rgzOa5QeQbwGuaN0WrHwdjdXeJAX-JeLRUkSWImAlzBrDVT63qzMJS_VHiAJ4Pzbig6ZRGV66-aPpgzE21EgN40GrCMGaRIb7NJ3EA-UhHRj81bqlOTxrScCLCJ6qdR_8f1zO4Nj_4slCL3f29x3Cdo1LTTjaPt2BzdX7hniAEW5mnjd4z-HrZC-038hNF8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUQfxG-jVaMo-hIu2d1kE0Ekd-3R2nIUsdC3NPtlCyWpvSviv-Zf50y-vEPxra-bzbKZnZ2ZX3b2NwBvLBNS8kwFNmQqEMIlAUKwMkgyYWNjSxmqJttinuweic_H8fEG_OrvwlBaZW8TG0Ntak3_yMdoRnlEZHV87Lq0iMPt2aeL7wFVkKKT1r6cRqsi-_bnD4Rvi49727jWbxmb7Xyd7gZdhYFAo6NcIm5ymeM2wag90SbURjitFbeO8zLS6LvijJclo9umRivHEqetVKVjylqmMHrBcW_ApiRUNILNyc788MsA9ziiv5bLiPMsHC8wkhI4oFzzgE2hgL_dwYo_XM_VXHF-s7twp4ta_bxVs3uwYav7cHuFy_ABTGZ1bfzpaU2Wx29Kj_vTPjfJP6hL88HPKz9v8keoqa0nge_6ecdr_hCOrkV8j2BU1ZV9Ar5MFU9Ta1IrtLCI2SMu6JA2kYap2IUevO-FVuiOvZyKaJwXiGJIvsUgXw9eD10vWsqOf3WakOSHDsSy3TTUl9-KbtMWsVQ6dGj1lCBnj1AsdaZUuLJpqjAO9uAdrVtBtgAno8vuSgN-ErFqFbmMMX6mCNSDrX5pi85ILIo_Ku3Bq-Exbm86sykrW181fRCBU-VEDx63mjDMmUuMdtMs8iBd05G1j1p_Up2dNhTiRItPxDtP_z-vl3ATN1lxsDfffwa3GOo0_dZm0RaMlpdX9jnGY0v1olN8H06ue6_9Bl_IS4I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Food+Choices+after+Cognitive+Load%3A+An+Affective+Computing+Approach&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kappattanavar%2C+Arpita+Mallikarjuna&rft.au=Hecker%2C+Pascal&rft.au=Moontaha%2C+Sidratul&rft.au=Steckhan%2C+Nico&rft.date=2023-07-21&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft_id=info:doi/10.3390%2Fs23146597&rft_id=info%3Apmid%2F37514891&rft.externalDocID=37514891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |