Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks

To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a c...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 12; p. 5551
Main Authors Doniec, Rafał, Konior, Justyna, Sieciński, Szymon, Piet, Artur, Irshad, Muhammad Tausif, Piaseczna, Natalia, Hasan, Md Abid, Li, Frédéric, Nisar, Muhammad Adeel, Grzegorzek, Marcin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.06.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93–0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.
AbstractList To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.
To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.
Audience Academic
Author Piet, Artur
Hasan, Md Abid
Irshad, Muhammad Tausif
Piaseczna, Natalia
Nisar, Muhammad Adeel
Doniec, Rafał
Konior, Justyna
Sieciński, Szymon
Li, Frédéric
Grzegorzek, Marcin
AuthorAffiliation 4 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-287 Katowice, Poland
2 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; ar.piet@uni-luebeck.de (A.P.); m.irshad@uni-luebeck.de (M.T.I.); md.hasan@student.uni-luebeck.de (M.A.H.); fr.li@uni-luebeck.de (F.L.); marcin.grzegorzek@uni-luebeck.de (M.G.)
3 Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan; adeel.nisar@pucit.edu.pk
1 Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; szymon.siecinski@polsl.pl (S.S.); natalia.piaseczna@polsl.pl (N.P.)
AuthorAffiliation_xml – name: 4 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-287 Katowice, Poland
– name: 1 Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; szymon.siecinski@polsl.pl (S.S.); natalia.piaseczna@polsl.pl (N.P.)
– name: 3 Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan; adeel.nisar@pucit.edu.pk
– name: 2 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; ar.piet@uni-luebeck.de (A.P.); m.irshad@uni-luebeck.de (M.T.I.); md.hasan@student.uni-luebeck.de (M.A.H.); fr.li@uni-luebeck.de (F.L.); marcin.grzegorzek@uni-luebeck.de (M.G.)
Author_xml – sequence: 1
  givenname: Rafał
  orcidid: 0000-0002-2535-3932
  surname: Doniec
  fullname: Doniec, Rafał
– sequence: 2
  givenname: Justyna
  surname: Konior
  fullname: Konior, Justyna
– sequence: 3
  givenname: Szymon
  orcidid: 0000-0002-3801-3144
  surname: Sieciński
  fullname: Sieciński, Szymon
– sequence: 4
  givenname: Artur
  orcidid: 0000-0003-2137-8363
  surname: Piet
  fullname: Piet, Artur
– sequence: 5
  givenname: Muhammad Tausif
  orcidid: 0000-0003-4581-4107
  surname: Irshad
  fullname: Irshad, Muhammad Tausif
– sequence: 6
  givenname: Natalia
  orcidid: 0000-0001-9652-157X
  surname: Piaseczna
  fullname: Piaseczna, Natalia
– sequence: 7
  givenname: Md Abid
  orcidid: 0000-0003-0240-1708
  surname: Hasan
  fullname: Hasan, Md Abid
– sequence: 8
  givenname: Frédéric
  orcidid: 0000-0003-2110-4207
  surname: Li
  fullname: Li, Frédéric
– sequence: 9
  givenname: Muhammad Adeel
  orcidid: 0000-0003-3288-750X
  surname: Nisar
  fullname: Nisar, Muhammad Adeel
– sequence: 10
  givenname: Marcin
  orcidid: 0000-0003-4877-8287
  surname: Grzegorzek
  fullname: Grzegorzek, Marcin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37420718$$D View this record in MEDLINE/PubMed
BookMark eNptkstuGyEUhkdVqubSLvoC1UjdNAsnXA2sKte9RYraSmnWiIGDizuGBGZc5e2L7dRKoooFcPjOzznwHzcHMUVomtcYnVGq0HkhFBPOOX7WHGFG2EQSgg4erA-b41KWCBFKqXzRHFLBCBJYHjXxCmJJefLBFHDtvDelBB-sGUKKbfLtjxxWJt-1Jrr2CmyKbrObm9x-zGENuZ3ZIazDEKC01yXERTtPcZ36cSNg-vYbjHk7DX9S_l1eNs-96Qu8up9PmuvPn37Ov04uv3-5mM8uJ5YjNUym2FDmWacUYOYUCLBEOimQwgQ5r6y3Xvmplco74B4paTkV0sNUMuQdpyfNxU7XJbPUN7smdDJBbwMpL7TJQ7A9aMRByg46T4AwbnzHiCBEKoqIFR2zVev9Tutm7FbgLMShtvRI9PFJDL_0Iq01RhRxgVlVeHevkNPtCGXQq1As9L2JkMaiiaScCCQxqejbJ-gyjbm-5IYiSgqmuKrU2Y5amNpBiD7Vi20dDlahfhL4UOMzwSWrSVNaE9487GFf_D8jVOB0B9icSsng9whGemMyvTdZZc-fsDYMW8fUKkL_n4y_VGnTbQ
CitedBy_id crossref_primary_10_1016_j_sasc_2024_200078
Cites_doi 10.1109/ICHI.2016.81
10.1016/j.inffus.2022.08.009
10.1109/PERCOM.2018.8444580
10.3390/safety7020036
10.3390/s23073446
10.1016/j.ssci.2022.105803
10.1007/s40860-021-00136-3
10.3390/bios11090343
10.1109/MITS.2017.2743171
10.1016/j.eswa.2020.113240
10.3390/e24121715
10.1038/s41598-021-95947-y
10.1002/cpe.6475
10.1109/ACCESS.2022.3186674
10.3390/s20123463
10.1145/3123024.3129271
10.1109/ACCESS.2021.3073599
10.3390/electronics9122002
10.1109/CIMCA.2014.7057770
10.1007/s11760-019-01589-z
10.1109/TITS.2021.3116045
10.1016/j.neucom.2020.09.023
10.1016/j.measurement.2021.110008
10.3390/electronics11182960
10.3390/s18020456
10.1109/I2MTC.2018.8409675
10.1109/TITS.2022.3195213
10.1037/e729262011-001
10.3390/s20185321
10.1109/TVT.2019.2908425
10.1080/10803548.2013.11076987
10.1207/sthf0101_2
10.3390/s22249726
10.1049/iet-cvi.2015.0175
10.1109/BIBE.2018.00031
10.1145/2993148.2993181
10.3390/s18020679
10.1109/TITS.2019.2915540
10.3390/s22103634
10.1109/TSMCC.2012.2198883
10.1016/j.aap.2017.12.017
10.1109/ACCESS.2022.3218711
10.1177/001872089403600210
10.1016/j.procs.2022.12.130
10.1109/TITS.2018.2857222
10.1056/NEJMsa1204142
10.1007/978-3-319-73450-7_53
10.3390/su13031342
10.3390/s22207711
10.1109/IVS.2017.7995822
10.3390/electronics12010235
10.1212/WNL.37.10.1642
10.1155/2020/7251280
10.1016/j.artmed.2020.101981
10.1155/2019/4125865
10.22214/ijraset.2022.42210
10.7717/peerj-cs.632
10.3233/AIS-2009-0020
10.1177/09544070211007807
10.23919/DATE51398.2021.9473991
10.1007/978-3-031-20859-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23125551
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c
PMC10305714
A758482963
37420718
10_3390_s23125551
Genre Journal Article
GeographicLocations Poland
Germany
United States--US
GeographicLocations_xml – name: Poland
– name: Germany
– name: United States--US
GrantInformation_xml – fundername: Silesian University of Technology, Gliwice, Poland
  grantid: 57/2021
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c509t-61a34f4b99e14d9e7ec28d8709120df9cfcf9f6c89fde5f098c5378fe6840fd53
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:02 EDT 2025
Thu Aug 21 18:38:00 EDT 2025
Fri Jul 11 07:22:41 EDT 2025
Fri Jul 25 20:17:16 EDT 2025
Tue Jun 10 21:27:28 EDT 2025
Thu Apr 03 07:03:45 EDT 2025
Tue Jul 01 01:20:10 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords convolutional neural networks
driving a car
driving behavior
electrooculography
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-61a34f4b99e14d9e7ec28d8709120df9cfcf9f6c89fde5f098c5378fe6840fd53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2535-3932
0000-0003-2110-4207
0000-0003-0240-1708
0000-0003-4877-8287
0000-0002-3801-3144
0000-0001-9652-157X
0000-0003-4581-4107
0000-0003-3288-750X
0000-0003-2137-8363
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125551
PMID 37420718
PQID 2829874959
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10305714
proquest_miscellaneous_2835270812
proquest_journals_2829874959
gale_infotracacademiconefile_A758482963
pubmed_primary_37420718
crossref_primary_10_3390_s23125551
crossref_citationtrail_10_3390_s23125551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230613
PublicationDateYYYYMMDD 2023-06-13
PublicationDate_xml – month: 6
  year: 2023
  text: 20230613
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pansare (ref_45) 2022; 10
Kashevnik (ref_13) 2021; 9
Yan (ref_66) 2016; 10
ref_58
Shahverdy (ref_67) 2020; 149
ref_57
ref_11
Alotaibi (ref_42) 2020; 14
Cheng (ref_54) 2022; 23
Xing (ref_56) 2019; 68
ref_51
Lin (ref_22) 2022; 10
ref_17
ref_16
ref_59
Goodman (ref_26) 1999; 1
ref_61
ref_60
ref_69
ref_23
Yan (ref_14) 2021; 235
Ariansyah (ref_20) 2023; 216
ref_21
ref_64
ref_63
Deng (ref_68) 2020; 21
Vaegae (ref_53) 2022; 10
ref_28
ref_27
Caicedo (ref_9) 2022; 153
Alvaro (ref_49) 2018; 112
Ping (ref_55) 2023; 89
Sun (ref_62) 2021; 24
Moslemi (ref_12) 2021; 33
ref_70
Chen (ref_32) 2012; 42
Uma (ref_15) 2022; 8
ref_36
ref_34
ref_33
ref_31
ref_30
Kiah (ref_4) 2021; 7
Braunagel (ref_44) 2017; 9
ref_39
ref_38
AlZubi (ref_50) 2021; 185
Brown (ref_10) 1994; 36
Bulling (ref_37) 2009; 1
Zhao (ref_65) 2020; 2020
Huang (ref_35) 2020; 110
Uddin (ref_29) 2021; 11
Aksjonov (ref_41) 2019; 20
ref_47
Rizzo (ref_18) 1987; 37
ref_46
Jamroz (ref_6) 2013; 19
ref_43
Zhang (ref_52) 2021; 421
ref_40
ref_1
Eraqi (ref_19) 2019; 2019
ref_3
ref_2
Klauer (ref_25) 2014; 370
Jomnonkwao (ref_24) 2021; 9
ref_48
ref_8
ref_5
ref_7
References_xml – ident: ref_30
  doi: 10.1109/ICHI.2016.81
– volume: 89
  start-page: 121
  year: 2023
  ident: ref_55
  article-title: Distracted driving detection based on the fusion of deep learning and causal reasoning
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.08.009
– ident: ref_70
  doi: 10.1109/PERCOM.2018.8444580
– ident: ref_11
  doi: 10.3390/safety7020036
– ident: ref_34
  doi: 10.3390/s23073446
– volume: 153
  start-page: 105803
  year: 2022
  ident: ref_9
  article-title: Distracted driving in relation to risky road behaviors and traffic crashes in Bogota, Colombia
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2022.105803
– volume: 8
  start-page: 79
  year: 2022
  ident: ref_15
  article-title: Accident prevention and safety assistance using IOT and machine learning
  publication-title: J. Reliab. Intell. Environ.
  doi: 10.1007/s40860-021-00136-3
– ident: ref_39
  doi: 10.3390/bios11090343
– volume: 9
  start-page: 23
  year: 2017
  ident: ref_44
  article-title: Online recognition of driver-activity based on visual scanpath classification
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2017.2743171
– volume: 149
  start-page: 113240
  year: 2020
  ident: ref_67
  article-title: Driver behavior detection and classification using deep convolutional neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113240
– ident: ref_43
  doi: 10.3390/e24121715
– volume: 11
  start-page: 16455
  year: 2021
  ident: ref_29
  article-title: Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95947-y
– ident: ref_61
– ident: ref_1
– volume: 33
  start-page: e6475
  year: 2021
  ident: ref_12
  article-title: Computer vision-based recognition of driver distraction: A review
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6475
– volume: 10
  start-page: 77523
  year: 2022
  ident: ref_22
  article-title: Innovative Framework for Distracted-Driving Alert System Based on Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186674
– ident: ref_28
  doi: 10.3390/s20123463
– ident: ref_27
  doi: 10.1145/3123024.3129271
– volume: 9
  start-page: 100302
  year: 2021
  ident: ref_24
  article-title: Analysis of a driving behavior measurement model using a modified driver behavior questionnaire encompassing texting, social media use, and drug and alcohol consumption
  publication-title: Transp. Res. Interdiscip. Perspect.
– volume: 9
  start-page: 60063
  year: 2021
  ident: ref_13
  article-title: Driver Distraction Detection Methods: A Literature Review and Framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3073599
– ident: ref_3
  doi: 10.3390/electronics9122002
– ident: ref_33
  doi: 10.1109/CIMCA.2014.7057770
– ident: ref_8
– ident: ref_31
– volume: 14
  start-page: 617
  year: 2020
  ident: ref_42
  article-title: Distracted driver classification using deep learning
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-019-01589-z
– volume: 24
  start-page: 3738
  year: 2021
  ident: ref_62
  article-title: Comparing the Effects of Visual Distraction in a High-Fidelity Driving Simulator and on a Real Highway
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3116045
– volume: 421
  start-page: 26
  year: 2021
  ident: ref_52
  article-title: Deep unsupervised multi-modal fusion network for detecting driver distraction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.023
– volume: 185
  start-page: 110008
  year: 2021
  ident: ref_50
  article-title: DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110008
– ident: ref_36
  doi: 10.3390/electronics11182960
– ident: ref_51
  doi: 10.3390/s18020456
– ident: ref_5
  doi: 10.1109/I2MTC.2018.8409675
– volume: 23
  start-page: 24866
  year: 2022
  ident: ref_54
  article-title: Spatio-Temporal Image Representation and Deep-Learning-Based Decision Framework for Automated Vehicles
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3195213
– ident: ref_23
  doi: 10.1037/e729262011-001
– ident: ref_59
  doi: 10.3390/s20185321
– volume: 68
  start-page: 5379
  year: 2019
  ident: ref_56
  article-title: Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2908425
– volume: 19
  start-page: 297
  year: 2013
  ident: ref_6
  article-title: Driver Fatigue and Road Safety on Poland’s National Roads
  publication-title: Int. J. Occup. Saf. Ergon.
  doi: 10.1080/10803548.2013.11076987
– volume: 1
  start-page: 3
  year: 1999
  ident: ref_26
  article-title: Using Cellular Telephones in Vehicles: Safe or Unsafe?
  publication-title: Transp. Hum. Factors
  doi: 10.1207/sthf0101_2
– ident: ref_7
  doi: 10.3390/s22249726
– volume: 10
  start-page: 103
  year: 2016
  ident: ref_66
  article-title: Driving posture recognition by convolutional neural networks
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2015.0175
– ident: ref_38
  doi: 10.1109/BIBE.2018.00031
– ident: ref_63
– ident: ref_69
  doi: 10.1145/2993148.2993181
– ident: ref_58
  doi: 10.3390/s18020679
– volume: 21
  start-page: 2146
  year: 2020
  ident: ref_68
  article-title: How Do Drivers Allocate Their Potential Attention? Driving Fixation Prediction via Convolutional Neural Networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2915540
– ident: ref_16
  doi: 10.3390/s22103634
– volume: 42
  start-page: 790
  year: 2012
  ident: ref_32
  article-title: Sensor-Based ActivityRecognition
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2198883
– volume: 112
  start-page: 77
  year: 2018
  ident: ref_49
  article-title: Driver education: Enhancing knowledge of sleep, fatigue and risky behaviour to improve decision making in young drivers
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2017.12.017
– volume: 10
  start-page: 116087
  year: 2022
  ident: ref_53
  article-title: Design of an Efficient Distracted Driver Detection System: Deep Learning Approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218711
– volume: 36
  start-page: 298
  year: 1994
  ident: ref_10
  article-title: Driver Fatigue
  publication-title: Hum. Factors
  doi: 10.1177/001872089403600210
– volume: 216
  start-page: 221
  year: 2023
  ident: ref_20
  article-title: The effect of visual advanced driver assistance systems on a following human driver in a mixed-traffic condition
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.12.130
– volume: 20
  start-page: 2048
  year: 2019
  ident: ref_41
  article-title: Detection and Evaluation of Driver Distraction Using Machine Learning and Fuzzy Logic
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2857222
– volume: 370
  start-page: 54
  year: 2014
  ident: ref_25
  article-title: Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa1204142
– ident: ref_48
  doi: 10.1007/978-3-319-73450-7_53
– ident: ref_17
  doi: 10.3390/su13031342
– ident: ref_40
  doi: 10.3390/s22207711
– ident: ref_57
  doi: 10.1109/IVS.2017.7995822
– ident: ref_47
  doi: 10.3390/electronics12010235
– ident: ref_2
– volume: 37
  start-page: 1642
  year: 1987
  ident: ref_18
  article-title: Looking but not seeing
  publication-title: Neurology
  doi: 10.1212/WNL.37.10.1642
– volume: 2020
  start-page: 7251280
  year: 2020
  ident: ref_65
  article-title: Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/7251280
– volume: 110
  start-page: 101981
  year: 2020
  ident: ref_35
  article-title: Sleep stage classification for child patients using DeConvolutional Neural Network
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101981
– volume: 2019
  start-page: 4125865
  year: 2019
  ident: ref_19
  article-title: Driver Distraction Identification with an Ensemble of Convolutional Neural Networks
  publication-title: J. Adv. Transp.
  doi: 10.1155/2019/4125865
– volume: 10
  start-page: 441
  year: 2022
  ident: ref_45
  article-title: Real-time Driver Drowsiness Detection with Android
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
  doi: 10.22214/ijraset.2022.42210
– ident: ref_64
– volume: 7
  start-page: e632
  year: 2021
  ident: ref_4
  article-title: A systematic review on sensor-based driver behaviour studies: Coherent taxonomy, motivations, challenges, recommendations, substantial analysis and future directions
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.632
– volume: 1
  start-page: 157
  year: 2009
  ident: ref_37
  article-title: Wearable EOG goggles: Seamless sensing and context-awareness in everyday environments
  publication-title: J. Ambient. Intell. Smart Environ.
  doi: 10.3233/AIS-2009-0020
– volume: 235
  start-page: 3051
  year: 2021
  ident: ref_14
  article-title: Gaze dynamics with spatiotemporal guided feature descriptor for prediction of driver’s maneuver behavior
  publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
  doi: 10.1177/09544070211007807
– ident: ref_21
  doi: 10.23919/DATE51398.2021.9473991
– ident: ref_60
– ident: ref_46
  doi: 10.1007/978-3-031-20859-1
SSID ssj0023338
Score 2.4147651
Snippet To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5551
SubjectTerms Accidents, Traffic - prevention & control
Algorithms
Automobile Driving - psychology
Automobiles
Behavior
Classification
convolutional neural networks
Deep learning
driving a car
driving behavior
electrooculography
Eye movements
Fatigue
Internet of Things
Neural networks
Neural Networks, Computer
Safety and security measures
Sensors
Traffic accidents & safety
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I62d1lSiCXsq2-WiS49unyyIowrqwt5BPFKSV99769-9M2ldeUfDiqbQJNJnMZObXTH9DyFshZUyqc3WrcsavVbIG2NzVMbRRedn4kPDf4c9fuosr8elaXh-U-sKcsJEeeBTcaSOT1j75zBIT0mUvmGKAEnjDgvIi4O4LPm8PpiaoxQF5jTxCHED96RaiGIidZbvwPoWk_8-t-MAXLfMkDxzP-QNyf4oY6Woc6TG5k_qH5N4Bj-Aj0l8CGB029Rm4pEhLnUvMACpCp0OmX0dKCer6SC8RAUe8W7sN_bDBvAy6CqWIBKBmWnII6Hrof09KCe9GBo9yKSnj28fk6vzjt_VFPRVSqAPEAzuAh46LLLwxqRXRJJUC0xEs1bSsidmEHLLJXdAmxyRzY3SQXOmckAkmR8mfkKN-6NMzQiVzynU5A4qMAhysabrUGuE8j03jOKvI-72AbZhYxrHYxU8LaAPXws5rUZE3c9dfoxz-1ukMV2nugGzY5QHoiJ10xP5LRyryDtfYos3CYIKbfj2AKSH7lV0BaBKawV5UkZO9GtjJmLcWD5u1AiRpKvJ6bgYzxLMV16fhBvtAJKsgvgIJPB21Zh4zV4JBJKcrohf6tJjUsqX_8b1QfWMROKla8fx_iOEFucvANDDRreUn5Gi3uUkvIaTa-VfFem4Bkg0hcA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96vuiD-G31lCiCvpRr89EkT7K3uh6CIpwH91bSfJyCtGd3z7_fmWy2blF8Km0DTTIzmfkl098Q8kpI6YNqbFmrGHG3SpYAm5vSu9qrTladC_jv8KfPzcmZ-Hguz_OG2zqnVe7WxLRQ-8HhHvkRnvhpBeG8eXv5s8SqUXi6mktoXCc3avA0mNKlVx8mwMUBf23ZhDhA-6M1xDIQQct65oMSVf_fC_KeR5pnS-65n9UdcjvHjXSxFfRdci3098itPTbB-6Q_BUg6jOUxOCZPU7VLzANKU0-HSL9siSWo7T09RRzs8W5pR_puxOwMunCplARgZ5oyCehy6H9l1YRvI49HuqTE8fUDcrZ6_3V5UuZyCqWDqGADINFyEUVnTKiFN0EFx7QHezU1q3w0LrpoYuO0iT7IWBntJFc6BuSDiV7yh-SgH_rwmFDJrLJNjIAlvQA3a6om1EbYjvuqspwV5M1ugluXucax5MWPFjAHyqKdZFGQl1PTy-08_KvRMUppaoCc2OnBMF602cTaSgatu9BFFpiQNnaCKQZ4klfMqU64grxGGbdoudAZZ_MPCDAk5MBqFwCdBGhZwwtyuFODNpv0uv2jgAV5Mb0GY8QTFtuH4QrbQDyrIMqCGXi01Zqpz1wJBvGcLoie6dNsUPM3_fdvifAbS8FJVYsn_-_XU3KTgdJjIlvND8nBZrwKzyBk2nTPk138Bh_uGQo
  priority: 102
  providerName: ProQuest
Title Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/37420718
https://www.proquest.com/docview/2829874959
https://www.proquest.com/docview/2835270812
https://pubmed.ncbi.nlm.nih.gov/PMC10305714
https://doaj.org/article/05e88bebf2e245afb4272289302c7b4c
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V9gIHxBtDiRaEBBeDvd717h4QSkJDhdSqokTqzVrvA5AqG5wUwb9nZuNYseiRS6LYI8Weh2c-7-w3hLzkQjgvS5PmMgR8WyVSgM1l6mzuZC2y2nrcO3xyWh4v-acLcbFHtjM2ewWuroV2OE9q2V2--f3zz3sI-HeIOAGyv11BjQKVMW6kPoCEJHGQwQkfFhNYATBsQyo0Fh-losjY_-9zeScxjZsmd7LQ4g653ZePdLqx912y55t75NYOqeB90pwDMm27dAb5ydE49BLbgaIFaBvo2YZfgprG0XOEww5_zU1HP3TYpEGnNk6UAAhNY0MBnbfNr95D4b-RziN-xf7x1QOyXBx9mR-n_VSF1EJxsAasaAoeeK21z7nTXnrLlIOw1TnLXNA22KBDaZUOzouQaWVFIVXwSAsTnCgekv2mbfxjQgUz0pQhAKR0HLKtzkqfa27qwmWZKVhCXm8VXNmechwnX1xWAD3QFtVgi4S8GER_bPRwndAMrTQIIDV2PNB2X6s-0qpMeKVqXwfmGRcm1JxJBrCyyJiVNbcJeYU2rtCl4GKs6fchwC0hFVY1BQTFFYMHU0IOt25QbR2zwpVnJQFW6oQ8H05DTOJCi2l8e4UyUNZKKLZAA482XjNccyE5g7JOJUSN_Gl0U-MzzfdvkfcbJ8IJmfMn_0MNT8lNBqGBXW95cUj2192Vfwb11bqekBvyQsKnWnyckIPZ0enZ50l8VzGJcfUXmIYrqw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8QA8IO4EBhgEgpdoiWPH8QNCXUfp2EVI26S9ZY4vMGlKRtuB-FP8Rs5xLrQC8banqrWlOj7XLz4-HyGvuBDWyVzHqfQe31aJGGBzHluTWlmJpDIO7w7vH-TTY_7pRJyskV_9XRgsq-x9YnDUtjH4jnwTT_wKCem8en_xLUbWKDxd7Sk0WrXYdT9_AGSbv9vZBvm-Zmzy4Wg8jTtWgdhAcFwAVtIZ97xSyqXcKiedYYUFtVUpS6xXxhuvfG4K5a0TPlGFEZksvMO2KN4iSwS4_Gs8g0iON9MnHweAlwHea7sXwWCyOYfcCTJ2ka7EvEAN8HcAWIqAq9WZS-Fucpvc6vJUOmoV6w5Zc_VdcnOpe-E9Uh8CBG5m8RYEQksDuybWHQVR08bTz20jC6prSw8Rd1v8NtYzuj3DahA6MoG6ArA6DZULdNzU3ztTgP_GviHhIxSqz--T4yvZ6AdkvW5q94hQwbTUufeAXS2HsK6S3KWK6yqzSaIzFpG3_QaXputtjhQb5yVgHJRFOcgiIi-HqRftPvxr0hZKaZiAPbjDD83sS9mZdJkIVxSVqzxzjAvtK84kA_yaJczIipuIvEEZl-gpYDFGdxce4JGw51Y5AqjGQavzLCIbvRqUnQuZl38UPiIvhmEwfjzR0bVrLnEO5M8SsjrYgYet1gxrziRnkD8WESlW9GnloVZH6rOvocE4Us8JmfLH_1_Xc3J9erS_V-7tHOw-ITcYGAAW0aXZBllfzC7dU0jXFtWzYCOUnF61Uf4GATFW8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHgTKGAQCC7RJo4dxweE9tFVS2G1olTqLXX8ACSUlN0tiL_Gr2MmL3YF4tbTKhtLcTzfPL54PEPIcy6EdTLVYSy9x69VIgTanIbWxFYWIiqMw7PD7-fpwQl_eypOd8iv7iwMplV2NrE21LYy-I18iDt-mYRwXg19mxaxmM7enH8LsYMU7rR27TQaiBy5nz-Avq1eH05B1i8Ym-1_nByEbYeB0ICjXANv0gn3vFDKxdwqJ51hmQUIq5hF1ivjjVc-NZny1gkfqcyIRGbeYYkUb7FjBJj_XYmsaEB2x_vzxYee7iXA_ppaRkmiouEKIimI30W85QHrRgF_u4MNf7idq7nh_GY3yPU2aqWjBmY3yY4rb5FrG7UMb5PyGAhxtQzH4BYtrXttYhZSLXhaebpoylpQXVp6jCzc4tVEL-l0ibkhdGTqRhbA3Gmdx0AnVfm9VQx4NlYRqX_qtPXVHXJyKUt9lwzKqnT3CRVMS516D0zWcnDyKkpdrLguEhtFOmEBedUtcG7aSufYcONrDowHZZH3sgjIs37oebMO_xo0Rin1A7Aid_1HtfyUtwqeR8JlWeEKzxzjQvuCM8mAzSYRM7LgJiAvUcY52g2YjNHt8Qd4JazAlY-AuHHAeJoEZK-DQd4alFX-B_4BedrfBlOA-zu6dNUFjoFoWkKMBytwr0FNP-dEcgYgzQKSbeFp66W275RfPtflxrERnZAxf_D_eT0hV0Ah83eH86OH5CoD_GNGXZzskcF6eeEeQey2Lh63SkLJ2WXr5W9rplyC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-Based+Classification+of+Primary+and+Secondary+Car+Driver+Activities+Using+Convolutional+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rafa%C5%82+Doniec&rft.au=Justyna+Konior&rft.au=Szymon+Sieci%C5%84ski&rft.au=Artur+Piet&rft.date=2023-06-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5551&rft_id=info:doi/10.3390%2Fs23125551&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon