Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks
To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a c...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 12; p. 5551 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.06.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93–0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car. |
---|---|
AbstractList | To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car. To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car.To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we proposed a classifier for basic activities in driving a car, based on a similar approach that could be applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG) signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%, and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary driving activities (0.93-0.94). Furthermore, using the same algorithm, it was possible to distinguish four activities related to activities of daily life that were secondary activities when driving a car. |
Audience | Academic |
Author | Piet, Artur Hasan, Md Abid Irshad, Muhammad Tausif Piaseczna, Natalia Nisar, Muhammad Adeel Doniec, Rafał Konior, Justyna Sieciński, Szymon Li, Frédéric Grzegorzek, Marcin |
AuthorAffiliation | 4 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-287 Katowice, Poland 2 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; ar.piet@uni-luebeck.de (A.P.); m.irshad@uni-luebeck.de (M.T.I.); md.hasan@student.uni-luebeck.de (M.A.H.); fr.li@uni-luebeck.de (F.L.); marcin.grzegorzek@uni-luebeck.de (M.G.) 3 Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan; adeel.nisar@pucit.edu.pk 1 Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; szymon.siecinski@polsl.pl (S.S.); natalia.piaseczna@polsl.pl (N.P.) |
AuthorAffiliation_xml | – name: 4 Department of Knowledge Engineering, University of Economics in Katowice, Bogucicka 3, 40-287 Katowice, Poland – name: 1 Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; szymon.siecinski@polsl.pl (S.S.); natalia.piaseczna@polsl.pl (N.P.) – name: 3 Department of Information Technology, University of the Punjab, Lahore 54000, Pakistan; adeel.nisar@pucit.edu.pk – name: 2 Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; ar.piet@uni-luebeck.de (A.P.); m.irshad@uni-luebeck.de (M.T.I.); md.hasan@student.uni-luebeck.de (M.A.H.); fr.li@uni-luebeck.de (F.L.); marcin.grzegorzek@uni-luebeck.de (M.G.) |
Author_xml | – sequence: 1 givenname: Rafał orcidid: 0000-0002-2535-3932 surname: Doniec fullname: Doniec, Rafał – sequence: 2 givenname: Justyna surname: Konior fullname: Konior, Justyna – sequence: 3 givenname: Szymon orcidid: 0000-0002-3801-3144 surname: Sieciński fullname: Sieciński, Szymon – sequence: 4 givenname: Artur orcidid: 0000-0003-2137-8363 surname: Piet fullname: Piet, Artur – sequence: 5 givenname: Muhammad Tausif orcidid: 0000-0003-4581-4107 surname: Irshad fullname: Irshad, Muhammad Tausif – sequence: 6 givenname: Natalia orcidid: 0000-0001-9652-157X surname: Piaseczna fullname: Piaseczna, Natalia – sequence: 7 givenname: Md Abid orcidid: 0000-0003-0240-1708 surname: Hasan fullname: Hasan, Md Abid – sequence: 8 givenname: Frédéric orcidid: 0000-0003-2110-4207 surname: Li fullname: Li, Frédéric – sequence: 9 givenname: Muhammad Adeel orcidid: 0000-0003-3288-750X surname: Nisar fullname: Nisar, Muhammad Adeel – sequence: 10 givenname: Marcin orcidid: 0000-0003-4877-8287 surname: Grzegorzek fullname: Grzegorzek, Marcin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37420718$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuGyEUhkdVqubSLvoC1UjdNAsnXA2sKte9RYraSmnWiIGDizuGBGZc5e2L7dRKoooFcPjOzznwHzcHMUVomtcYnVGq0HkhFBPOOX7WHGFG2EQSgg4erA-b41KWCBFKqXzRHFLBCBJYHjXxCmJJefLBFHDtvDelBB-sGUKKbfLtjxxWJt-1Jrr2CmyKbrObm9x-zGENuZ3ZIazDEKC01yXERTtPcZ36cSNg-vYbjHk7DX9S_l1eNs-96Qu8up9PmuvPn37Ov04uv3-5mM8uJ5YjNUym2FDmWacUYOYUCLBEOimQwgQ5r6y3Xvmplco74B4paTkV0sNUMuQdpyfNxU7XJbPUN7smdDJBbwMpL7TJQ7A9aMRByg46T4AwbnzHiCBEKoqIFR2zVev9Tutm7FbgLMShtvRI9PFJDL_0Iq01RhRxgVlVeHevkNPtCGXQq1As9L2JkMaiiaScCCQxqejbJ-gyjbm-5IYiSgqmuKrU2Y5amNpBiD7Vi20dDlahfhL4UOMzwSWrSVNaE9487GFf_D8jVOB0B9icSsng9whGemMyvTdZZc-fsDYMW8fUKkL_n4y_VGnTbQ |
CitedBy_id | crossref_primary_10_1016_j_sasc_2024_200078 |
Cites_doi | 10.1109/ICHI.2016.81 10.1016/j.inffus.2022.08.009 10.1109/PERCOM.2018.8444580 10.3390/safety7020036 10.3390/s23073446 10.1016/j.ssci.2022.105803 10.1007/s40860-021-00136-3 10.3390/bios11090343 10.1109/MITS.2017.2743171 10.1016/j.eswa.2020.113240 10.3390/e24121715 10.1038/s41598-021-95947-y 10.1002/cpe.6475 10.1109/ACCESS.2022.3186674 10.3390/s20123463 10.1145/3123024.3129271 10.1109/ACCESS.2021.3073599 10.3390/electronics9122002 10.1109/CIMCA.2014.7057770 10.1007/s11760-019-01589-z 10.1109/TITS.2021.3116045 10.1016/j.neucom.2020.09.023 10.1016/j.measurement.2021.110008 10.3390/electronics11182960 10.3390/s18020456 10.1109/I2MTC.2018.8409675 10.1109/TITS.2022.3195213 10.1037/e729262011-001 10.3390/s20185321 10.1109/TVT.2019.2908425 10.1080/10803548.2013.11076987 10.1207/sthf0101_2 10.3390/s22249726 10.1049/iet-cvi.2015.0175 10.1109/BIBE.2018.00031 10.1145/2993148.2993181 10.3390/s18020679 10.1109/TITS.2019.2915540 10.3390/s22103634 10.1109/TSMCC.2012.2198883 10.1016/j.aap.2017.12.017 10.1109/ACCESS.2022.3218711 10.1177/001872089403600210 10.1016/j.procs.2022.12.130 10.1109/TITS.2018.2857222 10.1056/NEJMsa1204142 10.1007/978-3-319-73450-7_53 10.3390/su13031342 10.3390/s22207711 10.1109/IVS.2017.7995822 10.3390/electronics12010235 10.1212/WNL.37.10.1642 10.1155/2020/7251280 10.1016/j.artmed.2020.101981 10.1155/2019/4125865 10.22214/ijraset.2022.42210 10.7717/peerj-cs.632 10.3233/AIS-2009-0020 10.1177/09544070211007807 10.23919/DATE51398.2021.9473991 10.1007/978-3-031-20859-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23125551 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c PMC10305714 A758482963 37420718 10_3390_s23125551 |
Genre | Journal Article |
GeographicLocations | Poland Germany United States--US |
GeographicLocations_xml | – name: Poland – name: Germany – name: United States--US |
GrantInformation_xml | – fundername: Silesian University of Technology, Gliwice, Poland grantid: 57/2021 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c509t-61a34f4b99e14d9e7ec28d8709120df9cfcf9f6c89fde5f098c5378fe6840fd53 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:02 EDT 2025 Thu Aug 21 18:38:00 EDT 2025 Fri Jul 11 07:22:41 EDT 2025 Fri Jul 25 20:17:16 EDT 2025 Tue Jun 10 21:27:28 EDT 2025 Thu Apr 03 07:03:45 EDT 2025 Tue Jul 01 01:20:10 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | convolutional neural networks driving a car driving behavior electrooculography |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-61a34f4b99e14d9e7ec28d8709120df9cfcf9f6c89fde5f098c5378fe6840fd53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2535-3932 0000-0003-2110-4207 0000-0003-0240-1708 0000-0003-4877-8287 0000-0002-3801-3144 0000-0001-9652-157X 0000-0003-4581-4107 0000-0003-3288-750X 0000-0003-2137-8363 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23125551 |
PMID | 37420718 |
PQID | 2829874959 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c pubmedcentral_primary_oai_pubmedcentral_nih_gov_10305714 proquest_miscellaneous_2835270812 proquest_journals_2829874959 gale_infotracacademiconefile_A758482963 pubmed_primary_37420718 crossref_primary_10_3390_s23125551 crossref_citationtrail_10_3390_s23125551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230613 |
PublicationDateYYYYMMDD | 2023-06-13 |
PublicationDate_xml | – month: 6 year: 2023 text: 20230613 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Pansare (ref_45) 2022; 10 Kashevnik (ref_13) 2021; 9 Yan (ref_66) 2016; 10 ref_58 Shahverdy (ref_67) 2020; 149 ref_57 ref_11 Alotaibi (ref_42) 2020; 14 Cheng (ref_54) 2022; 23 Xing (ref_56) 2019; 68 ref_51 Lin (ref_22) 2022; 10 ref_17 ref_16 ref_59 Goodman (ref_26) 1999; 1 ref_61 ref_60 ref_69 ref_23 Yan (ref_14) 2021; 235 Ariansyah (ref_20) 2023; 216 ref_21 ref_64 ref_63 Deng (ref_68) 2020; 21 Vaegae (ref_53) 2022; 10 ref_28 ref_27 Caicedo (ref_9) 2022; 153 Alvaro (ref_49) 2018; 112 Ping (ref_55) 2023; 89 Sun (ref_62) 2021; 24 Moslemi (ref_12) 2021; 33 ref_70 Chen (ref_32) 2012; 42 Uma (ref_15) 2022; 8 ref_36 ref_34 ref_33 ref_31 ref_30 Kiah (ref_4) 2021; 7 Braunagel (ref_44) 2017; 9 ref_39 ref_38 AlZubi (ref_50) 2021; 185 Brown (ref_10) 1994; 36 Bulling (ref_37) 2009; 1 Zhao (ref_65) 2020; 2020 Huang (ref_35) 2020; 110 Uddin (ref_29) 2021; 11 Aksjonov (ref_41) 2019; 20 ref_47 Rizzo (ref_18) 1987; 37 ref_46 Jamroz (ref_6) 2013; 19 ref_43 Zhang (ref_52) 2021; 421 ref_40 ref_1 Eraqi (ref_19) 2019; 2019 ref_3 ref_2 Klauer (ref_25) 2014; 370 Jomnonkwao (ref_24) 2021; 9 ref_48 ref_8 ref_5 ref_7 |
References_xml | – ident: ref_30 doi: 10.1109/ICHI.2016.81 – volume: 89 start-page: 121 year: 2023 ident: ref_55 article-title: Distracted driving detection based on the fusion of deep learning and causal reasoning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.08.009 – ident: ref_70 doi: 10.1109/PERCOM.2018.8444580 – ident: ref_11 doi: 10.3390/safety7020036 – ident: ref_34 doi: 10.3390/s23073446 – volume: 153 start-page: 105803 year: 2022 ident: ref_9 article-title: Distracted driving in relation to risky road behaviors and traffic crashes in Bogota, Colombia publication-title: Saf. Sci. doi: 10.1016/j.ssci.2022.105803 – volume: 8 start-page: 79 year: 2022 ident: ref_15 article-title: Accident prevention and safety assistance using IOT and machine learning publication-title: J. Reliab. Intell. Environ. doi: 10.1007/s40860-021-00136-3 – ident: ref_39 doi: 10.3390/bios11090343 – volume: 9 start-page: 23 year: 2017 ident: ref_44 article-title: Online recognition of driver-activity based on visual scanpath classification publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2017.2743171 – volume: 149 start-page: 113240 year: 2020 ident: ref_67 article-title: Driver behavior detection and classification using deep convolutional neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113240 – ident: ref_43 doi: 10.3390/e24121715 – volume: 11 start-page: 16455 year: 2021 ident: ref_29 article-title: Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-95947-y – ident: ref_61 – ident: ref_1 – volume: 33 start-page: e6475 year: 2021 ident: ref_12 article-title: Computer vision-based recognition of driver distraction: A review publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6475 – volume: 10 start-page: 77523 year: 2022 ident: ref_22 article-title: Innovative Framework for Distracted-Driving Alert System Based on Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3186674 – ident: ref_28 doi: 10.3390/s20123463 – ident: ref_27 doi: 10.1145/3123024.3129271 – volume: 9 start-page: 100302 year: 2021 ident: ref_24 article-title: Analysis of a driving behavior measurement model using a modified driver behavior questionnaire encompassing texting, social media use, and drug and alcohol consumption publication-title: Transp. Res. Interdiscip. Perspect. – volume: 9 start-page: 60063 year: 2021 ident: ref_13 article-title: Driver Distraction Detection Methods: A Literature Review and Framework publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073599 – ident: ref_3 doi: 10.3390/electronics9122002 – ident: ref_33 doi: 10.1109/CIMCA.2014.7057770 – ident: ref_8 – ident: ref_31 – volume: 14 start-page: 617 year: 2020 ident: ref_42 article-title: Distracted driver classification using deep learning publication-title: Signal Image Video Process. doi: 10.1007/s11760-019-01589-z – volume: 24 start-page: 3738 year: 2021 ident: ref_62 article-title: Comparing the Effects of Visual Distraction in a High-Fidelity Driving Simulator and on a Real Highway publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3116045 – volume: 421 start-page: 26 year: 2021 ident: ref_52 article-title: Deep unsupervised multi-modal fusion network for detecting driver distraction publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.023 – volume: 185 start-page: 110008 year: 2021 ident: ref_50 article-title: DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses publication-title: Measurement doi: 10.1016/j.measurement.2021.110008 – ident: ref_36 doi: 10.3390/electronics11182960 – ident: ref_51 doi: 10.3390/s18020456 – ident: ref_5 doi: 10.1109/I2MTC.2018.8409675 – volume: 23 start-page: 24866 year: 2022 ident: ref_54 article-title: Spatio-Temporal Image Representation and Deep-Learning-Based Decision Framework for Automated Vehicles publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3195213 – ident: ref_23 doi: 10.1037/e729262011-001 – ident: ref_59 doi: 10.3390/s20185321 – volume: 68 start-page: 5379 year: 2019 ident: ref_56 article-title: Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2908425 – volume: 19 start-page: 297 year: 2013 ident: ref_6 article-title: Driver Fatigue and Road Safety on Poland’s National Roads publication-title: Int. J. Occup. Saf. Ergon. doi: 10.1080/10803548.2013.11076987 – volume: 1 start-page: 3 year: 1999 ident: ref_26 article-title: Using Cellular Telephones in Vehicles: Safe or Unsafe? publication-title: Transp. Hum. Factors doi: 10.1207/sthf0101_2 – ident: ref_7 doi: 10.3390/s22249726 – volume: 10 start-page: 103 year: 2016 ident: ref_66 article-title: Driving posture recognition by convolutional neural networks publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2015.0175 – ident: ref_38 doi: 10.1109/BIBE.2018.00031 – ident: ref_63 – ident: ref_69 doi: 10.1145/2993148.2993181 – ident: ref_58 doi: 10.3390/s18020679 – volume: 21 start-page: 2146 year: 2020 ident: ref_68 article-title: How Do Drivers Allocate Their Potential Attention? Driving Fixation Prediction via Convolutional Neural Networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2915540 – ident: ref_16 doi: 10.3390/s22103634 – volume: 42 start-page: 790 year: 2012 ident: ref_32 article-title: Sensor-Based ActivityRecognition publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2012.2198883 – volume: 112 start-page: 77 year: 2018 ident: ref_49 article-title: Driver education: Enhancing knowledge of sleep, fatigue and risky behaviour to improve decision making in young drivers publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.12.017 – volume: 10 start-page: 116087 year: 2022 ident: ref_53 article-title: Design of an Efficient Distracted Driver Detection System: Deep Learning Approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218711 – volume: 36 start-page: 298 year: 1994 ident: ref_10 article-title: Driver Fatigue publication-title: Hum. Factors doi: 10.1177/001872089403600210 – volume: 216 start-page: 221 year: 2023 ident: ref_20 article-title: The effect of visual advanced driver assistance systems on a following human driver in a mixed-traffic condition publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.12.130 – volume: 20 start-page: 2048 year: 2019 ident: ref_41 article-title: Detection and Evaluation of Driver Distraction Using Machine Learning and Fuzzy Logic publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2857222 – volume: 370 start-page: 54 year: 2014 ident: ref_25 article-title: Distracted Driving and Risk of Road Crashes among Novice and Experienced Drivers publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa1204142 – ident: ref_48 doi: 10.1007/978-3-319-73450-7_53 – ident: ref_17 doi: 10.3390/su13031342 – ident: ref_40 doi: 10.3390/s22207711 – ident: ref_57 doi: 10.1109/IVS.2017.7995822 – ident: ref_47 doi: 10.3390/electronics12010235 – ident: ref_2 – volume: 37 start-page: 1642 year: 1987 ident: ref_18 article-title: Looking but not seeing publication-title: Neurology doi: 10.1212/WNL.37.10.1642 – volume: 2020 start-page: 7251280 year: 2020 ident: ref_65 article-title: Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/7251280 – volume: 110 start-page: 101981 year: 2020 ident: ref_35 article-title: Sleep stage classification for child patients using DeConvolutional Neural Network publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101981 – volume: 2019 start-page: 4125865 year: 2019 ident: ref_19 article-title: Driver Distraction Identification with an Ensemble of Convolutional Neural Networks publication-title: J. Adv. Transp. doi: 10.1155/2019/4125865 – volume: 10 start-page: 441 year: 2022 ident: ref_45 article-title: Real-time Driver Drowsiness Detection with Android publication-title: Int. J. Res. Appl. Sci. Eng. Technol. doi: 10.22214/ijraset.2022.42210 – ident: ref_64 – volume: 7 start-page: e632 year: 2021 ident: ref_4 article-title: A systematic review on sensor-based driver behaviour studies: Coherent taxonomy, motivations, challenges, recommendations, substantial analysis and future directions publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.632 – volume: 1 start-page: 157 year: 2009 ident: ref_37 article-title: Wearable EOG goggles: Seamless sensing and context-awareness in everyday environments publication-title: J. Ambient. Intell. Smart Environ. doi: 10.3233/AIS-2009-0020 – volume: 235 start-page: 3051 year: 2021 ident: ref_14 article-title: Gaze dynamics with spatiotemporal guided feature descriptor for prediction of driver’s maneuver behavior publication-title: Proc. Inst. Mech. Eng. Part D J. Automob. Eng. doi: 10.1177/09544070211007807 – ident: ref_21 doi: 10.23919/DATE51398.2021.9473991 – ident: ref_60 – ident: ref_46 doi: 10.1007/978-3-031-20859-1 |
SSID | ssj0023338 |
Score | 2.4147651 |
Snippet | To drive safely, the driver must be aware of the surroundings, pay attention to the road traffic, and be ready to adapt to new circumstances. Most studies on... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5551 |
SubjectTerms | Accidents, Traffic - prevention & control Algorithms Automobile Driving - psychology Automobiles Behavior Classification convolutional neural networks Deep learning driving a car driving behavior electrooculography Eye movements Fatigue Internet of Things Neural networks Neural Networks, Computer Safety and security measures Sensors Traffic accidents & safety |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yJz2I62d1lSiCXsq2-WiS49unyyIowrqwt5BPFKSV99769-9M2ldeUfDiqbQJNJnMZObXTH9DyFshZUyqc3WrcsavVbIG2NzVMbRRedn4kPDf4c9fuosr8elaXh-U-sKcsJEeeBTcaSOT1j75zBIT0mUvmGKAEnjDgvIi4O4LPm8PpiaoxQF5jTxCHED96RaiGIidZbvwPoWk_8-t-MAXLfMkDxzP-QNyf4oY6Woc6TG5k_qH5N4Bj-Aj0l8CGB029Rm4pEhLnUvMACpCp0OmX0dKCer6SC8RAUe8W7sN_bDBvAy6CqWIBKBmWnII6Hrof09KCe9GBo9yKSnj28fk6vzjt_VFPRVSqAPEAzuAh46LLLwxqRXRJJUC0xEs1bSsidmEHLLJXdAmxyRzY3SQXOmckAkmR8mfkKN-6NMzQiVzynU5A4qMAhysabrUGuE8j03jOKvI-72AbZhYxrHYxU8LaAPXws5rUZE3c9dfoxz-1ukMV2nugGzY5QHoiJ10xP5LRyryDtfYos3CYIKbfj2AKSH7lV0BaBKawV5UkZO9GtjJmLcWD5u1AiRpKvJ6bgYzxLMV16fhBvtAJKsgvgIJPB21Zh4zV4JBJKcrohf6tJjUsqX_8b1QfWMROKla8fx_iOEFucvANDDRreUn5Gi3uUkvIaTa-VfFem4Bkg0hcA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96vuiD-G31lCiCvpRr89EkT7K3uh6CIpwH91bSfJyCtGd3z7_fmWy2blF8Km0DTTIzmfkl098Q8kpI6YNqbFmrGHG3SpYAm5vSu9qrTladC_jv8KfPzcmZ-Hguz_OG2zqnVe7WxLRQ-8HhHvkRnvhpBeG8eXv5s8SqUXi6mktoXCc3avA0mNKlVx8mwMUBf23ZhDhA-6M1xDIQQct65oMSVf_fC_KeR5pnS-65n9UdcjvHjXSxFfRdci3098itPTbB-6Q_BUg6jOUxOCZPU7VLzANKU0-HSL9siSWo7T09RRzs8W5pR_puxOwMunCplARgZ5oyCehy6H9l1YRvI49HuqTE8fUDcrZ6_3V5UuZyCqWDqGADINFyEUVnTKiFN0EFx7QHezU1q3w0LrpoYuO0iT7IWBntJFc6BuSDiV7yh-SgH_rwmFDJrLJNjIAlvQA3a6om1EbYjvuqspwV5M1ugluXucax5MWPFjAHyqKdZFGQl1PTy-08_KvRMUppaoCc2OnBMF602cTaSgatu9BFFpiQNnaCKQZ4klfMqU64grxGGbdoudAZZ_MPCDAk5MBqFwCdBGhZwwtyuFODNpv0uv2jgAV5Mb0GY8QTFtuH4QrbQDyrIMqCGXi01Zqpz1wJBvGcLoie6dNsUPM3_fdvifAbS8FJVYsn_-_XU3KTgdJjIlvND8nBZrwKzyBk2nTPk138Bh_uGQo priority: 102 providerName: ProQuest |
Title | Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37420718 https://www.proquest.com/docview/2829874959 https://www.proquest.com/docview/2835270812 https://pubmed.ncbi.nlm.nih.gov/PMC10305714 https://doaj.org/article/05e88bebf2e245afb4272289302c7b4c |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6V9gIHxBtDiRaEBBeDvd717h4QSkJDhdSqokTqzVrvA5AqG5wUwb9nZuNYseiRS6LYI8Weh2c-7-w3hLzkQjgvS5PmMgR8WyVSgM1l6mzuZC2y2nrcO3xyWh4v-acLcbFHtjM2ewWuroV2OE9q2V2--f3zz3sI-HeIOAGyv11BjQKVMW6kPoCEJHGQwQkfFhNYATBsQyo0Fh-losjY_-9zeScxjZsmd7LQ4g653ZePdLqx912y55t75NYOqeB90pwDMm27dAb5ydE49BLbgaIFaBvo2YZfgprG0XOEww5_zU1HP3TYpEGnNk6UAAhNY0MBnbfNr95D4b-RziN-xf7x1QOyXBx9mR-n_VSF1EJxsAasaAoeeK21z7nTXnrLlIOw1TnLXNA22KBDaZUOzouQaWVFIVXwSAsTnCgekv2mbfxjQgUz0pQhAKR0HLKtzkqfa27qwmWZKVhCXm8VXNmechwnX1xWAD3QFtVgi4S8GER_bPRwndAMrTQIIDV2PNB2X6s-0qpMeKVqXwfmGRcm1JxJBrCyyJiVNbcJeYU2rtCl4GKs6fchwC0hFVY1BQTFFYMHU0IOt25QbR2zwpVnJQFW6oQ8H05DTOJCi2l8e4UyUNZKKLZAA482XjNccyE5g7JOJUSN_Gl0U-MzzfdvkfcbJ8IJmfMn_0MNT8lNBqGBXW95cUj2192Vfwb11bqekBvyQsKnWnyckIPZ0enZ50l8VzGJcfUXmIYrqw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8QA8IO4EBhgEgpdoiWPH8QNCXUfp2EVI26S9ZY4vMGlKRtuB-FP8Rs5xLrQC8banqrWlOj7XLz4-HyGvuBDWyVzHqfQe31aJGGBzHluTWlmJpDIO7w7vH-TTY_7pRJyskV_9XRgsq-x9YnDUtjH4jnwTT_wKCem8en_xLUbWKDxd7Sk0WrXYdT9_AGSbv9vZBvm-Zmzy4Wg8jTtWgdhAcFwAVtIZ97xSyqXcKiedYYUFtVUpS6xXxhuvfG4K5a0TPlGFEZksvMO2KN4iSwS4_Gs8g0iON9MnHweAlwHea7sXwWCyOYfcCTJ2ka7EvEAN8HcAWIqAq9WZS-Fucpvc6vJUOmoV6w5Zc_VdcnOpe-E9Uh8CBG5m8RYEQksDuybWHQVR08bTz20jC6prSw8Rd1v8NtYzuj3DahA6MoG6ArA6DZULdNzU3ztTgP_GviHhIxSqz--T4yvZ6AdkvW5q94hQwbTUufeAXS2HsK6S3KWK6yqzSaIzFpG3_QaXputtjhQb5yVgHJRFOcgiIi-HqRftPvxr0hZKaZiAPbjDD83sS9mZdJkIVxSVqzxzjAvtK84kA_yaJczIipuIvEEZl-gpYDFGdxce4JGw51Y5AqjGQavzLCIbvRqUnQuZl38UPiIvhmEwfjzR0bVrLnEO5M8SsjrYgYet1gxrziRnkD8WESlW9GnloVZH6rOvocE4Us8JmfLH_1_Xc3J9erS_V-7tHOw-ITcYGAAW0aXZBllfzC7dU0jXFtWzYCOUnF61Uf4GATFW8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggHgTKGAQCC7RJo4dxweE9tFVS2G1olTqLXX8ACSUlN0tiL_Gr2MmL3YF4tbTKhtLcTzfPL54PEPIcy6EdTLVYSy9x69VIgTanIbWxFYWIiqMw7PD7-fpwQl_eypOd8iv7iwMplV2NrE21LYy-I18iDt-mYRwXg19mxaxmM7enH8LsYMU7rR27TQaiBy5nz-Avq1eH05B1i8Ym-1_nByEbYeB0ICjXANv0gn3vFDKxdwqJ51hmQUIq5hF1ivjjVc-NZny1gkfqcyIRGbeYYkUb7FjBJj_XYmsaEB2x_vzxYee7iXA_ppaRkmiouEKIimI30W85QHrRgF_u4MNf7idq7nh_GY3yPU2aqWjBmY3yY4rb5FrG7UMb5PyGAhxtQzH4BYtrXttYhZSLXhaebpoylpQXVp6jCzc4tVEL-l0ibkhdGTqRhbA3Gmdx0AnVfm9VQx4NlYRqX_qtPXVHXJyKUt9lwzKqnT3CRVMS516D0zWcnDyKkpdrLguEhtFOmEBedUtcG7aSufYcONrDowHZZH3sgjIs37oebMO_xo0Rin1A7Aid_1HtfyUtwqeR8JlWeEKzxzjQvuCM8mAzSYRM7LgJiAvUcY52g2YjNHt8Qd4JazAlY-AuHHAeJoEZK-DQd4alFX-B_4BedrfBlOA-zu6dNUFjoFoWkKMBytwr0FNP-dEcgYgzQKSbeFp66W275RfPtflxrERnZAxf_D_eT0hV0Ah83eH86OH5CoD_GNGXZzskcF6eeEeQey2Lh63SkLJ2WXr5W9rplyC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor-Based+Classification+of+Primary+and+Secondary+Car+Driver+Activities+Using+Convolutional+Neural+Networks&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Rafa%C5%82+Doniec&rft.au=Justyna+Konior&rft.au=Szymon+Sieci%C5%84ski&rft.au=Artur+Piet&rft.date=2023-06-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=12&rft.spage=5551&rft_id=info:doi/10.3390%2Fs23125551&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_05e88bebf2e245afb4272289302c7b4c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |